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Abstract We introduce an exactly-solvable model of random walk in random envi-
ronment that we call the Beta RWRE. This is a random walk in Z which performs
nearest neighbour jumps with transition probabilities drawn according to the Beta
distribution. We also describe a related directed polymer model, which is a limit of
the q-Hahn interacting particle system. Using a Fredholm determinant representation
for the quenched probability distribution function of the walker’s position, we are
able to prove second order cube-root scale corrections to the large deviation principle
satisfied by the walker’s position, with convergence to the Tracy–Widom distribution.
We also show that this limit theorem can be interpreted in terms of the maximum of
strongly correlated random variables: the positions of independent walkers in the same
environment. The zero-temperature counterpart of the Beta RWRE can be studied in
a parallel way. We also prove a Tracy–Widom limit theorem for this model.
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1 Introduction

We study an exactly solvable one-dimensional random walk in space–time i.i.d. ran-
dom environment. It is a random walk on Z which performs nearest neighbour steps,
according to transition probabilities following the Beta distribution and drawn inde-
pendently at each time and each location. We call this model the Beta RWRE. Using
methods of integrable probability,wefind an exact Fredholmdeterminantal formula for
the Laplace transform of the quenched probability distribution of thewalker’s position.
An asymptotic analysis of this formula allows to prove a very precise limit theorem. It
was already known that such a random walk satisfies a quenched large deviation prin-
ciple [34]. We show that for the Beta RWRE, the second order correction to the large
deviation principle fluctuates on the cube-root scale with Tracy–Widom statistics. This
brings the scope ofKPZuniversality to randomwalks in dynamic randomenvironment,
and the Beta RWRE is the first RWRE for which such a limit theorem has been proved.
Moreover, our result translates in terms of the maximum of the locations of indepen-
dent walkers in the same environment. Hence, the Beta RWRE can also be considered
as a toy model for studying maxima of strongly correlated random variables.

Our route to discover the exact solvability of the Beta RWRE was through an
equivalent directed polymer model with Beta weights, which is itself a limit of the q-
Hahn TASEP (introduced in [30] and further studied in [15]). However, we show that
the RWRE/polymer model can be analysed independently of its interacting particle
system origin, via a rigorous variant of the replica method.

Our work generalizes a study of similar spirit, where a limit of the discrete-time
geometric q-TASEP [3] was related to the strict weak lattice polymer [17] (see also
[29]). It should be emphasized that this procedure of translating the algebraic structure
of interacting particle systems to directed polymer models was already fruitful in [4],
where formulas for the q-TASEP allowed to study the law of continuous directed
polymers related to the KPZ equation.

2 Definitions and main results

2.1 Random walk in space–time i.i.d. Beta environment

Definition 2.1 Let (Bx,t )x∈Z,t∈Z�0 be a collection of independent random variables
following the Beta distribution, with parameters α and β. We call this collection of
random variables the environment of the walk. Recall that if a random variable B is

123



Random-walk in Beta-distributed random environment 1059

Fig. 1 The graph of t �→ Xt for the Beta RWRE. One sees that that the random walk Xt := (t, Xt ) is also
a (directed) random walk in a random environment in Z

2

drawn according to the Beta(α, β) distribution, then for 0 � r � 1,

P (B � r) =
∫ r

0
xα−1(1 − x)β−1 �(α + β)

�(α)�(β)
dx .

In this environment, we define the random walk in space–time Beta environment
(abbreviated Beta-RWRE) as a random walk (Xt )t∈Z�0 in Z, starting from 0 and such
that

• Xt+1 = Xt + 1 with probability BXt ,t and
• Xt+1 = Xt − 1 with probability 1 − BXt ,t .

A sample path is depicted in Fig. 1. We denote by P and E (resp. P and E) the measure
and expectation associated to the random walk (resp. to the environment).

Let P(t, x) = P(Xt � x). This is a random variable with respect to P. Our first
aim is to show that the Beta RWRE model is exactly solvable, in the sense that we are
able to find the distribution of P(t, x), by exploiting an exact formula for the Laplace
transform of P(t, x).

Remark 2.2 The random walk (Xt )t in Z
2, where Xt := (t, Xt ) is a random walk in

random environment in the classical sense, i.e. the environment is not dynamic (see
Fig. 1). It is a very particular case of random walk in Dirichlet random environment
[21]. Dirichlet RWREs have generated some interest because it can be shown using
connections between Dirichlet law and Pólya urn scheme that the annealed law of
such random walks is the same as that of oriented-edge-reinforced random walks
[20]. However, since the random walk (Xt ) can go through a given edge of Z2 at most
once, the connection to self-reinforced randomwalks is irrelevant for the Beta RWRE.
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1060 G. Barraquand, I. Corwin

Fig. 2 The thick line represents a possible polymer path in the point-to-point Beta polymer model. The
dotted thick part represents a modification of the polymer path that is admissible if one considers the half-
line to point polymer (see the Sect. 2.2.2). The partition function for the half-line to point model Z̃(s, k) at
the point (s, k) shown in gray equals 1

Remark 2.3 • The Beta distribution with parameters (1, 1) is the uniform distribu-
tion on (0, 1).

• For B a random variable with Beta(α, β) distribution, 1− B is distributed accord-
ing to a Beta distribution with parameters (β, α). Consequently, exchanging the
parameters α and β of the Beta RWRE corresponds to applying a symmetry with
respect to the time axis.

2.2 Definition of the Beta polymer

2.2.1 Point to point Beta polymer

Definition 2.4 A point-to-point Beta polymer is a measure Qt,n on lattice paths π

between (0, 1) and (t, n). At each site (s, k) the path is allowed to

• jump horizontally to the right from (s, k) to (s + 1, k),
• or jump diagonally to the upright from (s, k) to (s + 1, k + 1).

An admissible path is shown in Fig. 2. Let Bi, j be independent random variables
distributed according to the Beta distribution with parameters μ and ν − μ where
0 < μ < ν. The measure Qt,n is defined by

Qt,n (π) =
∏

e∈π we

Z(t, n)

where the products is taken over edges of π and the weights we are defined by

we =

⎧⎪⎨
⎪⎩
Bi j if e = (i − 1, j) → (i, j)

1 if e = (i − 1, i) → (i, i + 1)

1 − Bi, j if e = (i − 1, j − 1) → (i, j) with i � j,
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Random-walk in Beta-distributed random environment 1061

and Z(t, n) is a normalisation constant called the partition function,

Z(t, n) =
∑

π :(0,1)→(t,n)

∏
we.

The free energy of the beta polymer is log Z(t, n). The partition function of the beta
polymer satisfies the recurrence

⎧⎪⎨
⎪⎩
Z(t, n) = Z(t − 1, n)Bt,n + Z(t − 1, n − 1)(1 − Bt,n) for t � n > 1,

Z(t, t + 1) = Z(t − 1, t) for t > 0,

Z(t, 1) = Z(t − 1, 1)Bt,1 for t > 0.

(1)

With the initial data
Z(0, 1) = 1. (2)

Remark 2.5 One recovers at theν → ∞ limit the strict-weak lattice polymer described
in [17,29]. As ν goes to infinity,

ν · Beta(μ, ν − μ) ⇒ Gamma(μ),

and 1− Beta(μ, ν − μ) ⇒ 1. There are t − n + 1 horizontal edges in any admissible
lattice path from (0, 1) to (t, n), and thus

Z̄(t, n) := lim
ν→∞ νt−n+1Z(t, n)

is the partition function of the strict-weak polymer. Indeed, in the strict-weak polymer,
the horizontal edges have weights Gamma(μ) whereas upright paths have weight 1.

2.2.2 Half-line to point Beta polymer

Another (equivalent) possible interpretation of the samequantity Z(t, n) is the partition
function of an ensemble of polymer paths starting from the “half-line” {(0, n) : n > 0}.
Fix t � 0 and n > 0.One considers paths starting from any point (0,m) for 0 < m � n
and ending at (t, n). As for the point-to-point Beta polymer, paths are allowed to make
right and diagonal steps. The weight of any path is the product of the weights of each
edge along the path, and the weight w̃e of the edge e is now defined by

w̃e =
{
Bi j if e is the horizontal edge (i − 1, j) → (i, j),

1 − Bi, j if e is the diagonal edge (i − 1, j − 1) → (i, j).

Let us denote by Z̃(t, n) the partition function in the half-line to point model. It is
characterized by the recurrence

Z̃(t, n) = Z̃(t − 1, n)Bt,n + Z̃(t − 1, n − 1)(1 − Bt,n)
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1062 G. Barraquand, I. Corwin

for all t, n > 0 and the initial condition Z(0, n) = 1 for n > 0. With the above
definition ofweights,we can see by induction that for any t � 0 andn > t , Z̃(t, n) = 1.
For example, in Fig. 2, the possible paths leading to (s, k) are shown in gray. On the
figure, one has

Z̃(s, k) = Z̃(2, 6)

= B1,6B2,6 + (1 − B1,6)B2,6 + B1,5(1 − B2,6) + (1 − B1,5)(1 − B2,6) = 1.

Consequently, the partition functions of the half-line-to-point and the point-to-point
model coincide for t + 1 � n. In the following, we drop the tilde above Z , even when
considering the half-line-to point model, since the models are equivalent.

By deforming the lattice so that admissible paths are up/right, and reverting the
orientation of the path, one sees that the Beta polymer and the Beta-RWRE are closely
related models, in the sense of Proposition 2.6. This proposition is proved in Sect. 3.3.

Proposition 2.6 Consider the Beta-RWRE with parameters α, β > 0 and the Beta
polymer with parameters μ = α and ν = α + β. For any fixed t, n ∈ Z�0 such that
t + 1 � n, then we have the equality in law

Z(t, n) = P(t, t − 2n + 2).

Moreover, conditioning on the environment of the Beta polymer corresponds to con-
ditioning on the environment of the Beta RWRE.

2.3 Bernoulli-Exponential directed first passage percolation

Let us introduce the “zero-temperature” counterpart of the Beta RWRE.

Definition 2.7 Let (Ee) be a family of independent exponential random variables
indexed by the horizontal and vertical edges e in the lattice Z2, such that Ee is dis-
tributed according to the exponential law with parameter a (i.e. with mean 1/a) if e is
a vertical edge and Ee is distributed according to the exponential law with parameter
b if e is a horizontal edge. Let (ξi, j ) be a family of independent Bernoulli random
variables with parameter b/(a + b). For an edge e of the lattice Z2, we define the the
passage time te by

te =
{

ξi, j Ee if e is the vertical edge (i, j) → (i, j + 1),

(1 − ξi, j )Ee if e is the horizontal edge (i, j) → (i + 1, j).
(3)

The first passage-time T (n,m) in the Bernoulli-Exponential first passage percola-
tion model is given by

T (n,m) = min
π :(0,0)→Dn,m

∑
e∈π

te,

where the minimum is taken over all up/right paths π from (0, 0) to Dn,m , which is
the set of points
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Random-walk in Beta-distributed random environment 1063

Dn,m = {(i, n + m − i) : 0 � i � n}.

Although the quantity that we are fully able to study is T (n,m), that is a point to
half-line passage time, is is also natural to introduce the point-to-point passage time
T pp(n,m) defined by

T pp(n,m) = min
π : (0,0)→(n,m)

∑
e∈π

te,

where the maximum is taken over paths between the points (0, 0) and (n,m). We
define the percolation cluster C(t) by

C(t) = {(n,m) : T pp(n,m) � t}.

It can be constructed in a dynamic way (see Fig. 3). At each time t , C(t) is the union
of points visited by (portions of) several directed up/right random walks in the quarter
plane Z2

�0. The evolution is as follows:

• At time 0, the percolation cluster contains the points of the path of a directed
random walk starting from (0, 0).
Indeed, since for any i, j , ξi, j is a Bernoulli random variable in {0, 1}, either the
passage time from (i, j) to (i + 1, j) is zero, or the passage time from (i, j) to
(i, j + 1) is zero. This implies that there exists a unique infinite up-right path

Fig. 3 Percolation cluster for the Bernoulli-Exponential model with parameters a = b = 1 in a grid of
size 100 × 100. The different shades of gray correspond to different times: the black line corresponds to
the percolation cluster at time 0 and the other shades of gray corresponds to times 0.2, 0.5 and 1.2. This
implies that for n and m chosen as on the figure, 0.2 � T (n,m) � 0.5
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1064 G. Barraquand, I. Corwin

starting from (0, 0) with zero passage-time. This path is distributed as a directed
random walk.

• At time t , from each point on the boundary of the percolation cluster where a
random walk can branch, we add to the percolation cluster after an exponentially
distributedwaiting time, the path of that randomwalk. Paths startingwith a vertical
(resp. horizontal) edge are added at rate a (resp. b). This randomwalk almost surely
crosses the percolation cluster somewhere, and we add to the percolation cluster
only the points of the walk path up to the first hitting point.
Indeed, any edge e = (x, y) from a point x inside C(t) to a point y outside C(t),
has a positive passage time. Hence, one adds the point y to the percolation cluster
after an exponentially distributed waiting time te. Once the point y is added, one
immediately adds toC(t) all the points that one can reach from y with zero passage
time. These points form a portion of random walk that will almost surely coalesce
with the initial random walk path C(0).

Remark 2.8 Denote by D̃n,m the set of points {(i,m) : 0 � i � n} (see Fig. 4). Any
path going from (0, 0) to Dn,m has to go through a point of D̃n,m . Moreover, the first
passage time from any point of D̃n,m to the set Dn,m is zero. Hence the first passage
time from (0, 0) to D̃n,m is also T (n,m).

Remark 2.9 When b tends to infinity, Ee tends to 0 for all horizontal edges, and one
recovers the first passage percolation model introduced in [28], which is the zero
temperature limit of the strict-weak lattice polymer as explained in [17,29].

Fig. 4 An admissible path for the Bernoulli-Exponential FPP model is shown on the figure. T (n,m) is the
passage time between (0, 0) and Dn,m (thick gray line). Note that the first passage time to Dn,m is also the
first passage time to D̃n,m depicted in dotted gray on the figure (cf. Remark 2.8)
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Random-walk in Beta-distributed random environment 1065

Let us show how the Bernoulli-Exponential first passage percolation model is a
limit of the Beta RWRE.

Proposition 2.10 Let αε = εa and βε = εb. Let Pε(t, x) be the probability dis-
tribution function of the Beta-RWRE with parameters αε and βε and T (n,m) the
first-passage time in theBernoulli-Exponential FPPmodelwith parameters a, b. Then,
for all n,m � 0, −ε log(Pε(n + m,m − n)) weakly converges as ε goes to zero to
T (n,m), the first passage time from (0, 0) to Dn,m in the Bernoulli-Exponential FPP
model.

Proposition 2.10 is proved in Sect. 5.

2.4 Exact formulas

Our first result is an exact formula for the mixed moments of the polymer partition
function E[Z(t, n1) · · · Z(t, nk)]. In light of Proposition 3.1, this result can be seen as
a limit when q goes to 1 of the formula from Theorem 1.8 in [15]. Even so, we prove
this in an independent way in Sect. 4 via a rigorous polymer replica trick methods (see
Proposition 4.4).

Proposition 2.11 For n1 � n2 � · · · � nk � 1, one has the following moment
formula,

E[Z(t, n1) . . . Z(t, nk)]

= 1

(2iπ)k

∫
. . .

