TUTORAT 1 : CALCUL TENSORIEL

Frédéric Chevy – chevy@lkb.ens.fr

http://www.lkb.ens.fr/~chevy/Tutorat/Tut.html

Les tenseurs sont d'une grande importance en physique puisqu'on les retrouve dans des domaines aussi divers que la mécanique, la relativité générale ou bien la théorie quantique des champs : Leurs propriétés mathématiques traduisent en effet l'invariance des phénomènes physiques vis-à-vis d'un changement de coordonnées utilisés pour les décrire.

1 Règles de sommation d'Einstein

On se place dans \mathbb{R}^3 muni d'une base orthonormée $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$. On considère un vecteur \mathbf{x} de coordonnées $x_{j=1,2,3}$. Soit f un endomorphisme de \mathbb{R}^3 de matrice M_{ij} dans la base des \mathbf{e}_i . Si $\mathbf{x}' = f(\mathbf{x})$, on a :

$$x_i' = \sum_{j=1}^3 M_{ij} x_j.$$

La convention de sommation d'Einstein revient à récrire l'expression suivante en omettant le signe \sum et en sommant sur les indices répétés. Autrement dit, on écrit :

$$x_i' = M_{ij}x_j.$$

- 1. Écrire à l'aide des conventions d'Einstein : $\mathbf{x} \cdot \mathbf{y}$, $\operatorname{tr}(M)$.
- 2. Déduire de la question précédente que pour toutes matrices M et M', on a $\text{Tr}(M \cdot M') = \text{Tr}(M' \cdot M)$.
- 3. On définit le tenseur totalement antisymétrique (ou tenseur de Levi-Civita) ϵ_{ijk} par :

$$\begin{array}{lll} \epsilon_{123} & = & 1 \\ \epsilon_{ijk} & = & -\epsilon_{jik} = -\epsilon_{ikj} \end{array}$$

(a) Montrer que si $\mathbf{c} = \mathbf{a} \times \mathbf{b}$, alors :

$$c_i = \epsilon_{ijk} a_j b_k$$
.

- (b) Montrer que $\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} \delta_{jn}\delta_{km}$.
- (c) En déduire que $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$.

- 4. Soit M une matrice. On pose $\Delta_{ijk} = \epsilon_{i'j'k'} M_{i'i} M_{j'j} M_{k'k}$.
 - (a) Montrer que Δ_{ijk} est totalement antisymétrique et en déduire que $\Delta_{ijk} = \Delta \epsilon_{ijk}$, où Δ est un réel (on admettra qu'il s'agit du déterminant de M).
 - (b) Montrer que $\Delta = \epsilon_{ijk} \Delta_{ijk} / 6$.
 - (c) On pose $M_{ij} = \delta_{ij} + \alpha_{ij}$. Déduire des questions précédentes que :

$$\det(M) = 1 + \operatorname{Tr}(\alpha) + o(\alpha).$$

2 Changement de base

On considère deux bases orthonormées \mathbf{e}_i et \mathbf{e}'_i reliées par la relation de changement de base :

$$\mathbf{e}_i = R_{ji}\mathbf{e}_i' \qquad \qquad \mathbf{e}_i' = P_{ji}\mathbf{e}_j.$$

- 1. Montrer que $P_{ij} = R_{ji}$, $R_{ki}R_{kj} = P_{ki}P_{kj} = \delta_{ij}$.
- 2. Soit \mathbf{x} un vecteur de \mathbb{R}^3 dont on note x_i (resp. x_i') ses coordonnées dans la base \mathbf{e}_i (resp. \mathbf{e}_i'). Montrer que $x_i' = R_{ij}x_j$.
- 3. Plus généralement, on dit que $T_{i_1i_2...i_m}$ est un tenseur de rang m si par changement de base il se transforme en T' défini par :

$$T'_{i_1 i_2 \dots i_m} = R_{i_1 j_1} R_{i_2 j_2} \dots R_{i_m j_m} T_{j_1 j_2 \dots j_m}.$$

- (a) Montrer que la matrice M_{ij} d'une application linéaire est un tenseur de rang 2.
- (b) Montrer que δ_{ij} est un tenseur de rang 2 invariant par changement de base.
- (c) Contraction: Soit $T_{i_1i_2...i_m}$ un tenseur de rang m. Montrer que $T_{i_1i_1i_3...i_m}$ est un tenseur de rang m-2. En déduire que la trace d'une matrice 3×3 est un tenseur de rang 0 (un scalaire) invariant par changement de base.
- (d) Produit tensoriel : Soient $T^{(1)}_{i_1i_2...i_m}$ et $T^{(2)}_{j_1j_2...j_n}$ deux tenseurs de rang m et n. Montrer que $T^{(3)}_{i_1i_2...i_mj_1j_2...j_n} = T^{(1)}_{i_1i_2...i_m}T^{(2)}_{j_1j_2...j_n}$ est un tenseur de rang n+m appelé produit tensoriel de $T^{(1)}$ et $T^{(2)}$. On le note $T^{(3)} = T^{(1)} \otimes T^{(2)}$.
- 4. Pseudo-tenseurs. On dit que $T_{i_1i_2...i_m}$ est un pseudo-tenseur s'il se transforme comme :

$$T'_{i_1 i_2 \dots i_m} = \det(R) R_{i_1 j_1} R_{i_2 j_2} \dots R_{i_m j_m} T_{j_1 j_2 \dots j_m}.$$

- (a) Montrer que ϵ_{ijk} est un pseudo-tenseur d'ordre 3 invariant par changement de base.
- (b) Soient \mathbf{a} et \mathbf{b} deux vecteurs (tenseurs d'ordre 1). Montrer que $\mathbf{a} \times \mathbf{b}$ est un pseudovecteur.
- (c) Montrer que ϵ_{ijk} est un pseudo-tenseur de rang 3.
- (d) Soit un tenseur de rang 2 antisymétrique A_{ij} . On pose $V_i = \frac{1}{2}\epsilon_{ijk}A_{jk}$. Montrer que V_i est un pseudo-vecteur et que l'on peut inverser cette relation pour obtenir $V_i = \epsilon_{ijk}V_k$. En déduire un isomorphisme entre les tenseurs antisymétriques et les vecteurs.