∫ ∏
1�A<B�k

zA − zB
zA − zB − 1

k∏
j=1

(
ν + z j
z j

)n j
(

μ + z j
ν + z j

)t dz j
ν + z j

,

(4)

where the contour for zk is a small circle around the origin, and the contour for z j
contains the contour for z j+1 + 1 for all j = 1, . . . , k − 1, as well as the origin, but
all contours exclude −ν.

The previous proposition provides a formula for the moments of the partition func-
tion Z(t, n). Using tools developed in the study of Macdonald processes [4] (see also
[13,18]), one is able to take the moment generating series, which yields a Fredholm
determinant representation for the Laplace transform of Z(t, n). We refer to [4, Sec-
tion 3.2.2] for background about Fredholm determinants.

Theorem 2.12 For u ∈ C\R>0, fix n, t � 0 with n � t + 1 and ν > μ > 0. Then
one has

E[euZ(t,n)] = det(I + KBP
u )L2(C0)

where C0 is a small positively oriented circle containing 0 but not −ν nor −1, and
KBP
u : L2(C0) → L

2(C0) is defined by its integral kernel

KBP
u (v, v′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(πs)
(−u)s

gBP(v)

gBP(v + s)

ds

s + v − v′
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1066 G. Barraquand, I. Corwin

where

gBP(v) =
(

�(v)

�(ν + v)

)n (
�(ν + v)

�(μ + v)

)t

�(ν + v). (5)

In light of the relation between the Beta RWRE and the Beta polymer given in
Proposition 2.6,wehave a similar Fredholmdeterminant representation for theLaplace
transform of P(t, x).

Theorem 2.13 For u ∈ C\R>0, fix t ∈ Z�0, x ∈ {−t, . . . , t} with the same parity,
and α, β > 0. Then one has

E[euP(t,x)] = det(I + KRW
u )L2(C0)

(6)

where C0 is a small positively oriented circle containing 0 but not −α − β nor −1,
and KRW

u : L2(C0) → L
2(C0) is defined by its integral kernel

KRW
u (v, v′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(πs)
(−u)s

gRW(v)

gRW(v + s)

ds

s + v − v′

where
gRW(v) =

(
�(v)

�(α + v)

)(t−x)/2 (
�(α + β + v)

�(α + v)

)(t+x)/2

�(v).

2.5 Limit theorem for the random walk

A quenched large deviation principle is proved in [34, Section 4] for a wide class
of random walks in random environment that includes the Beta-RWRE model. More
precisely, the setting of [34] applies to the random walk Xt = (t, Xt ) (see Remark
2.2). The condition that one has to check is that the logarithm of the probability of
each possible step has nice properties with respect to the environment (the random
variables must belong to the classL defined in [34, Definition 2.1]). Using the fact that
if B is a Beta(α, β) random variable, log(B) and log(1 − B) have integer moments
of any order, Ref. [34, Lemma A.4] ensures that the condition is satisfied. The limit

λ(z) := lim
t→∞

1

t
log(E[ezXt ])

exists P-almost surely. Let I be the Legendre transform of λ. Then, we have [34,
Section 4] that for x > (α − β)/(α + β),

lim
t→∞

1

t
log(P(Xt > xt)) = −I (x) P a.s. (7)

Remark 2.14 In the language of polymers, the limit (7) states the existence of the
quenched free energy. Theorem 4.3 in [33] states that for such randomwalks in random
environment, we have that
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lim
t→∞

1

t
log(P(Xt = �xt	)) = lim

t→∞
1

t
log(P(Xt > xt)) = −I (x).

In other terms, the point-to-point free energy and the point-to-half-line free energies
are equal.

In [34, Theorem 3.1], a formula is given for I in terms of a variational problem over
a space of measures. We provide a closed formula in the present case. It would be
interesting to see how the variational problem recovers the formulas that we now
present.

For the Beta-RWRE, critical point Fredholm determinant asymptotics shows that
the function I is implicitly defined by

x(θ) = �1(θ + α + β) + �1(θ) − 2�1(θ + α)

�1(θ) − �1(θ + α + β)
(8)

and

I (x(θ)) = �1(θ + α + β) − �1(θ + α)

�1(θ) − �1(θ + α + β)
(�(θ + α + β) − �(θ))

+�(θ + α + β) − �(θ + α), (9)

where � is the digamma function (�(z) = �′(z)/�(z)) and �1 is the trigamma
function (�1(z) = � ′(z)). The parameter θ does not seem natural at a first sight.
It is convenient to use it as it will turn out to be the position of the critical point
in the asymptotic analysis. When θ ranges from 0 to +∞, x(θ) ranges from 1 to
(α − β)/(α + β). This covers all the interesting range of large deviation events since
(α − β)/(α + β) is the expected drift of the random walk, and we know that P(Xt >

xt) = 0 for x > 1.
Moreover, we define σ(θ) > 0 such that

2σ(θ)3 = �2(θ + α) − �2(α + β + θ)

+�1(α + θ) − �1(α + β + θ)

�1(θ) − �1(α + β + θ)
(�2(α + β + θ) − �2(θ)). (10)

In the case α = β = 1, that is when the Bx,t variables are distributed uniformly on
(0, 1), the expressions for x(θ) and I (x(θ)) simplify. We find that

x(θ) = 1 + 2θ

θ2 + (θ + 1)2

and

I (x(θ)) = 1

θ2 + (θ + 1)2
,

so that the rate function I is simply the function I : x �→ 1 − √
1 − x2.
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1068 G. Barraquand, I. Corwin

The following theorem gives a second order correction to the large deviation prin-
ciple satisfied by the position of the walker at time t .

Theorem 2.15 For 0 < θ < 1/2 and α = β = 1, we have that

lim
t→∞P

(
log(P(t, x(θ)t)) + I (x(θ))t

t1/3σ(x(θ))
� y

)
= FGUE(y). (11)

Remark 2.16 Aswe explain in Sect. 6, we expect Theorem2.15 to holdmore generally
for arbitrary parameters α, β > 0 and θ > 0. The assumption α = β is made for
simplifying the computations, whereas the assumption θ < 1/2 is present because
certain deformations of contours are justified only for θ < min{1/2, α + β}. The
condition θ > 0 is natural, it corresponds to looking at x(θ) < 1. We know that for
x(θ) > 1, then P(t, x(θ)t) = 0.

In the case α = β = 1, the condition θ < 1/2 corresponds to x(θ) > 4/5.

Remark 2.17 The Tracy–Widom limit theorem from Theroem 2.15 should be under-
stood as an analogue of limit theorems for the free energy fluctuations of exactly-
solvable random directed polymers. Similar results are proved in [1,6] for the
continuum polymer, in [4,6] for the O’Connell-Yor semi-discrete polymer, in [9] for
the log-gamma polymer, and in [17,29] for the strict-weak-lattice polymer.

In light of KPZ universality for directed polymers, we expect the conclusion of
Theorem 2.15 to be more general with respect to weight distribution, but this is only
the first RWRE to verify this.

In Sect. 6, we also provide an interesting corollary of Theorem 2.15. Corollary
6.8 states that if one considers an exponential number of Beta RWRE drawn in the
same environment, then the maximum of the endpoints satisfies a Tracy–Widom limit
theorem. It turns out that even if the rescaled endpoint of a random walk converges in
distribution to a Gaussian random variable for large t , the limit theorem that we get is
quite different from the one verified by Gaussian random variables having the same
dependence structure.

2.6 Localization of the paths

The localization properties of randomwalks in random environment are quite different
from localization properties of random directed polymers in 1 + 1 dimensions. For
instance, in the log-gamma polymer model, the endpoint of a polymer path of size
n fluctuates on the scale n2/3 [35], and localizes in a region of size O(1) when one
conditions on the environment [14]. For random walks in random environment, it is
clear by the central limit theorem that the endpoint of a path of size n fluctuates on
the scale

√
n.

Remarkably, the central limit theorem also holds if one conditions on the environ-
ment. A general quenched central limit theorem is proved in [31] for space–time i.i.d.
randomwalks inZd . The only hypotheses are that the environment is not deterministic,
and that the expectation over the environment of the variance of an elementary incre-
ment is finite. These two conditions are clearly satisfied by the Beta-RWRE model.
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In the particular case of one-dimensional random walks, and when transition proba-
bilities have mean 1/2, the result was also proved in [12]. However, most of the other
papers proving a quenched central limit theorem for similar RWmodels assume a strict
ellipticity condition, which is not satisfied by the Beta-RWRE. See also [11,32] for
similar results about random walks in random environment under weaker conditions.

In any case, if we let the environment vary, the fluctuations of the endpoints at
time t in the Beta RWRE live on the

√
t scale. For the Beta-RWRE, Proposition

6.13 shows that the expected proportion of overlap between two random walks drawn
independently in a common environment is of order

√
t up to time t . The

√
t order of

magnitude has already been proved in [31, Lemma 2] based on results from [22], and
our Proposition 6.13 provides the precise equivalent.

Let us give an intuitive argument explaining the difference of behaviour between
polymers and random walks. Assume that the environment of the random walk (resp.
the polymer) has been drawn, and consider a random walk starting from the point 0
(resp. a point-to-point polymer starting from 0). The quenched probability that the
random walk performs a first step upward depends only on the environment at the
point 0 (i.e. the random variable B0,0 in the case of the Beta RWRE). However, the
probability for the polymer path to start with a step upward depends on the global
environment. For instance, if the weight on some edge is very high, this will influence
the probability that the first step of the polymer path is upward or downward, so as to
enable the polymer path to go through the edge with high weight. This explains why
two independent paths in the same environment have more tendency to overlap in the
polymer model.

In [27], a random walk in dynamic random environment is associated to a random
directed polymer in 1 + 1 dimensions, under a condition called north-east induction
on the edge-weights. For the log-gamma polymer, it turns out that the associated
random walk has Beta distributed transition probabilities. However, the environment
is correlated, so that this RWRE is very different from the Beta RWRE. The random
walk considered in [27] defines a measure on lattice paths which can be seen as a limit
of point-to-point polymer measures. Hence, as pointed out in [27, Remark 8.3], it has
very different localization properties than random walks in space–time i.i.d random
environment that we consider in the present paper.

2.7 Limit theorem at zero-temperature

Turning to the zero-temperature limit, Theorem 2.13 degenerates to the following for
the Bernoulli-Exponential FPP model:

Theorem 2.18 For r ∈ R>0, fix n,m � 0 and consider T (n,m) the first passage time
to the set Dn,m in the Bernoulli-Exponential FPP model with parameters a, b > 0.
Then, one has

P(T (n,m) > r) = det(I + K FPP
r )L2(C ′

0)

where C ′
0 is a small positively oriented circle containing 0 but not −a − b, and

K FPP
r : L2(C ′

0) → L
2(C ′

0) is defined by its integral kernel
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K FPP
r (u, u′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
ers

s

gFPP(u)

gFPP(u + s)

ds

s + u − u′ , (12)

where

gFPP(u) =
(
a + u

u

)n (
a + u

a + b + u

)m 1

u
. (13)

The integral in (12) is an improper oscillatory integral if one integrates on the
vertical line 1/2 + iR. One could justify a deformation of the integration contour (so
that the tails go to ∞e±i2π/3 for instance) in order to have an absolutely convergent
integral, but it happens that the vertical contour is more practical for analyzing the
asymptotic behaviour of det(I + K FPP

r ) in Sect. 7.
One has a Tracy–Widom limit theorem for the fluctuations of the first passage time

T (n, κn) when n goes to infinity, for some slope κ > a
b . Theorem 2.19 is proved as

Theorem 7.1 in Sect. 7.

Theorem 2.19 We have that for any θ > 0 and parameters a, b > 0,

lim
n→∞P

(
T
(
n, κ(θ)n

) − τ(θ)n

ρ(θ)n1/3
� y

)
= FTW(y),

where κ(θ), τ (θ) and ρ(θ) are explicit constants (see Sect. 7) such that when θ ranges
from 0 to infinity, κ(θ) ranges from +∞ to a/b.

Notice that in Theorem 2.19, we do not have any restriction on the range of the
parameters a, b and θ .

Another direction of study for the Bernoulli-Exponential FPP model is to compute
the asymptotic shape of the percolation clusterC(t) for a fixed time t (but looking very
far from the origin). In Sect. 7.3 we explain, based on a degeneration of the results
of Theorem 2.19, what should be the limit shape of the the convex envelope of the
percolation cluster, and guess the scale of the fluctuations. However, these arguments
are based on a non-rigorous interchange of limits and we leave a rigorous proof for
future consideration.

Outline of the paper In Sect. 3, we introduce the q-Hahn TASEP [15,30] and explain
how some observables of the q-Hahn TASEP converge to the partition function of the
Beta polymer (and likewise endpoint distribution of the Beta RWRE). This already
leads to a proof of the Fredholm determinant formulas in Theorems 2.12 and 2.13,
using results on the q-Hahn TASEP. We do not write here the necessary technical
details to make this approach rigorous. Rather, in Sect. 4, we give a direct proof of
Theorems 2.12 and 2.13 using an approach which can be seen as a rigorous instance
of the replica method. In Sect. 5, we show that the Beta RWRE converges to the
Bernoulli-Exponential FPP, and prove the Fredholm determinant formula of Theorem
2.18. In Sect. 6 we perform an asymptotic analysis of the Fredholm determinant from
Theorem 2.13 to prove Theorem 2.15.We also discuss Corollary 6.8which is about the
maximum of the endpoints of several Beta RWRE drawn in a common environment,
and we relate this result to extreme value theory. In Sect. 7, we perform an asymptotic
analysis of the Bernoulli-Exponential FPP model to prove Theorem 2.19.
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3 From the q-Hahn TASEP to the Beta RWRE

In this section, we explain how the Beta-RWRE and the Beta polymer arise as limits
of the q-Hahn TASEP introduced in [30] (see also [15]). We first show that some
observables of the q-Hahn TASEP converge to the partition function of the polymer
model (Proposition 3.1). Discarding technical details (which are written in full details
in the arXiv version of this paper), this leads to a first proof of Theorem 2.12. Then
we prove that the Beta RWRE and the Beta polymer model are equivalent models in
the sense of Proposition 2.6.

3.1 The q-Hahn TASEP

Let us recall the definition of the q-Hahn-TASEP: this is a discrete time interacting
particle system on the one-dimensional integer lattice. Fix 0 < q < 1 and 0 �
ν̄ � μ̄ < 1. Then the N -particle q-Hahn TASEP is a discrete time Markov chain
�x(t) = {xn(t)}Nn=0 ∈ XN where the state space XN is

XN = {+∞ = x0 > x1 > · · · > xN : ∀i, xi ∈ Z}.

At time t + 1, each coordinate xn(t) is updated independently and in parallel to
xn(t + 1) = xn(t) + jn where 0 � jn � xn−1(t) − xn(t) − 1 is drawn according
to the q-Hahn probability distribution ϕq,μ̄,ν̄ ( jn|xn−1(t) − xn(t) − 1). The q-Hahn
probability distribution on j ∈ {0, 1, . . . ,m} is defined by the probabilities

ϕq,μ̄,ν̄ ( j |m) = μ̄ j (ν̄/μ̄; q) j (μ̄; q)m− j

(ν̄; q)m

(q; q)m

(q; q) j (q; q)m− j
, (14)

where for a ∈ C and n ∈ Z�0 ∪ {+∞}, (a; q)n is the q-Pochhammer symbol

(a; q)n = (1 − a)(1 − qa) . . . (1 − qn−1a).

3.2 Convergence of the q-Hahn TASEP to the Beta polymer

An interesting interpretation of the q-Hahn distribution is provided in Section 4 of
[26]. The authors define a q-analogue of the Pólya urn process: One considers two
urns, initially empty, in which one sequentially adds balls. When the first urn contains
k balls, and the second urn contains n − k balls, one adds a ball to the first urn with
probability [ν−μ+n−k]q/[ν+n]q , where for any integerm, [m]q = (1−qm)/(1−q)

denotes the q-deformed integer, and we set μ̄ = qμ and ν̄ = qν . One adds a ball to the
second urn with the complementary probability. Then ϕq,μ̄,ν̄ ( j |m) is the probability
that after m steps, the first urn contains j balls. When q goes to 1, one recovers the
classical Pólya urn process.

For the classical Pólya urn, it is known that after n steps, the number of balls in
the first urn is distributed according to the Beta-Binomial distribution. Further, the
proportion of balls in the first urns converges in distribution to the Beta distribution
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when the number of added balls tends to infinity. Thus, it is natural to consider the q-
Hahndistribution as aq-analogue of theBeta-Binomial distribution. Further,we expect
that if X is a randomvariable drawn according to theq-Hahn distribution on {0, . . . ,m}
with parameters (q, μ̄, ν̄), the q-deformed proportion [X ]q/[m]q converges asm goes
to infinity to a q analogue of the Beta distribution, which converges as q goes to 1 to
the Beta distribution with parameters (ν − μ,μ).

This interpretation of the q-Hahn distribution as a q-analogue of the Beta-Binomial
distribution explains why the partition function of the Beta polymer is a limit of
observables of the q-Hahn TASEP. Let Z ε(t, n) be the rescaled quantity

Z ε(t, n) = qxn(t)+n, (15)

where xn(t) is the location of the nth particle in q-Hahn TASEP and we set q =
e−ε, μ̄ = qμ and ν̄ = qν .

Proposition 3.1 For t � 0 and n � 1 such that n � t + 1, the sequence of random
variables (Z ε(t, n))ε converges in distribution as ε → 0 to a limit Z(t, n) and one
has

Z(t, n) = Z(t − 1, n)Bt,n + Z(t − 1, n − 1)(1 − Bt,n)

where Bt,n are i.i.d. Beta distributed random variables with parameters (μ, ν − μ).
Additionally, we have the weak convergence of processes

{Z ε(t, n)}t�0,n�1 ⇒ {Z(t, n)}t�0,n�1, (16)

where Z(t, n) is the partition function of the Beta polymer.

Proof See the arXiv version of this paper for a detailed proof. ��
One has the following Fredholm determinant representation for the eq -Laplace

transform of xn(t).

Theorem 3.2 (Theorem 1.10 in [15]) Consider q-Hahn TASEP started from step
initial data xn(0) = −n ∀n � 1. Then for all ζ ∈ C\R>0,

E

[
1

(ζqxn(t)+n; q)∞

]
= det(I + K qHahn

ζ )L2(C1)
(17)

where C1 is a small positively oriented circle containing 1 but not 1/ν̄, 1/q nor 0, and
K qHahn

ζ : L2(C1) → L
2(C1) is defined by its integral kernel

K qHahn
ζ (w,w′) = 1

2iπ

∫
1/2+iR

π

sin(πs)
(−ζ )s

gqHahn(w)

gqHahn(qsw)

ds

qsw − w′

with

g(w) =
(

(ν̄w; q)∞
(w; q)∞

)n (
(μ̄w; q)∞
(ν̄w; q)∞

)t 1

(ν̄w; q)∞
.
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Let us scale the parameter ζ as

ζ = (1 − q)u,

and scale the other parameters as previously: q = e−ε, μ̄ = qμ, ν̄ = qν . Then we
have

E

[
1

(ζqxn(t)+n; q)∞

]
= E[eq(uZ ε(t, n))]

where

eq(x) = 1

((1 − q)x; q)∞

is the eq -exponential function. Since eq(x) → ex uniformly for x in a compact set, we
have, using the convergence of processes (16) and the fact that Z ε(t, n) are uniformly
bounded by 1, that

lim
ε→0

E

[
1

(ζqxn(t)+n; q)∞

]
= E[euZ(t,n)]. (18)

Hence, in order to prove Theorem 2.12, one could take the limit when ε goes to zero of
the Fredholm determinant in the right-hand-side of (17). This is indeed possible, but
require a good control of the integrand of the kernel as q goes to 1. Since we provide
another proof of Theorem 2.12 independent of the q-Hahn TASEP in Sect. 4, we do
not write the required estimates—but refer to the arXiv version of this paper where a
complete proof is written.

More precisely, we have the following,

Proposition 3.3

lim
ε→0

E

[
1

(ζqxn(t)+n; q)∞

]
= det(I + KBP

u )L2(C0)

where C0 is a small positively oriented circle containing 0 but not −ν nor −1, and
KBP
u : L2(C0) → L

2(C0) is defined by its integral kernel

KBP
u (v, v′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(πs)
(−u)s

gBP(v)

gBP(v + s)

ds

s + v − v′ (19)

where
gBP(v) =

(
�(v)

�(ν + v)

)n (
�(ν + v)

�(μ + v)

)t

�(ν + v).

Proof See the arXiv version of this paper. ��
Proposition 3.3 combined with (18) yields the Fredholm determinant formula for

the Laplace transform of Z(t, n) given in Theorem 2.12. In order to deduce Theorem
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2.13, we use the equivalence between the Beta polymer and the Beta-RWRE from
Proposition 2.6, proved in Sect. 3.3.

3.3 Equivalence Beta-RWRE and Beta polymer

We show that the Beta RWRE and the Beta polymer are equivalent models in the sense
that if the parameters α, β of the random walk and the parameters μ, ν of the polymer
are such that μ = α and ν = α + β, we have the equality in law

Z(t, n) = P(t, t − 2n + 2).

The equality in law is true for fixed t and n. However, as families of random
variables, (Z(t, n)) and (P(t, t − 2n + 2)) for t + 1 � n � 1 have different laws.

Proof of Proposition 2.6 Let us first notice that since μ = α and ν = α + β, the i.i.d.
collection of Beta random variables defining the environment for the Beta polymer,
and the i.i.d. collection of r.v. defining the environment of the Beta RWRE, have the
same law.

Also, as it was already pointed-out in Sect. 2.2.2, the point-to-point Beta polymer
is equivalent to a half line to point Beta polymer.

Let t and n having the same parity. The random variable P(t, t − 2n + 2) is the
probability for the Beta RWRE to arrive above (or exactly at) t−2n+2. This is also the
probability for theBetaRWRE tomake atmostn−1downward steps up to time t . Let us
imagine that we deform the underlying lattice of theBeta polymer so that Beta polymer
paths are actually up-right path, and we also consider the path from (t, n) to its initial
point. Then the polymer path is the trajectory of a random walk, and one can interpret
the weight of this polymer path as the quenched probability of the corresponding
random walk trajectory (compare the polymer path depicted in Fig. 2 with the RWRE
path depicted in Fig. 5, using the correspondence shown in Fig. 6). Moreover the event
that the random walk performs at most n − 1 downward steps is equivalent to the fact
that the polymer path starts with positive n-coordinate. These events correspond to
the fact that the path intersects the thick gray half-lines in Figs. 2 and 5.

Finally, for any fixed t, n ∈ Z�0 such that t + 1 � n, if we set x = t − 2n + 2,
then P(t, x) and Z(t, n) have the same probability law. Moreover, conditioning on
the environment of the Beta polymer corresponds to conditioning on the probability
of each step for the Beta RWRE.

4 Rigorous replica method for the Beta polymer

4.1 Moment formulas

Let Wk be the Weyl chamber

W
k = {�n ∈ Z

k : n1 � n2 � · · · � nk}.
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Fig. 5 A possible path for the Beta-RWRE is shown. It corresponds to the half-line to point polymer path
in Fig. 2. P(t, x) is the (quenched) probability that the random walk ends at time t in the gray region

Fig. 6 Illustration of the deformation of the underlying lattice for the Beta polymer. The left picture cor-
responds to the Beta polymer whereas the right picture corresponds to the RWRE. Black arrows represents
possible steps for the polymer path (resp. the RWRE) with their associated weight (resp. probability)

For �n ∈ W
k , let us define

u(t, �n) = E[Z(t, n1) . . . Z(t, nk)], (20)

with the convention that Z(t, n) =) for n < 1. The recurrence relation (1) implies a
recurrence relation for u(t, �n). We are going to solve this recurrence to find a closed
formula for u(t, �n), using a variant of the Bethe ansatz. It is the analogue of Section
5 in [17]. Besides the strict weak polymer [17], such “replica method” calculations
have been performed to study moments of the partition function for the continuum
polymer [4,13,18], the semi-discrete polymer [4,10], and the log-gamma polymer
[4,36]. However, in those models, the moment problems are ill-posed and one cannot
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1076 G. Barraquand, I. Corwin

rigorously recover the distribution from them. In the present case, since the Z(t, n) ∈
[0, 1], the moments do determine the distribution as explained in Sect. 4.2.

Using the recurrence relation (1),

u(t + 1, �n) = E

[
k∏

i=1

((1 − Bt+1,ni )Z(t, ni ) + Bt+1,ni Z(t, ni − 1))

]
. (21)

Let us first simplify this expression when k = c and �n = (n, . . . , n) is a vector of
length c with all components equal. In this case, setting B = Bt+1,n to simplify the
notations, we have

u(t + 1, �n) =
c∑

j=0

(
c

j

)
E[(1 − B) j Bc− j Z(t, n − 1) j Z(t, n)c− j ]

=
c∑

j=0

(
c

j

)
E[(1 − B) j Bc− j ]u(t, n, . . . , n, n − 1, . . . , n − 1︸ ︷︷ ︸

j

).

The recurrence relation can be further simplified using the next lemma.

Lemma 4.1 Let B a random variable following the Beta(μ, ν−μ) distribution. Then
for integers 0 � j � c,

E[(1 − B) j Bc− j ] = (ν − μ) j (μ)c− j

(ν)c
,

where (a)k is the Pochhammer symbol (a)k = a(a + 1) . . . (a + k − 1) and (a)0 = 1.

Proof By the definition of the Beta law, we have

E[(1 − B) j Bc− j ] = �(ν)

�(μ)�(ν − μ)

∫ 1

0
(1 − x) j xc− j xμ−1(1 − x)ν−μ−1,

= �(ν)

�(μ)�(ν − μ)

�(μ + c − j)�(ν − μ + j)

�(ν + c)
,

= (ν − μ) j (μ)c− j

(ν)c
.

��
In order to write the general case, we need a little more notation. For �n ∈ W

k , we
denote by c1, c2, . . . c� the sizes of clusters of equal components in �n. More precisely,
c1, c2, . . . c� are positive integers such that

∑
ci = k and

n1 = · · · = nc1 > nc1+1 = . . . nc1+c2 > · · · > nc1+···+ck−1+1 = · · · = nk .

Define also the operator τ (i) acting on a function f : Wk → R by

τ (i) f (�n) = f (n1, . . . , ni − 1, . . . , nk).
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Using the Lemma 4.1, we have that

u(t + 1, �n) =
c1∑
j1=0

· · ·
c�∑
j�=0

⎛
⎝ �∏

i=1

(
ci
ji

)
(ν − μ) ji (μ)ci− ji

(ν)ci

ji−1∏
r=0

τ (c1+···+ci−r)

⎞
⎠ u(t, �n).

(22)
In words, for each �-tuple j1, . . . , j� such that 0 � ji � ci , we decrease the ji last
coordinates of the cluster i in �n, for each cluster, and multiply by

�∏
i=1

(
ci
ji

)
(ν − μ) ji (μ)ci− ji

(ν)ci
.

Lemma 4.2 Let X, Y generate an associative algebra such that

Y X = 1

1 + ν
XX + ν − 1

1 + ν
XY + 1

1 + ν
YY.

Then we have the following non-commutative binomial identity:

(pX + (1 − p)Y )n =
n∑
j=0

(
n

j

)
(ν − μ) j (μ)n− j

(ν)n
X jY n− j ,

where p = ν−μ
ν

.

Proof It is shown in [30, Theorem1] that if X andY satisfy the quadratic homogeneous
relation

Y X = αXX + βXY + γYY,

with

α = ν̄(1 − q)

1 − q ν̄
, β = q − ν̄

1 − q ν̄
, γ = 1 − q

1 − q ν̄
,

and

μ̄ = p̄ + ν̄(1 − p̄),

then

( p̄X + (1 − p̄)Y )n =
n∑

k=0

ϕq,μ̄,ν̄ ( j |n)XkY n−k,

where ϕq,μ̄,ν̄ ( j |n) are the q-Hahn weights defined in (14). Our lemma is the q → 1
degeneration of this result. ��
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Let Lcluster
c denote the operator

Lcluster
c =

c∑
j=0

(
c

j

)
(ν − μ) j (μ)c− j

(ν)c

j−1∏
r=0

τ (c−r)

which appears in the R.H.S. of (22), and L f ree
c the operator

L f ree
c =

c∏
i=1

∇i ,

where ∇i = pτ (i) + (1 − p). It is worth noticing that for c = 1, Lcluster
c = L f ree

c .
For a function f : Zc → C, we formally identify monomials X1X2 . . . Xc where

Xi ∈ {X,Y } with terms f (�n) where for all 1 � i � c, nc−i = n − 1 if Xi = X and
nc−i = n if Xi = Y . Using this identification, the binomial formula from Lemma 4.2
says that the operators L f ree

c and Lcluster
c act identically on functions f satisfying the

condition

∀1 � i < c

(
1

1 + ν
τ (i)τ (i+1) + ν − 1

1 + ν
τ (i+1) + 1

1 + ν
− τ (i)

)
f (n, . . . , n) = 0.

(23)
One notices that the operator involved in (22) acts independently byLcluster

c on each
cluster of equal components. It follows that if a function u : Z�0 × Z

k → C satisfies
the boundary condition

(
1

1 + ν
τ (i)τ (i+1) + ν − 1

1 + ν
τ (i+1) + 1

1 + ν
− τ (i)

)
u(t, �n) = 0, (24)

for all �n such that ni = ni+1 for some 1 � i < k, and satisfies the free evolution
equation

u(t + 1, �n) =
(

k∏
i=1

∇i

)
u(t, �n), (25)

for all �n ∈ Z
k , then the restriction of u(t, �n) toWk satisfies the true evolution equation

(22).

Remark 4.3 The coefficients
(c
j

) (ν−μ) j (μ)c− j
(ν)c

that appear in the true evolution equation
(22) are probabilities of the Beta-binomial distribution with parameters c, μ, ν − μ.
Hence, the true evolution equation could be interpreted as the “evolution equation”
for a series of urns where each urn evolves according to the Pólya urn scheme. Such
dynamics could be interpreted as the q → 1 degeneration of the q-Hahn Boson, which
is dual to the q-Hahn TASEP [15].

Proposition 4.4 For n1 � n2 � · · · � nk � 1, one has the following moment
formula,
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E[Z(t, n1) . . . Z(t, nk)]

= 1

(2iπ)k

∫
. . .

∫ ∏
1�A<B�k

zA − zB
zA − zB − 1

k∏
j=1

(
ν + z j
z j

)n j
(

μ + z j
ν + z j

)t dz j
ν + z j

,

(26)

where the contour for zk is a small circle around the origin, and the contour for z j
contains the contour for z j+1 shifted by +1 for all j = 1, . . . , k − 1, as well as the
origin, but all contours exclude −ν.

Proof We show that the right-hand-side of (26) satisfies the free evolution equation,
the boundary condition and the initial condition for u(0, �n) for �n ∈ W

k (the ini-
tial condition outside W

k is inconsequential). The above discussion shows that the
restriction to �n ∈ W

k then solves the true evolution equation (22). By the definition
of the function u in (20) and the initial condition for the half-line to point polymer,
u(0, �n) = ∏k

i=1 1ni�1 = 1nk�1 (the second equality holds because the ni ’s are
ordered). Let us consider the right-hand-side of (26) when t = 0. If nk � 0, there is no
pole in zero, so one can shrink the zk contour to zero, and consequently u(0, �n) = 0.
When nk > 0 (and consequently all ni ’s are positive), there is no pole at−ν for t = 0,
so that one can successively send to infinity the contours for the variables zk , zk−1, . . .

Since the residue at infinity is one for each variable, then u(0, �n) = 1. Hence, the
initial condition is satisfied.

In order to show that the boundary condition is satisfied, we assume that ni = ni+1
for some i . Let us apply the operator

(
1

1 + ν
τ (i)τ (i+1) + ν − 1

1 + ν
τ (i+1) + 1

1 + ν
− τ (i)

)

inside the integrand. This brings into the integrand a factor

1

1 + ν

zi
ν + zi

zi+1

ν + zi+1
+ ν − 1

ν + 1

zi+1

ν + zi+1
+ 1

1 + ν
− zi

ν + zi

= −ν2(zi − zi+1 − 1)

(1 + ν)(ν + zi )(ν + zi+1)
.

Since it cancels the pole for zi = zi+1 + 1, one can use the same contour for both
variables, and since the integrand is now antisymmetric in the variables (zi , zi+1) the
integral is zero as desired.

In order to show that the free evolution equation is satisfied, it is enough to show
that applying the operator pτ (i) + (1− p) for i from 1 to k inside the integrand brings
an extra factor

∏k
j=1

μ+z j
ν+z j

. This is clearly true since

(pτ (i) + (1 − p))

(
ν + zi
zi

)ni
=

(
ν + zi
zi

)ni μ + zi
ν + zi

.

��
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Remark 4.5 It is possible to prove a generalization of Proposition 4.4 where the para-
meterμ depends on t . In this generalization, the weight of an edge starting from a point
(s, n) for any n would have a weight B or 1 − B (depending on the direction of the
edge), where B is a random variable distributed according to the Beta distribution with

parameters (μs, ν − μs). In the formula (26), the factor
(

μ+z j
ν+z j

)t
would be replaced

by

t−1∏
s=0

μs + z j
ν + z j

.

Such moment formulas with time inhomogeneous parameters have been proved for
the discrete-time q-TASEP [3] and for the q-Hahn TASEP in [15, Section 2.4] (see
also the discussion in [16, Section 5.7] which deals with a generalization of the q-Hahn
TASEP). In all these cases, this allows to prove Fredholm determinant formulas with
time-dependent parameters, using the same method as in the homogeneous case. It is
not clear however if one can find moment formulas with a parameter inhomogeneity
depending on n (e.g. the parameter ν would depend on n).

Proposition 4.4 provides an integral formula for the moments of Z(t, n). In order
to form the generating series, it is convenient to transform the formula so that all
integrations are on the same contour.

Proposition 4.6 For all n, t � 0, we have

E[Z(t, n)k] = k!
∑
λ�k

1

m1!m2! . . .
1

(2iπ)�(λ)

∫
. . .

∫
det

(
1

v j − vi − λi

)�(λ)

i, j=1

×
�(λ)∏
j=1

f (v j ) f (v j + 1) . . . f (v j + λ j − 1)dv1 . . . dv�(λ), (27)

where

f (v) = gBP(v)

gBP(v + 1)
=

(
ν + v

v

)n (
μ + v

ν + v

)t 1

v + ν
,

where gBP is defined in (5) and the integration contour is a small circle around 0
excluding −ν and for a partition λ � k (i.e.

∑
i λi = k) we write λ = 1m12m2 . . . ,

meaning that m j is the number of indices i such that λi = j components; and �(λ) is
the number of non-zero components �(λ) = ∑

i mi .

Proof This type of deduction, called the contour shift argument, has already occurred
in the context of the q-Whittaker process in [4, Section 3.2.1]. See [8], in particular
Proposition 7.4, and references therein for more background on the contour shift
argument. The present formulation corresponds to a degeneration when q → 1 of
Proposition 3.2.1 in [4].

123



Random-walk in Beta-distributed random environment 1081

One starts with the moment formula given by Proposition 4.4:

E[Z(t, n)k] = 1

(2iπ)k

∫
. . .

∫ ∏
A<B

zA − zB
zA − zB − 1

k∏
j=1

f (z j )dz j .

We need to shrink all contours to a small circle around 0. During the deformation of
contours, one encounters all poles of the product

∏
A<B

zA−zB
zA−zB−1 . Thus, a direct proof

would amount to carefully book-keeping the residues. Although one could adapt to
the present setting the proof of [8, Proposition 7.4], we refer to Proposition 6.2.7 in
[4] which provides a very similar formula. The only modification is that the function
f that we consider has a pole at −ν, but this does not play any role in the deformation
of contours.

It is also worth remarking that applying Proposition 3.2.1 in [4] to q-Hahn moment
formula [15, Theorem 1.8] and taking a suitable limit yields the statement of Propo-
sition 4.6. ��

4.2 Proof of Theorem 2.12

Thanks to Proposition 4.6, the moments of Z(t, n) have a suitable form for taking the
generating series. Let us denote μk = E

[
Z(t, n)k

]
. A degeneration when q goes to 1

of Proposition 3.2.8 in [4] shows that

∑
k�0

μk
uk

k! = det(I + K )L2(Z>0×C0)
,

where det(I + K ) is the formal Fredholm determinant expansion of the operator K
defined by the integral kernel

K (n1, v1; n2, v2) = un1 f (v1) f (v1 + 1) . . . f (v1 + n1 − 1)

v1 + n1 − v2
,

andC0 is a positively oriented circular contour around 0 excluding−ν. Since f (v+n1)
is uniformly bounded for v ∈ C0 and n1 � 1, and v1 + n1 − v2 is uniformly bounded
away from 0 for v1, v2 ∈ C0, n1 � 1, the identity holds also numerically. Since
|Z(t, n)| � 1, then one can exchange summation and expectation so that for any
u ∈ C

∑
k�0

μk
uk

k! = E[euZ(t,n)].

It is useful to notice that

f (v1) f (v1 + 1) . . . f (v1 + n1 − 1) = gBP(v1)

gBP(v1 + n1)
.
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1082 G. Barraquand, I. Corwin

Next, we want to rewrite det(I + K ) as the Fredholm determinant of an operator
acting on a single contour. For that purpose we use the following Mellin–Barnes
integral formula:

Lemma 4.7 For u ∈ C\R>0 with |u| < 1,

∞∑
n=1

un
gBP(v)

gBP(v + n)

1

v + n − v′

= 1

2iπ

∫ 1/2+i∞

1/2−i∞
�(−s)�(1 + s)(−u)s

gBP(v)

gBP(v + s)

ds

v + s − v′ , (28)

where zs is defined with respect to a branch cut along z ∈ R�0.

Proof The statement of the Lemma is very similar to [4, Lemma 3.2.13].
Since Ress=k (�(−s)�(1 + s)) = (−1)k+1, we have that

∞∑
n=1

un
gBP(v)

gBP(v + n)

1

v + n − v′

= 1

2iπ

∫
H

�(−s)�(1 + s)(−u)s
gBP(v)

gBP(v + s)

ds

v + s − v′ , (29)

where H is a negatively oriented integration contour enclosing all positive integers.
For the identity to be valid, the L.H.S. of (29) must converge, and the contour must be
approximated by a sequence of contoursHk enclosing the integers 1, . . . , k such that
the integral along the symmetric difference H\Hk goes to zero.

The following estimates show that one can chose the contour Hk as a rectangular
contour connecting the points 1/2+ i , k + 1/2+ i , k + 1/2− i and 1/2− i ; and the
contour H as the infinite contour from ∞ − i to 1/2 − i to 1/2 + i to ∞ + i .

We first need an estimate for the Gamma function [19, Chapter 1, 1.18 (2)]: for any
δ > 0

�(z) = √
2πe−z zz−1/2(1 + O (1/z)) as |z| → ∞, | arg(z)| < π − δ. (30)

Then recall that

gBP(v + s) =
(

�(v + s)

�(ν + v + s)

)n (
�(ν + v + s)

�(μ + v + s)

)t

�(ν + v + s).

Using (30),

gBP(v + s)=√
2πe−ν−v−s(ν + v + s)ν+v+s−1/2 (ν + v + s)(ν−μ)t

(ν + v + s)νn

(
1+O

(
1

s

))
.
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It implies that for s going to∞eiφ withφ ∈ [−π/2, π/2], 1/gBP(v+s)has exponential
decay in |s|. Moreover, for s going to ∞eiφ with φ ∈ [−π/2, π/2] and φ �= 0,

(−u)s
π

sin(πs)

1

v + s − v′

is bounded. Thus, one can freely deform the integration contourH in (29) to become
the straight line from 1/2 − i∞ to 1/2 + i∞. ��
This shows that for any u ∈ C\R>0 with |u| < 1, one has that

E[euZ(t,n)] = det(I + KBP
u )L2(C0)

, (31)

where the kernel KBP
u is defined in the statement of Theorem 2.12. One extends

the result to any u ∈ C\R>0 by analytic continuation. The left-hand-side in (31) is
analytic since |Z(t, n)| < 1. The right-hand-side is analytic because the Fredholm
determinant expansion is absolutely summable and integrable. Indeed, first notice that
since the Fredholm determinant contour is finite, it is clear that KBP

u (v, v′) is uniformly
bounded for v, v′ in the contourC0. Moreover, each term in the Fredholm determinant
expansion

det(I + KBP
u ) = 1 +

∞∑
n=1

1

n!
∫

. . .

∫
det(KBP

u (vi , v j ))
n
i, j=1dv1 . . . dvn,

can be bounded using Hadamard’s bound, so that the sum absolutely converges.

5 Zero-temperature limit

5.1 Proof of Proposition 2.10

In this section,we prove that theBernoulli-Exponential first passage percolationmodel
is the zero-temperature limit of the Beta-RWRE. The zero temperature limit corre-
sponds to sending the parameters α, β of the Beta RWRE to zero.

Proof We first show how the transition probabilities for the Beta RWRE degenerate
in the zero temperature limit. ��
Lemma 5.1 Fix a, b > 0. For ε > 0, let Bε be a Beta distributed random variable
with parameters (εa, εb). We have the convergence in distribution

(−ε log(Bε),−ε log(1 − Bε)) �⇒ (ξEa, (1 − ξ)Eb)

as ε goes to zero, where ξ is a Bernoulli random variable with parameter b/(a + b)
and (Ea, Eb) are exponential random variables with parameters a and b, independent
of ξ .
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1084 G. Barraquand, I. Corwin

Proof Let f, g : R → R be continuous bounded functions.

E[ f (−ε log(Bε))g(−ε log(1 − Bε))]
=

∫ 1

0
f (−ε log(x))g(−ε log(1 − x))xεa−1(1 − x)εb−1 �(εa + εb)

�(εa)�(εb)
dx . (32)

In order to compute the limit of (32), we evaluate separately the contribution of the
integral between 0 and 1/2, and between 1/2 and 1. By making the change of variable
z = −ε log(x), we have that

∫ 1/2

0
f (−ε log(x))g(−ε log(1 − x))xεa−1(1 − x)εb−1 �(εa + εb)

�(εa)�(εb)

= �(εa + εb)

�(εa)�(εb)

∫ ∞

ε log(2)
f (z)g(−ε log(1 − e−z/ε))e−aze(εb−1) log(1−e−z/ε)dz.

(33)

Since

�(εa + εb)

�(εa)�(εb)
−−→
ε→0

ab

a + b
,

the limit of the right-hand-side in (33) is

b

a + b

∫ ∞

0
f (z)g(0)ae−azdz = b

a + b
E[ f (Ea)g(0)].

The contribution of the integral in (32) between 1/2 and 1 is computed in the same
way, and we find that

lim
ε→0

E[ f (−ε log(Bε))g(−ε log(1 − Bε))]

= b

a + b
E[ f (Ea)g(0)] + a

a + b
E[ f (0)g(Eb)]

= E[ f (ξEa)g((1 − ξ)Eb)],

which proves the claim. ��
Remark 5.2 Whether Ea and Eb are independent or not does not have any importance.
However, it is important that Ea and Eb are independent of the Bernoulli random
variable ξ .

Let αε = εa, βε = εb and Pε(t, x) the (quenched) distribution function of the
endpoint at time t for the Beta random walk with parameters αε and βε . Let T (n,m)

be the first-passage time in the Bernoulli-Exponential model with parameters a, b.
It is convenient to define the analogue of the set of weights we of the Beta polymer

in the context of the Beta RWRE. For an edge e in (Z�0)
2 we define pe by

123



Random-walk in Beta-distributed random environment 1085

pe =
{
Bj−i,i+ j if e is the vertical edge (i, j) → (i, j + 1)

1 − Bj−i,i+ j if e is the horizontal edge (i, j) → (i + 1, j);

where the variables B·,· define the environment of the randomwalk. Lemma5.1 implies
that as ε goes to zero, we have the weak convergence

min
π :(0,0)→Dn,m

{∑
e∈π

−ε log(pe)

}
⇒ min

π :(0,1)→Dn,m

{∑
e∈π

te

}
,

where the minimum is taken over up-right paths, and the passage times te are defined
in (3).

Since the times te in the FPP model are either zero or exponential, and there is at
most one path with zero passage time, the minimum over paths of

∑
e∈π te is attained

for a unique path with probability one. We know by the principle of the largest term
that as ε → 0,

−ε log
(
Pε(n + m,m − n)

) = −ε log

⎛
⎝ ∑

π :(0,0)→Dn,m

exp

(∑
e∈π

log(pe)

)⎞
⎠

has the same limit as

min
π : (0,0)→Dn,m

{∑
e∈π

−ε log(pe)

}
.

Since the family of rescaled weights (−ε log(pe))e weakly converges to (te)e, then

min
π :(0,0)→Dn,m

{∑
e∈π

−ε log(pe)

}
⇒ min

π :(0,0)→Dn,m

{∑
e∈π

te

}
.

Hence for any n,m � 0, −ε log(Pε(t, n) weakly converges as ε goes to zero to
T (n,m). ��

5.2 Proof of Theorem 2.18

Theorem 2.18 states that for r ∈ R>0, one has

P(T (n,m) > r) = det(I + K FPP
r )L2(C ′

0)

where C ′
0 is a small positively oriented circle containing 0 but not −ν, and

K FPP
r : L2(C ′

0) → L
2(C ′

0) is defined by its integral kernel

K FPP
r (u, u′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
ers

s

gFPP(u)

gFPP(u + s)

ds

s + u − u′ (34)
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where

gFPP(u) =
(
a + u

u

)n (
a + u

a + b + u

)m 1

u
. (35)

Proof The proof splits into two pieces. We first show that under appropriate scalings,
the Laplace transform E[euPε (n+m,m−n)] converges to P(T (n,m) � r). Then we
show that the Fredholm determinant det(I + KBP

u ) from Theorem 2.13 converges to
det(I + K FPP

r )L2(C ′
0)
.

First step We have an exact formula for E[euPε (n+m,m−n)]. Let us scale u as u =
− exp(ε−1r) so that

E[euPε (n+m,m−n)] = E[exp(−e−ε−1(−ε log(Pε (n+m,m−n))−r))].

If fε(x) := exp(−e−ε−1x ), then the sequence of functions { fε} maps R to (0, 1),
is strictly increasing with a limit of 1 at +∞ and 0 at −∞, and for each δ > 0,
on R\[−δ, δ] converges uniformly to 1x>0. We define the r -shift of fε as f rε (x) =
fε(x − r). Then,

E[euPε (n+m,m−n)] = E[ f rε (−ε log(Pε(n + m,m − n)))].

Since the variable T (n,m) has an atom in zero, we are not exactly in the situation of
Lemma 4.1.38 in [4], but we can adapt the proof. Let s < r < u. By the properties of
the functions fε mentioned above, we have that for any η > 0, there exists an ε0 such
that for any ε < ε0,

P(−ε log
(
Pε(n + m,m − n)

)
� u) � E[ f rε (−ε log(Pε(n + m,m − n)))]

� P(−ε log(Pε(n + m,m − n)) � s).

Since we have established the weak convergence of −ε log(Pε(n + m,m − n)) one
can take limits as ε goes to zero in the probabilities and we find that

P(T (n,m) � u) � lim inf
ε→0

E[ f rε (−ε log(Pε(n + m,m − n)))]
� lim sup

ε→0
E[ f rε (−ε log(Pε(n + m,m − n)))] � P(T (n,m) � s).

Now we take s and u to r and notice that T (n,m) can be decomposed as an atom at
zero and an absolutely continuous part. Thus, for any r > 0,

P(T (n,m) > r) = lim
ε→0

E[ f rε (−ε log(Pε(n + m,m − n)))].

Second stepWe shall prove that the limit when ε goes to zero of E[euPε (n+m,m−n)] is
det(I + K FPP

r )L2(C0)
where K FPP

r is defined as in Theorem 2.18. For that we take the
limit of the Fredholm determinant K RW from Theorem 2.13. Let us use the change
of variables

v = εṽ, v′ = εṽ′, s = εs̃.
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Assuming that the limit of the Fredholm determinant is the Fredholm determinant
of the limit, which we prove below, we have to take the limit of εK RW (εṽ, εṽ′). The
factor ε in front of K RW is a priori necessary, it comes from the Jacobian of the change
of variables v = εṽ and v′ = εṽ′. For any 1 > ε > 0 the kernel K RW (v, v′) can
be written as an integral over 1

2ε + iR instead of an integral over 1
2 + iR, since we

do not cross any singularity of the integrand during the contour deformation, and the
integrand has exponential decay. Thus, one can write

εK RW (εṽ, εṽ′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
επ

sin(πεs̃)
(−u)εs̃

gRW (εṽ)

gRW (εṽ + s̃)

ds̃

s̃ + ṽ − ṽ′ . (36)

With u = − exp
(
ε−1r

)
, we have that (−u)εs̃ = es̃r . Moreover, since

lim
ε→0

ε�(εz) = 1

z
,

we have that

lim
ε→0

gRW (εṽ)

gRW (εṽ + s̃)
= gFPP(ṽ)

gFPP(ṽ + s̃)
,

where gFPP is defined in (35), and

lim
ε→0

επ

sin εs̃
= 1

s̃
.

Because the integrand in (34) is not absolutely integrable, one cannot apply dominated
convergence directly. Instead,wewill split the integral (36) into two pieces: the integral
over s when Im[εs] < 1/4 and the integral over s when Im[εs] � 1/4. Let us begin
with some estimates. Since the function z �→ z/ sin(z) is holomorphic on a circle of
radius 1/2 around zero, there exists a constant C > 0 such that for s ∈ 1/2 + iR and
ε > 0 such that |εs| < 1/2, we have

∣∣∣∣ επ

sin(πεs̃)
− 1

s

∣∣∣∣ < Cε.

In order to lighten the notations, we denote

G(ε, s̃) = gRW (εṽ)

gRW (εṽ + εs̃)

1

s̃ + ṽ − ṽ′ .

The variables ṽ and ṽ′ are fixed for the moment. We know that G(ε, s̃) is bounded for
ε close to zero and s̃ ∈ 1/2 + iR. Moreover, there exists a constant C ′ > 0 such that
for |εs| < 1/2,

∣∣∣∣G(ε, s̃) − gFPP(ṽ)

gFPP(ṽ + s̃)

1

ṽ + s̃ − ṽ′

∣∣∣∣ < C ′ε.
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We have the decomposition

1

2iπ

∫ 1
2+ iε−1

4

1
2− iε−1

4

επ

sin(πεs̃)
ers̃G(ε, s̃)ds̃

= 1

2iπ

∫ 1
2+ iε−1

4

1
2− iε−1

4

(
επ

sin(πεs̃)
− 1

s̃

)
ers̃G(ε, s̃)ds̃

+ 1

2iπ

∫ 1
2+ iε−1

4

1
2− iε−1

4

ers̃

s̃
(G(ε, s̃) − G(0, s̃))ds̃ + 1

2iπ

∫ 1
2+ iε−1

4

1
2− iε−1

4

ers̃

s̃
G(0, s̃)ds̃. (37)

The first integral in the R.H.S of (37) can be bounded by

Cε
1

2π

∫ 1
2 ε+ i

4

1
2 ε− i

4

|�(1 − s)|er/2|G(ε, sε−1)|ds,

which is O(ε). The second integral in the R.H.S of (37) can be bounded by

C ′ε 1

2π

∫ 1
2+ iε−1

4

1
2− iε−1

4

er/2

|s̃| ds̃,

which is O(ε log(ε−1)). The third integral in the R.H.S of (37) converges to a limit
as ε goes to zero, even if the integrand is not absolutely integrable. The limit is the
improper integral

1

2iπ

∫ 1/2+i∞

1/2−i∞
ers̃

s̃

gFPP(ṽ)

gFPP(ṽ + s̃)

ds̃

ṽ + s̃ − ṽ′ = K FPP
r (ṽ, ṽ′).

It remains to show that we have made a negligible error when cutting the tails of the
integral. We have

1

2iπ

∫ 1
2+i∞

1
2+ iε−1

4

επ

sin(πεs̃)
ers̃G(ε, s̃)ds̃ = 1

2iπ

∫ 1
2 ε+i∞

1
2 ε+ i

4

π

sin(πs)
ersε

−1
G(ε, sε−1)ds

= 1

2iπ

∫ 1
2 ε+i∞

1
2 ε+ i

4

π

sin(πs)
ersε

−1
(G(ε, sε−1) − 1)ds

+ 1

2iπ

∫ 1
2 ε+i∞

1
2 ε+ i

4

π

sin(πs)
ersε

−1
ds. (38)

The first integral in the R.H.S of (38) goes to zero by dominated convergence, and the
second integral in the R.H.S of (38) goes to zero by the Riemann-Lebesgue lemma.
At this point we have shown that for any ṽ, ṽ′ ∈ C0,

lim
ε→0

εK RW (εṽ, εṽ′) = K FPP
r (ṽ, ṽ′).
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Observe now that the kernel K FPP
r (ṽ, ṽ′) is bounded as ṽ, ṽ′ vary along their contour.

Using Hadamard’s bound, one can bound the Fredholm series expansion of K FPP
r by

an absolutely convergent series of integrals, and conclude by dominated convergence
that under the scalings above

det(I + KRW
u )L2(C0)

−−→
ε→0

det(I + K FPP
r )L2(C0)

.

��

6 Asymptotic analysis of the Beta RWRE

Let us first define the Tracy–Widom distribution governing the fluctuations of extreme
eigenvalues of Gaussian hermitian random matrices. We refer to [4, Section 3.2.2] for
an introduction to Fredholm determinants.

Definition 6.1 The distribution function FGUE(x) of the GUE Tracy–Widom distrib-
ution is defined by FGUE(x) = det(I − KAi)L2(x,+∞) where KAi is the Airy kernel,

KAi(u, v) = 1

(2iπ)2

∫ e2iπ/3∞

e−2iπ/3∞
dw

∫ eiπ/3∞

e−iπ/3∞
dz

ez
3/3−zu

ew3/3−wv

1

z − w
,

where the contours for z and w do not intersect. There is some freedom in the choice
of contours. For instance, one can choose the contour for z (resp. w) as constituted
of two infinite rays departing 1 (resp. 0) in directions π/3 and −π/3 (resp. 2π/3 and
−2π/3).

6.1 Fredholm determinant asymptotics

We consider a Beta RWRE (Xt )t�0 with parameters α, β > 0. For a parameter θ > 0,
we define the quantity

x(θ) = �1(θ + α + β) + �1(θ) − 2�1(θ + α)

�1(θ) − �1(θ + α + β)
(39)

and the function I : (α−β
α+β

, 1
) → R>0 such that

I (x(θ)) = �1(θ + α + β) − �1(θ + α)

�1(θ) − �1(θ + α + β)
(�(θ + α + β) − �(θ))

+�(θ + α + β) − �(θ + α), (40)

where � is the digamma function (�(z) = �′(z)/�(z)) and �1 is the trigamma
function (�1(z) = � ′(z)). Moreover, we define a real-valued σ(θ) > 0 such that

2σ(θ)3 = �2(θ + α) − �2(α + β + θ)

+�1(α + θ) − �1(α + β + θ)

�1(θ) − �1(α + β + θ)
(�2(α + β + θ) − �2(θ)) . (41)
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The fact that we can choose σ(θ) > 0 is proved in Lemma 6.3. We will see that a
critical point Fredholm determinant asymptotic analysis shows that for all θ > 0 and
α, β > 0,

lim
t→∞P

(
log(P(t, x(θ)t)) + I (x(θ))t

t1/3σ(θ)
� y

)
= FGUE(y). (42)

However, due to increased technical challenges in the general parameter case, we
presently prove rigorously only the case of Theorem 6.2, which deals with α = β = 1
(i.e. when the Bx,t variables are distributed uniformly on (0, 1)).

When α = β the expressions for x(θ) and I (x(θ)) simplify. We find that

x(θ) = 1 + 2θ

θ2 + (θ + 1)2

and

I
(
x(θ)

) = 1

θ2 + (θ + 1)2
,

so that the rate function I is simply the function I : x �→ 1 − √
1 − x2. We also find

that for α = β = 1,

σ(θ)3 = 1

θ + 3θ2 + 4θ3 + 2θ4
= 2(1 − √

1 − x2)2√
1 − x2

= 2I (x)2

1 − I (x)
, (43)

where x = x(θ).

Theorem 6.2 For 0 < θ < 1/2 and α = β = 1, we have that

lim
t→∞P

(
log(P(t, x(θ)t)) + I (x(θ))t

t1/3σ(θ)
� y

)
= FGUE(y). (44)

The rest of this section is devoted to the proof of Theorem 6.2. Most arguments in the
proof apply equally for any parameters α, β except the deformation of contours which
is valid for small θ and Lemma 6.5 which is only valid for α = β = 1. We expect the
general α, β, θ to still hold but do not attempt to extend to that case.

We first observe that we do not need to invert the Laplace transform of P(t, x(θ)t).
Setting u = −et I (x(θ))−t1/3σ(θ)y , one has that

lim
t→∞E[euP(t,x(θ)t)] = lim

t→∞P

(
log(P(t, x(θ)t)) + I (x(θ))t

t1/3σ(θ)
< y

)
. (45)

This convergence is justified by Lemma 4.1.39 in [4], provided that the limit is a
continuous probability distribution function, and we see later that this is the case.
Hence, in order to prove Theorem 6.2, one has to take the t → ∞ limit of the
Fredholm determinant (6) in the statement of Theorem 2.13.

The asymptotic analysis of this Fredholm determinant proceeds by steepest descent
analysis, and is very close to the analysis presented in the recent papers [2,5,6,17,
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24,38], that deal with similar kernels. Let us assume for the moment that the contour
C0 is a circle around 0 with very small radius. One can make the change of variables
v + s = z in the kernel KRW

u so that, with the value of u that we choose,

KRW
u (v, v′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(π(z − w))
e(z−w)(t I (x(θ))−t1/3σ(θ)y) g

RW(v)

gRW(z)

dz

z − v′ ,

and the contour for z can be chosen as 1/2 + iR. The kernel can be rewritten

KRW
u (v, v′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(π(z − w))
exp(t (h(z) − h(v))

−t1/3σ(θ)y(z − v))
�(v)

�(z)

dz

z − v′ , (46)

where

h(z) = I
(
x(θ)

)
z + 1 − x(θ)

2
log

(
�(α + z)

�(z)

)
+ 1 + x(θ)

2
log

(
�(α + z)

�(α + β + z)

)
.

The function h governs the asymptotic behaviour of the Fredholm determinant
of KRW

u . The principle of the steepest-descent method is to deform the integration
contour—both the contour in the definition of KRW

u and the L
2 contour—so that

they go across a critical point of the function h. Then one needs to prove that only
the integration around the critical point has a contribution in the limit, and one can
approximate all terms by their Taylor approximation close to the critical point.

The first derivatives of h are

h′(z) = I (x(θ)) + �(α + z) − 1

2
�(z) − 1

2
�(α + β + z)

+ x(θ)

2
(�(z) − �(α + β + z)),

and

h′′(z) = �1(α + z) − 1

2
�1(z) − 1

2
�1(α + β + z)

+ x(θ)

2
(�1(z) − �1(α + β + z)).

One readily sees that the expressions for x(θ) and I (x(θ)) in (39) and (40) are precisely
chosen so that h′(θ) = h′′(θ) = 0. Let us give an expression of h′ in terms of θ :

h′(z) = �(z + α) − �(α + β + z) + �1(α + θ) − �1(α + β + θ)

�1(θ) − �1(α + β + θ)

(�(α + β + z) − �(z)) − (�(θ + α) − �(α + β + θ)

+�1(α + θ) − �1(α + β + θ)

�1(θ) − �1(α + β + θ)
(�(α + β + θ) − �(θ))

)
. (47)
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Expressions are much simpler in the case α = β = 1. In that case we have

h′(z) = 1

θ + 1
− 1

z + 1
+ 1

1 + (
θ+1
θ

)2
(

2z + 1

z(z + 1)
− 2θ + 1

θ(θ + 1)

)
,

= (θ − z)2

z(1 + z)(1 + 2θ + 2θ2)
. (48)

In order to understand the behaviour of Re[h] around the critical point θ , we also
need the sign of the third derivative of h.

Lemma 6.3 For any α, β, θ > 0, we have that h′′′(θ) > 0.

Lemma 6.3 is proved in Sect. 6.2.

By the definition ofσ(θ) in (41),σ(θ) =
(
h′′′(θ)

2

)1/3
. Then, usingTaylor expansion,

we have that for z in a neighbourhood of θ ,

h(z) − h(θ) ≈ (σ (θ)(z − θ))3

3
. (49)

We now deform the integration contour in (46) and the Fredholm determinant
contour which was initially a small circle around 0. Let Dθ be the vertical line Dθ =
{θ + iy : y ∈ R}, and Cθ be the circle centred in 0 with radius θ . This deformation of
contours does not change the Fredholm determinant det(I + KRW

u ) only if

• All the poles of the sine inverse in (46) corresponding with z − w ∈ Z>0 stay on
the right of Dθ .

• We do not cross the pole of h at −α − β when deforming the L2 contour.

Hence, we will assume that θ < min(α + β, 1
2 ) so that the two above conditions are

satisfied.

Lemma 6.4 For any parametersα, β > 0, and θ > 0, the contourDθ is steep-descent
for the functionRe[h] in the sense that y �→ Re[h(θ + iy)] is decreasing for y positive
and increasing for y negative.

Lemma 6.4 is proved in Sect. 6.2. The step which prevents us from proving Theorem
6.2 for any parameters α, β > 0 is the steep-descent properties of the contour Cθ .

Lemma 6.5 Assume α = β = 1. Then the contour Cθ is steep descent for the func-
tion −Re[h], in the sense that y �→ Re[h(θeiφ)] is increasing for φ ∈ (0, π) and
decreasing for φ ∈ (−π, 0).

Lemma 6.5 is proved in Sect. 6.2. Proving Lemma 6.5 for arbitrary parameters α, β

turns out to be computationally difficult, and we do not pursue that here.
In the rest of this section, although the proofs are quite general and do not depend

on the value of parameters, we assume that α = β = 1 so that we can use Lemma
6.5. Let us show that the only part of the contours that contributes to the limit of the
Fredholm determinant when t tends to infinity is a neighbourhood of the critical point
θ .

123



Random-walk in Beta-distributed random environment 1093

Proposition 6.6 Let B(θ, ε) be the ball of radius ε centred at θ . We note Cε
θ (resp.

Dε
θ ) the part of the contour Cθ (resp.Dθ ) inside the ball B(θ, ε). Then, for any ε > 0,

lim
t→∞ det(I + KRW

u )L2(Cθ ) = lim
t→∞ det(I + KRW

y,ε )L2(Cε
θ )

where KRW
y,ε is defined by the integral kernel

KRW
y,ε (v, v′) = 1

2iπ

∫
Dε

θ

π

sin(π(z − w))
exp(t (h(z) − h(v)) − t1/3σ(θ)y(z − v))

×�(v)

�(z)

dz

z − v′ . (50)

Proof By Lemmas 6.4 and 6.5, there exists a constant C > 0 such that if v ∈ Cθ and
z ∈ Dθ\Dε

θ , then

Re[h(z) − h(v)] < −C.

and consequently

exp(t (h(z) − h(v)) − t1/3σ(θ)y(z − v))
dz

z − v′ −−−→
t→∞ 0.

Since π
sin(π(z−w))�(z) has exponential decay in the imaginary part of z, the contribu-

tion of the integration over Dθ\Dε
θ is negligible (by dominated convergence). Thus,

KRW
y (v, v′) and KRW

y,ε (v, v′) have the same limit when t goes to infinity.
By Lemmas 6.4 and 6.5, there exists another constantC ′ > 0 such that if v ∈ Cθ\Cε

θ

and z ∈ Dθ , then

Re[h(z) − h(v)] < −C ′.

Consider the Fredholm determinant expansion

det(I + KRW
u ) = 1 +

∞∑
n=1

1

n!
∫

. . .

∫
det(KRW

u (wi , w j ))
n
i, j=1dw1 . . . dwn .

The kth term can be decomposed as the sum of the integration over (Cε
θ )k plus the

integration over (Cθ )
k\(Cε

θ )k . The second contribution goes to zero since it will be
possible to factorize e−C ′t . Finally, the proposition is proved using again dominated
convergence on the Fredholm series expansion, which is absolutely summable by
Hadamard’s bound. ��
Let us rescale the variables around θ by the change of variables

z = θ + t−1/3 z̃, v = θ + t−1/3ṽ, v′ = θ + t−1/3ṽ′.

123



1094 G. Barraquand, I. Corwin

The Fredholm determinant of KRW
y,ε on the contour Cε

θ equals the Fredholm determinant
of the rescaled kernel

K t
y,ε(ṽ, ṽ′) = t−1/3KRW

y,ε (θ + t−1/3ṽ, θ + t−1/3ṽ′)

acting on the contour Ct1/3εθ .
It is more convenient to change again the contours. For L ∈ R>0, define the contour

CL := {|y|ei(π−φ)·sgn(y) : y ∈ [0, L]}, (51)

where φ is some angle φ ∈ (π/6, π/2) to be chosen later. We also set

C := {|y|ei(π−φ)·sgn(y) : y � 0}. (52)

The contour Cε
θ is an arc of circle and crosses θ vertically. For ε small enough, one

can replace the contour Cε
θ by CL without changing the Fredholm determinants. The

values of L and φ has to be chosen so that the endpoints of the contours coincide.
We define the rescaled contour for the variable z̃ by

DL := {iy : y ∈ [−L , L]} ,

and we set D := iR.

Proposition 6.7 We have that

lim
t→∞ det(I + KBP

y,ε)L2(Cε
θ ) = det(I − Ky)L2(C),

where Ky is defined by its integral kernel

Ky(w,w′) = 1

2iπ

∫ ∞eiπ/3

∞e−iπ/3

dz

(z − w′)(w − z)

ez
3/3−yz

ew3/3−yw

where the contour for z is a wedge-shaped contour constituted of two rays going to
infinity in the directions e−iπ/3 and eiπ/3, such that it does not intersect C.
The proof of Proposition 6.7 follows the lines of [24, Proposition 6.4] (see also [5,
Proposition 6.13]).

Proof We take the limit of the rescaled kernel det(I+K t
y,ε(ṽ, ṽ′)). Let us first examine

the pointwise convergence. Under the scalings above

t−1/3π

sin(π(z − v))
−−−→
t→∞

1

z̃ − ṽ
,

dz

z − v′ −−−→
t→∞

dz̃

z̃ − ṽ′ ,
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�(v)

�(z)
−−−→
t→∞ 1,

t (h(z) − h(v)) −−−→
t→∞

σ(θ)3

3
(z̃3 − ṽ3).

Now we justify that one can take the pointwise limit. We takeDεt1/3 as the integration
contour for the z̃ variable. Since z̃ is pure imaginary, exp(z̃3/3− z̃ yσ(θ)) has modulus
one. Moreover for fixed ṽ and ṽ′, we can find a constant C ′′′ > 0 such that

t−1/3π

sin(π(z − v))

dz

z − v′ <
C ′′′

(Im(z̃)2)
.

This means that the integrand of K t
y,ε(ṽ, ṽ′) has quadratic decay, which is enough to

apply dominated convergence. It results that

lim
t→∞ K t

y,ε(ṽ, ṽ′) = 1

2iπ

∫
D∞

ez̃
3σ(θ)3/3−z̃ yσ(θ)

eṽ3σ(θ)3/3−ṽyσ(θ)

1

z̃ − ṽ

dz̃

z̃ − ṽ′ .

Now we need to prove that one can exchange the limit with the Fredholm determi-
nant. By Taylor expansion, there exists a constant C > 0 such that for |v − θ | < ε,

∣∣∣∣t · h(v) − σ(θ)3

3
(ṽ)3

∣∣∣∣ < Ct (v − θ)4. (53)

Since |v − θ | < ε, we have that Ct (v − θ)4 < Cεṽ3. Hence, for ε small enough, one
can factor out exp(−C ′ṽ3/3) for some C ′ > 0. By using the same bound as before
for the factors in the integrand of K t

y,ε , there exist constants C
′,C ′′ > 0 such that

K t
y,ε(ṽ, ṽ′) < C ′′ exp(C ′ṽ3).

As exp(−ṽ3) decays exponentially in the direction ∞e±iφ for φ ∈ (π/2, 5π/6), we
have that for ε small enough, the integrand of the rescaled kernel decays exponentially
and we can apply dominated convergence. Now recall that we can take ε arbitrarily
small in Proposition 6.6. Thus, the Fredholm expansion of K t is integrable and sum-
mable (using Hadamard’s bound), and dominated convergence implies that the limit
of det(I + KBP

y,ε)L2(Cε
θ ) is the Fredholm determinant of an operator K̃ y acting on C

defined by the integral kernel

K̃ y(ṽ, ṽ′) = 1

2iπ

∫
D∞

ez̃
3σ(θ)3/3−z̃ yσ(θ)

eṽ3σ(θ)3/3−ṽyσ(θ)

1

z̃ − ṽ

dz̃

z̃ − ṽ′ .

Since the integrand of K̃ y has quadratic decay on the tails of the contour D∞ one can
freely deform the contours so that it goes from∞e−iπ/3 to∞eiπ/3 without intersecting
C∞. Finally, by doing another change of variables to eliminate the dependency in σ(θ)

in the integrand, one recovers the Fredholm determinant of Ky as claimed. ��
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Using the det(I + AB) = det(I + BA) trick, one can reformulate the Fredholm
determinant of Ky as the Fredholm determinant of an operator on L2(y,∞) (see e.g.
[6, Lemma 8.6]). It turns out that

det(I − Ky)L2(C) = det(I − KAi)L2(x,+∞),

and this concludes the proof of Theorem 6.2.

6.2 Precise estimates and steep-descent properties

The following series representations will be useful:

�(z) − �(w) =
∞∑
n=0

z − w

(n + z)(n + w)
, (54)

is valid for z and w away from the negative integers. We also use

�1(z) − �1(w) =
∞∑
n=0

[
1

(n + z)2
− 1

(n + w)2

]
. (55)

Proof of Lemma 6.3 Given the expression (47) for the first derivative of h, we have

h′′′(θ) = �2(θ + α) − �2(α + β + θ)

+�1(α + θ) − �1(α + β + θ)

�1(θ) − �1(α + β + θ)
(�2(α + β + θ) − �2(θ)), (56)

where �2 is the second polygamma function (�2(z) = d
dz�1(z)). Hence h′′′(θ) > 0

is equivalent to

(�2(θ + α + β) − �2(θ + α))(�1(θ + α + β) − �1(θ))

−(�1(θ + α + β) − �1(θ + α))(�2(θ + α + β) − �2(θ)) > 0,

which is equivalent to

�2(θ + α + β) − �2(θ + α)

�1(θ + α + β) − �1(θ + α)
>

�2(θ + α + β) − �2(θ)

�1(θ + α + β) − �1(θ)
. (57)

The function trigamma �1 is positive and decreasing on R>0. The function �2 is
negative and increasing. One recognizes in (57) difference quotients for the function
�2 ◦�−1

1 . Thus, it is enough to prove that�2 ◦�−1
1 is strictly concave. The derivative

of �2 ◦�−1
1 is �3 ◦�−1

1 /�2 ◦�−1
1 . Since �1 is decreasing, it is enough to show that

�3/�2 is increasing, which, by taking the derivative, is equivalent to �4�2 > �3�3.
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For all n � 1, one has the integral representation

�n(x) = −
∫ ∞

0

(−t)ne−xt

1 − e−t
dt. (58)

Thus for x > 0, �4(x)�2(x) > �3(x)�3(x) is equivalent to

∫ ∞

0

∫ ∞

0

e−xt−xu

(1 − e−t )(1 − e−u)
t3u3 <

∫ ∞

0

∫ ∞

0

e−xt−xu

(1 − e−t )(1 − e−u)
t2u4.

By symmetrizing the right-hand-side, the inequality is equivalent to

∫ ∞

0

∫ ∞

0

e−xt−xut2u2

(1 − e−t )(1 − e−u)
tu <

∫ ∞

0

∫ ∞

0

e−xt−xut2u2

(1 − e−t )(1 − e−u)

t2 + u2

2
,

which is true for all x > 0.

Proof of Lemma 6.4 By symmetry, it is enough to treat only the case y > 0. Hence
we show that if y > 0, then Im[h′(θ + iy)] > 0. Using (47), Im[h′(θ + iy)] > 0 is
equivalent to

(�1(θ) − �1(α + β + θ))Im[�(α + θ + iy) − �(α + β + θ + iy)]
+(�1(α + θ) − �1(α + β + θ))Im[�(α + β + θ + iy) − �(θ + iy)]>0. (59)

Using the series representations (54), Eq. (59) is equivalent to

(�1(θ) − �1(α + β + θ))Im
∞∑

m=0

−β

(m + θ + α + iy)(m + θ + α + β + iy)

+(�1(α + θ)−�1(α + β + θ))Im
∞∑

m=0

α + β

(m + θ + iy)(m + θ + α + β + iy)
>0,

(60)

We have that

Im

[ −β

(m + θ + α + iy)(m + θ + α + β + iy)

]

= 1

(m + θ + α)2 + y2
− 1

(m + θ + α + β)2 + y2

and

Im

[ −(α + β)

(m + θ + iy)(m + θ + α + β + iy)

]

= 1

(m + θ)2 + y2
− 1

(m + θ + α + β)2 + y2
.
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It yields that (60) can be rewritten as

(�1(θ) − �1(α + β + θ))(�(θ + α) − �(θ + α + β))

> (�1(θ) + α − �1(α + β + θ))(�(θ) − �(θ + α + β)), (61)

where

�(x) =
∑
n�0

1

(n + x)2 + y2
.

The inequality (61) is equivalent to

�1(θ) − �1(θ + α)

�(θ) − �(θ + α)
>

�1(θ + α) − �1(θ + α + β)

�(θ + α) − �(θ + α + β)
. (62)

Using Cauchy’s mean value theorem, there exist θ1 ∈ (θ, θ +α) and θ2 ∈ (θ +α, θ +
α + β) such that (62) is equivalent to

�2(θ1)

�′(θ1)
>

�2(θ2)

�′(θ2)
.

Finally, this last inequality is always true for θ1 < θ2 since we have the series of
equivalences

�2(θ1)�
′(θ2) > �2(θ1)�

′(θ2)

⇔
∞∑
n=0

2

(n + θ1)3

∞∑
m=0

2(m + θ2)

((m + θ2)2 + y2)2

>

∞∑
n=0

2

(n + θ2)3

∞∑
m=0

2(m + θ1)

((m + θ1)2 + y2)2

⇔
∞∑

n,m=0

1

(n + θ1)3(n + θ2)3

1

1 + 2y2

(m+θ2)2
+ y2

(m+θ2)4

>

∞∑
n,m=0

1

(n + θ1)3(n + θ2)3

1

1 + 2y2

(m+θ1)2
+ y2

(m+θ1)4

. (63)

The inequality (63) is satisfied because θ1 < θ2.

Proof of Lemma 6.5 in the case α = β = 1. We have that

d

dφ
Re[h(θeiφ)] = Re[iθeiφh′(θeiφ)].
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Using formula (48), we have

h′(θeiφ) = θ(1 − eiφ)2

eiφ(θeiφ + 1)((θ + 1)2 + θ2))
.

We have to show that for any φ ∈ (0, π), Re[iθeiφh′(θeiφ)] > 0. We can forget the
factor θ/((θ + 1)2 + θ2)) which is positive. Thus, we have to show that

Im

[
(1 − eiφ)2

(θeiφ + 1)

]
< 0.

One can see that the inequality is equivalent to

2 sin(φ)(cos(φ) − 1) < 0,

which is always true for φ ∈ (0, π).

6.3 Relation to extreme value theory

Let us now state a corollary of Theorem 6.2. Let (X (1)
t )t∈Z�0 , . . . , (X

(N )
t )t∈Z�0 be N

independent random walks drawn in the same Beta environment (Definition 2.1). We
denote by P and E the measure and expectation associated with the probability space
which is the product of the environment probability space and the N random walks
probability space (for f a function of the environment and the N random walk paths,
we have E[ f ] = E[E⊗N [ f ]] and P(A) = E[1A]).
Corollary 6.8 Assume α = β = 1. We set N = �ect	 for some c ∈ ( 2

5 , 1
)
, and

x0 = I−1(c) = √
1 − (1 − c)2. Then we have

lim
t→∞P

(
maxi=1,...,�ect 	{X (i)

t } − t x0
t1/3d

� y

)
= FGUE(y), (64)

where

d = (2c2
√
1 − c)1/3√

1 − (1 − c)2
.

Remark 6.9 The condition c > 2/5 is equivalent to x0 > 4/5. It is also equivalent to
the condition that θ < 1/2 in Theorem 6.2. Hence, it is most probably purely technical.

Remark 6.10 We expect that Corollary 6.8 holds more generally for arbitrary para-
meters α, β > 0. One would have the following result:

Let N = �ect	 such that there exists x0 >
α−β
α+β

and θ0 > 0 with x(θ0) = x0 and
I (x(θ0)) = c. Then
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1100 G. Barraquand, I. Corwin

lim
t→∞P

(
maxi=1,...,�ect 	{X (i)

t } − t x0
t1/3σ(x0)/I ′(x0)

� y

)
= FGUE(y), (65)

where I ′(x) = d
dx I (x).

Remark 6.11 The range of the parameter c in Corollary 6.8 is a priori c ∈ (0, 1). The
reason why the upper bound is precisely 1 is because we are in the α = β = 1 case. In
general, the upper bound is I (1), which is always finite. It is natural that c is bounded.
Indeed, we know that for all i , X (i)

t � t (because the randomwalk performs±1 steps),
and for c very large there exists some i such that X (i)

t = t with high probability. Hence,
one expects that for c large enough, themaximummaxi=1,...,�ect 	{X (i)

t } is exactly t with
a probability going to 1 as t goes to infinity, and there cannot be random fluctuations
in that case.

If one considers N simple symmetric randomwalks (corresponding to the annealed
model), the threshold is log(2) (i.e. for c > log(2), (1 − (1/2)t )N → 0 and for
c < log(2), (1− (1/2)t )N → 1). One can calculate the large deviations rate function
I a for the simple random walk1 and check that I a(1) = log(2).

Proof of Corollary 6.8 This proof relies on Theorem 6.2 which deals only with α =
β = 1. However, this type of deduction would also hold in the general parameter case,
and we write the proof using general form expressions. From Theorem 6.2, we have
that writing

log(P(Xt > xt)) = −I (x)t + t1/3σ(x)χt , (66)

then χt weakly converges to the Tracy–Widom GUE distribution, provided x can be
written x = x(θ) with 0 < θ < 1/2. For any realization of the environment, we have
on the one hand

P
(

max
i=1,...,�ect 	

{X (i)
t } � xt

)
= (1 − P(Xt > xt))�ect 	

= exp(�ect	 log(1 − P(Xt > xt))).

On the other hand, setting x = x0 + t−2/3σ(x0)y
I ′(x0) , we have that

P
(

max
i=1,...,�ect 	

{X (i)
t } � xt

)
= P

(
maxi=1,...,�ect 	{X (i)

t } − t x0
t1/3σ(x0)/I ′(x0)

� y

)
. (67)

By Taylor expansion, we have as t goes to infinity

I (x) = I (x0) + t−2/3σ(x0)y + O(t−4/3),

1 By Crámer’s Theorem, it is the Legendre transform of z �→ log
(
e−z+ez

2

)
. One finds

I a(x) =
{
1
2
(
(1 + x) log(1 + x) + (1 − x) log(1 − x)

)
for x ∈ [−1, 1],

+∞ else.
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and

σ(x) = σ(x0) + t−2/3 σ ′(x0)σ (x0)y

I ′(x0)
+ O(t−4/3).

Hence, the R.H.S. of (66) is approximated by

− I (x)t+t1/3σ(x)χt = −I (x0)t+t1/3σ(x0)(χt−y)+O(t−1/3)+O(t−1/3χt ). (68)

Choosing x0 such that I (x0) = c, we have

P
(

max
i=1,...,�ect 	

{X (i)
t } � xt

)
= E exp(�ect	 log(1 − P(Xt > xt)))

= E exp(−�ect	P(t, xt) + O(ect P(t, xt)2))

= E exp(et
1/3σ(x0)(χt−y)+O(t−1/3(1+χt )) + O(P(t, xt))

+ O(ect P(t, xt)2))

The second equality relies on Taylor expansion of the logarithm around 1. The
third equality is the consequence (66) and (68). Since χt converges in distribution,
t−1/3(1+χt )) converges in probability to zero by Slutsky’s theorem. Hence, the term
O(t−1/3(1 + χt )) inside the exponential converges in probability to zero. Recalling
that I (x0) = c, we have

P(t, xt)2 = exp(2 log(P(t, xt))) = exp(2(−ct + O(t1/3χt )))

= exp(−2ct + 2t2/3O(t−1/3χt )),

and since O(t−1/3(1 + χt )) converges to zero in probability, we have that P(t, xt)2

is smaller that e− 3
2 ct with probability going to 1 as t goes to infinity, so that the term

O(ect P(t, xt)2) can be neglected. One can bound similarlyO(P(t, xt)) by e− 1
2 ct with

probability going to 1. Thus,

lim
t→∞P

(
maxi=1,...,�ect 	{X (i)

t } − t x0
t1/3σ(x0)/I ′(x0)

� y

)
= lim

t→∞P
(

max
i=1,...,�ect 	

{X (i)
t } � xt

)

= lim
t→∞P(χt � y)

= FGUE(y).

In the case α = β = 1, we have seen that I (x) = 1 − √
1 − x2 so that x0 =√

1 − (1 − c)2. Moreover, using (43),

σ(x0)/I
′(x0) = d = (2c2

√
1 − c)1/3

x
= (2c2

√
1 − c)1/3√

1 − (1 − c)2
,
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as in the statement of Corollary 6.8. Finally, we have that I (x(1/2)) = 2/5 and
x((1/2)) = 4/5, so that the hypothesis of Corollary 6.8 match with that of Theorem
6.2.

In order to put Corollary 6.8 in the perspective of extreme value statistics, recall that
if (Gi )i for i = 1, . . . , �ect	 is a sequence of independent Gaussian centred random
variables of variance 1, then we have [25, Section 2.3.2] the weak convergence

√
2ct max

i=1,...,ect
{Gi } − 2ct + 1

2
log(t) + 1

2
log(4πc) �⇒ G,

where G is a Gumbel random variable with cumulative distribution function
exp(−e−x ).

For the Beta-RWRE with general α, β > 0 parameters, the variables X (i)
t have

mean α−β
α+β

t with variance O(t) [see Proposition 6.12 (1) and (2)]. Let us note

R(i)
t := X (i)

t − α−β
α+β

t√
t

.

We know that R(i)
t converges weakly to the Gaussian distribution by the central limit

theorem. Moreover, conditionally on the environment, R(i)
t converges weakly to the

Gaussian distribution (it is proved in [31], see the discussion in Sect. 2.6). However, if
we let the environment vary, the variables R(i)

t are not independent since the random
walks all share the same environment.

The next proposition characterizes the covariance structure of the family (X (i)
t )i�1.

We state the result for any parameters α, β > 0.

Proposition 6.12 1. For all i � 1, we have E[X (i)
t ] = t α−β

α+β
.

2. For all i � 1, we have E[(X (i)
t )2] =

(
α−β
α+β

)2
t2 + 4αβ

(α+β)2
t .

3. For all i �= j � 1, we have

E[X (i)
t X ( j)

t ] =
(
t
α − β

α + β

)2

+ 4αβ
∑t−1

s=0 P(X (i)
s = X ( j)

s )

(α + β)2(α + β + 1)
. (69)

4. For two random variables X and Y measurable with respect to P , we denote their
correlation coefficient as

ρ(X,Y ) = E[XY ]√
E[X2]E[Y 2] .

For all i �= j � 1, the correlation coefficient ρ(X (i)
t , X ( j)

t ) equals 1/(α + β + 1)
times the E-expected proportion of overlap between the walks X (i)

t and X ( j)
t , up

to time t.
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Proof The points (1) and (2) are trivial since Xt is actually a simple randomwalk if we
do not condition on the environment. In any case, let us explain each case explicitly.

1. Let us write �t = Xt+1 − Xt . Then Xt = ∑t−1
i=0 �i . �i is a random variable that

takes the value 1 with probabilityE[B] and the value−1 with probabilityE[1−B]
for some Beta(α, β) random variable B. We find that E [�t ] = α−β

α+β
, and

E [Xt ] =
t∑

i=1

E [�t ] = t
α − β

α + β
.

2. We have

E[(Xt )
2] = E

⎡
⎣ t∑

i=1

�i

t∑
j=1

� j

⎤
⎦ .

For i �= j , E[�i� j ] = E[�i ]E[� j ], and since �i equals plus or minus one,
E[(�i )

2] = 1. Hence,

E[(Xt )
2] = t (t − 1)

(
α − β

α + β

)2

+ t =
(
t
α − β

α + β

)2

+ t
4αβ

(α + β)2
.

3. Let us write �
(i)
t = X (i)

t+1 − X (i)
t and �

( j)
t = X ( j)

t+1 − X ( j)
t . We have

E[X (i)
t X ( j)

t ] = E
[
t−1∑
n=0

�(i)
n

t−1∑
m=0

�
( j)
m

]
.

For n �= m, since the increments and the environments corresponding to different
times are independent,

E[�(i)
n �

( j)
m ] = E[�(i)

n ]E[�( j)
m ] =

(
α − β

α + β

)2

.

However, E[�(i)
n �

( j)
n ] depends on whether X (i)

n = X ( j)
n or not. More precisely,

E[�(i)
n �

( j)
n |X (i)

n �= X ( j)
n ] = E[�(i)

n ]E[�( j)
m ] =

(
α − β

α + β

)2

,

and

E[�(i)
n �

( j)
n |X (i)

n = X ( j)
n ] = E[E[�(i)

n ]E[�( j)
n ]|X (i)

n = X ( j)
n ] = E[(2B − 1)2],

for some Beta(α, β) random variable B. This yields

E[�(i)
n �

( j)
n ] = P(X (i)

n �= X ( j)
n )

(
α − β

α + β

)2

+ P(X (i)
n = X ( j)

n )E[(2B − 1)2].
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Using E[B2] = α(α+1)
(α+β)(α+β+1) , we find that

E[X (i)
t X ( j)

t ] = t2
(

α − β

α + β

)2

+
(

t−1∑
s=0

P(X (i)
s = X ( j)

s )

)
4αβ

(α + β)2(α + β + 1)
.

4. The E-expected proportion of overlap between the walks X (i)
t and X ( j)

t up to time
t is

1

t
E
[
t−1∑
s=0

1
X (i)
s =X ( j)

s

]
= 1

t

t−1∑
s=0

P(X (i)
s = X ( j)

s ).

Hence, the point (4) is a direct consequence of (1)–(3).

��
One can precisely describe the behaviour of

∑t−1
s=0 P(X (i)

s = X ( j)
s ). For simplicity,

we restrict the study to the case where the random walks have no drift, that is α = β.

Proposition 6.13 Consider (X (1)
t )t∈Z�0 and (X (2)

t )t∈Z�0 two Beta-RWRE drawn
independently in the same environment with parameters α = β. Then

√
t · P(X (1)

t = X (2)
t ) −−−→

t→∞
2α + 1

2α

1√
π

,

and consequently

√
t · E

[
X (i)
t√
t

X ( j)
t√
t

]
−−−→
t→∞

1

α
√

π
.

Proof First, notice that (X (1)
t − X (2)

t )t�0 is a random walk. Let Yt := X (1)
t − X (2)

t .
The transitions probabilities depend on whether Yt = 0. If Yt = 0, then

Yt+1 − Yt =

⎧⎪⎨
⎪⎩

+2 with probability E[B(1 − B)]
0 with probability E[B2 + (1 − B)2]
−2 with probability E[B(1 − B)]

where B is a Beta(α, α) random variable. If Yt �= 0, then

Yt+1 − Yt =

⎧⎪⎨
⎪⎩

+2 with probability 1/4

0 with probability 1/2

−2 with probability 1/4.

In the following, we denote r = E[B(1 − B)] = α
4α+2 . We also denote Pt :=

P (Yt = 0) which is the quantity that we want to approximate.
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Fig. 7 A possible trajectory of the random walk Yt is decomposed to explain the recurrence (70). The
trajectory in the gray box has the same probability as that of the auxiliary random walk

We introduce an auxiliary random walk starting from 0 and having transitions

⎧⎪⎨
⎪⎩

+2 with probability 1/4,

0 with probability 1/2,

−2 with probability 1/4.

We denote by Qt the probability for the auxiliary randomwalk to arrive at zero at time
t and stay in the non-negative region between times 0 and t .

By conditioning on the first return in zero of the random walk (Yt )t , we claim that
for t � 2,

Pt = (1 − 2r)Pt−1 + 2
t∑

i=2

r
1

4
Qi−2Pt−i . (70)

Let us explain more precisely Eq. (70) (see Fig. 7):

• The term (1− 2r)Pt−1 corresponds to the case when the first return at zero occur
at time 1.

• The factor 2 in front of the sum in (70) accounts for the fact that the walk can stay
either in the positive, or in the negative region before the first return in zero, with
equal probability.

• The factor r is the probability that Y1 = 2 (which is also the probability that
Y1 = −2).

• The factor 1/4 is the probability of the last step before the first return at zero.

By conditioning on the first return at zero of the auxiliary random walk, one can
see that Qt verifies the recurrence

Qt = 1

2
Qt−1 +

t∑
i=2

1

16
Qi−2Qt−i for t � 2.
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This implies that if Q(z) = ∑
n�0 Qnzn is the generating function of the sequence

(Qn)n , then

Q(z) − 1 − 1/2z = 1/2z(Q(z) − 1) + 1/16z2Q(z)2.

This yields

Q(z) = 8 − 4z − 8
√
1 − z

z2
.

Now, let us denote G(z) = ∑
n�0 Pnz

n the generating function of the sequence
(Pn)n . The recurrence (70) implies that

G(z) − 1 − (1 − 2r)z = (1 − 2r)z(G(z) − 1) + 2r(1/4)G(z)Q(z).

This yields

G(z) = 1

1 + z(4r − 1) + 4r(
√
1 − z − 1)

.

The function G(z) is analytic in the unit open disk, and can be developed in series
around 0 with radius of convergence 1. The nature of its singularities on the unit
circle gives the leading order for the asymptotic behaviour of its series coefficients.
As z → 1 (for z ∈ C\D where D is the cone D = {z : | arg(z − 1)| < ε}, for some
ε > 0 arbitrarily small, and taking the branch cut of

√
1 − z along R�1),

G(z) ∼ 1

4r
√
1 − z

,

where ∼ means that the ratio of the two sides tends to 1 as z → 1 and z belongs to the
domain described above. We deduce (from e.g. [23, Corollary VI.1]) that

Pt ∼ 1

4r

1√
π t

.

This clearly implies that
∑t−1

s=0 Ps√
t

−−−→
t→∞

1

2r
√

π
.

Since r = α
4α+2 and using (69), we get

√
tE

[
X (i)
t√
t

X ( j)
t√
t

]
−−−→
t→∞

1

α
√

π
.

��
Comparison to correlated Gaussian variables Consider for simplicity only the case
α = β. We denote as before R(i)

t = X (i)
t /

√
t . As already mentioned in Sect. 2.6, R(i)

t
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convergesweakly as t goes to infinity to theGaussian distributionN (0, 1) (whetherwe
condition on the environment or not). It is tempting to ask if the same limit theorem
for the maximum holds when one replaces the R(i)

t by the corresponding limiting
collection of Gaussian random variables (it would correspond to taking first the limit
when t goes to infinity and then study the maximum as N goes to infinity). The theory
of extreme value statistics provides a negative answer.

Let �N (λ) be the matrix of size N

�N (λ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ√
log(N )

. . . λ√
log(N )

λ√
log(N )

1
...

...
. . . λ√

log(N )
λ√

log(N )
. . . λ√

log(N )
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where λ > 0 is a parameter. If we set N = �ect	, and look at the maximum of the
sequence {R(i)

t }1�i�N as t goes to infinity, the correlation matrix of the sequence is

asymptotically �N (λ) with λ =
√
c/π
α

(cf. Proposition 6.13).
Let GN := (G(1), . . . ,G(N )) be a Gaussian vector with covariance matrix �N (λ)

and let denote themaximumMN := maxi=1,...,N {G(i)}. Theorem 3.8.1 in [25] implies
that we have the convergence in distribution

MN − √
2 log(N ) + λ

√
2

(λ−1
√
log(N ))−1/2

�⇒ N (0, 1).

In particular, we have the convergence in probability of MN/
√
log(N ) to

√
2.

Thus, we have seen that the maximum of (R(i)
t )1�i�N and the maximum of

(G(i))1�i�N obey to very different limit theorems: both the scales and the limiting
laws are different.

Remark 6.14 By Corollary 6.8, we have the convergence in probability

maxi=1,...,N {R(i)
log(N )/c}√

log(N )

P−−−−→
N→∞

x0√
c
,

where c = I (x0). Since for any α and β = α, I ′′(0) = 1, we notice that when x0 → 0,
the approximation at the first order coincide with the Gaussian case. To substantiate
this parallel, one must extend to the full parameter range α, β > 0 and 0 < c < 1 in
Corollary 6.8 byond α = β = 1 and c > 2/5 (see also Remark 6.9).

Remark 6.15 It is clear that the sequence (X (i)
t )1�i�N is exchangeable. There exist

general results for maxima of exchangeable sequences. In some cases, one can prove
that themaximum, properly renormalized, converges to amixture of one of the classical
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1108 G. Barraquand, I. Corwin

extreme laws (see in [25] the discussion in Section 3.2 and the results of Section 3.6).
However, it seems that our particular setting does not fit into this theory.

7 Asymptotic analysis of the Bernoulli-Exponential directed first
passage percolation

7.1 Statement of the result

We investigate the behaviour of the first passage time T (n, κn)when n goes to infinity,
for some slope κ > a

b . When κ = a
b , the first passage time T (n, κn) should go to

zero. The case κ < a
b is similar with κ > a

b by symmetry.
As in Theorem 6.2, we parametrize the slope κ by a parameter θ (which turns out

to be the position of the critical point in the asymptotic analysis). Let

κ(θ) :=
1

θ2
− 1

(a + θ)2

1

(a + θ)2
− 1

(a + b + θ)2

, (71)

τ(θ) := 1

a + θ
− 1

θ
+ κ(θ)

(
1

a + θ
− 1

a + b + θ

)
= a(a + b)

θ2(2a + b + 2θ)
, (72)

and

ρ(θ) :=
[
1

θ3
− 1

(a + θ)3
+ κ(θ)

(
1

(a + b + θ)3
− 1

(a + θ)3

)]1/3
. (73)

When θ ranges from 0 to +∞, κ(θ) ranges from +∞ to a/b and τ(θ) ranges from
+∞ to 0.

Theorem 7.1 We have that for any θ > 0 and parameters a, b > 0,

lim
n→∞P

(
T (n, κ(θ)n) − τ(θ)n

ρ(θ)n1/3
� y

)
= FGUE(y).

By Theorem 2.18, we have a Fredholm determinant representation for the probability

P(T (n, κ(θ)n) > r).

We set r = τ(θ)n + ρ(θ)n1/3y. Thus, we have that

P(T (n, κ(θ)n) > τ(θ)n + ρ(θ)n1/3y) = det(I − K FPP
r )L2(C ′

0)
,
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where

K FPP
r (u, u′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
exp(n(H(u + s) − H(u)) + ρ(θ)n1/3ys)

×u + s

u

ds

s(s + u − u′)
,

and

H(z) := τ(θ)z + log

(
z

a + z

)
+ κ(θ) log

(
a + b + z

a + z

)
.

We have

H ′(z) = τ(θ) + 1

z
− 1

a + z
+ κ(θ)

(
1

a + b + z
− 1

a + z

)
.

and

H ′′(z) = 1

(a + z)2
− 1

z2
+ κ(θ)

(
1

(a + z)2
− 1

(a + b + z)2

)
.

We can see from the expressions for the derivatives of H why it is natural to para-
mametrize κ, τ and ρ as in (71)–(73): with this choice, we have that H ′(θ) = H ′′(θ)

= 0.
As in Sect. 6, we assume for the moment that the Fredholm determinant contour is

a small circle around 0. We do the change of variables z = u + s in the definition of
the kernel, so that

K FPP
r (u, u′) = 1

2iπ

∫ 1/2+i∞

1/2−i∞
exp(n(H(z) − H(u)) + ρ(θ)n1/3y(z − u))

× z

u

dz

(z − u)(z − u′)
. (74)

Lemma 7.2 For any parameters a, b > 0 and θ > 0, we have H ′′′(θ) > 0.

Proof We have

H ′′′(θ) = 2

θ3
− 2

(a + θ)3
+

1
θ2

− 1
(a+θ)2

1
(a+θ)2

− 1
(a+b+θ)2

(
2

(a + b + θ)3
− 2

(a + θ)3

)
.

Hence we have to show that(
2

θ3
− 2

(a + θ)3

)(
1

(a + θ)2
− 1

(a + b + θ)2

)

>

(
2

(a + θ)3
− 2

(a + b + θ)3

)(
1

θ2
− 1

(a + θ)2

)
. (75)
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By putting each side to the same denominator, we arrive at

b(a + b + θ)(2θ + 2a + b)((a + θ)3 − θ3)

> aθ(2θ + a)((a + b + θ)3 − (a + θ)3)

⇔ ab(a + b)(a + θ)2(2a + b + 3θ) > 0

which clearly holds. ��
We notice that given the expression (73), H ′′′(θ) = 2(ρ(θ))3. By Taylor expansion
around θ ,

H(z) − H(θ) = (ρ(θ)(z − θ))3

3
+ O((z − θ)4). (76)

7.2 Deformation of contours

We need to find steep-descent contours for the variables z and u. For the z variable, we
choose the contourDθ = θ + iR as in Sect. 6. For the u variable, we notice that since
we are integrating on a finite contour, it will be enough that Re[H(z)] > Re[H(θ)]
along the contour (see [7,37]).

Lemma 7.3 The contourDθ is steep-descent for the function Re[H ] in the sense that
y �→ Re[H(θ + iy)] is decreasing for y positive and increasing for y negative.

Proof Since d
dyRe[H(θ + iy)] = Im[H ′(θ + iy)], and using symmetry with respect

to the real axis, it is enough to show that for y > 0, Im[H ′(θ + iy)] > 0. We have

Im[H ′(θ + iy)] = y

(θ + a)2 + y2
− y

θ2 + y2

+κ(θ)

(
y

(θ + a)2 + y2
− y

(θ + a + b)2 + y2

)
.

Given the expression (71) for κ(θ), we have to show that

(
1

θ2 + y2
− 1

(θ + a)2 + y2

)(
1

(a + θ)2
− 1

(a + b + θ)2

)

<

(
1

(θ + a)2 + y2
− 1

(θ + a + b)2 + y2

)(
1

θ2
− 1

(a + θ)2

)
. (77)

Factoring both sides in the inequality (77) and cancelling equal factors, one readily
sees that it is equivalent to

1

(θ2 + y2)(a + b + θ)2
<

1(
(θ + a + b)2 + y2

)
θ2

,

which is always satisfied. ��
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Instead of finding a steep-descent path for the L2 contour as in Sect. 6, we prove that
we can find a contour with suitable properties for asymptotics analysis, following the
approach of [7].

Lemma 7.4 There exists a closed continuous path γ in the complex plane, such that

• The path γ encloses 0 but not −a − b.
• The path γ crosses the point θ and departs θ with angles φ and −φ, for some

φ ∈ (π/2, 5π/6).
• Let B(θ, ε) the ball of radius ε centred at θ . For any ε > 0, there exists η > 0
such that for all z ∈ γ \B(θ, ε), Re[H(z)] − Re[H [θ ]] > η.

Proof Since H is analytic away from its singularities, Re[H ] is a harmonic function.
It turns out that the shape of level lines Re[H(z)] = Re[H(θ)] are constrained by
the nature and the positions of the singularities of H , and provided H is not too
complicated (does not have too many singularities), one can describe these level lines.

We know that level lines can cross only at singularities or critical points. In our
case, three branches of the level line Re[H(z)] = Re[H(θ)] cross at θ making angles
π/6, π/2 and 5π/6. This can be seen from the Taylor expansion (76).

The function H has only three singularities of logarithmic type at 0, −a and
−a + b. When z goes to infinity, Re[H(z)] = Re[H(θ)] implies �[τ(θ)z] ≈
Re[H(θ)]. Hence, there are two branches that goes to infinity in the direction
±∞i + Re[H(θ)]/τ(θ). Additionally, one knows by the maximum principle that
any closed path formed by portions of level lines must enclose a singularity. Finally,
one knows the sign of Re[H(z)] around each singularity:

• Re[H(z)] < 0 for z near 0,
• Re[H(z)] < 0 for z near −a − b,
• Re[H(z)] > 0 for z near −a.

This is enough to conclude that the level lines ofRe[H(z)] = Re[H(θ)] are necessarily
as shown in Fig. 8 (modulo a continuous deformation of the lines that does not cross
any singularity).

It follows that one can find a path γ having the required properties. It would depart
θ with angles±φ with φ ∈ (π/2, 5π/6), and stay between the level lines that depart θ
with angles ±π/2 and the level lines that departs θ with angles ±5π/6 (for instance,
one could follow the level lines of Re[H(z)] = Re[H(θ)] + 2η outside of a neigh-
bourhood of θ ). ��

We have the analogue of Proposition 6.6.

Proposition 7.5 Let B(θ, ε) be the ball of radius ε centred at θ . We denote by γ ε

(resp. Dε
θ ) the part of the contour γ (resp. Dθ ) inside the ball B(θ, ε). Then, for any

ε > 0,

lim
t→∞ det(I + K FPP

r )L2(Cθ ) = lim
t→∞ det(I + K FPP

y,ε )L2(γ ε)
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Fig. 8 The solid lines are contour lines Re[H(z)] = Re[H(θ)] in the case θ = a = b = 1. Dashed lines
are contour lines Re[H(z)] = Re[H(θ)] + 2η with η = 0.05

where K FPP
y,ε is defined by the integral kernel

K FPP
y,ε (u, u′) = 1

2iπ

∫
Dε

θ

π

sin(π(z − u))
exp(t (H(z)−H(u))−t1/3ρ(θ)y(z−u))

dz

z − u′ .

(78)

Proof The proof is similar to the proof of Proposition 6.6. The two main differences
are

1. The integral defining K FPP
y in (74) is an improper integral, which forbids to use

dominated convergence.
2. The L2 contour (i.e. the contour γ ) is not steep-descent.

The point (2) is not an issue since in the proof of Proposition 6.6, we actually only
used the fact that for any ε > 0 there exists a constants C ′ > 0 such that Re[h(z)] −
Re[h(θ)] > C ′ for z ∈ Cθ\Cε

θ . This property is still satisfied by the contour γ .
The point (1) is resolved by bounding the integral over Dθ\Dε

θ with the same kind
of estimates as in the proof of Theorem 2.18. More precisely, one writes

∣∣∣∣ 1

2iπ

∫ θ+i∞

θ+iε
exp(n(H(z) − H(u)) + ρ(θ)n1/3y(z − u))

z

u

dz

(z − u)(z − u′)

∣∣∣∣
< exp(−Cn + n1/3ρ(θ)y(θ − u))∣∣∣∣ 1

2iπ

∫ θ+i∞

θ+iε
exp(iρ(θ)n1/3yIm[z]) z

u

dz

(z − u)(z − u′)

∣∣∣∣. (79)
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The integral in theR.H.Sof (79) is an oscillatory integral that can beboundeduniformly
in n (actually it goes to zero by Riemann-Lebesgue’s lemma) so that it goes to zero
when multiplied by exp(−Cn + n1/3ρ(θ)y(θ − u)). ��

The rest of the proof is similar to Sect. 6. One makes the change of variables

z = θ + z̃n−1/3, u = θ + ũn−1/3, u′ = θ + ũ′n−1/3.

It is again convenient to deform slightly the contours for u and u′ so that the contour
for ũ and ũ′ is Cεn1/3 as in Sect. 6 (CL is defined in (51)).

Proposition 7.6 We have that

lim
t→∞ det(I + K FPP

y,ε )L2(γ ε) = det(I − Ky)L2(C),

where the contour C is defined in (52) and Ky is defined by its integral kernel

Ky(w,w′) = 1

2iπ

∫ ∞eiπ/3

∞e−iπ/3

dz

(z − w′)(w − z)

ez
3/3−yz

ew3/3−yw

and the contour for z does not intersect C.
Proof Identical to the proof of Proposition 6.7. ��

7.3 Limit shape of the percolation cluster for fixed t

As θ goes to infinity, κ(θ), τ (θ) and ρ(θ) are approximated by

κ(θ) = a

b
+ 3a(a + b)

2b

(
1

θ

)
+ O

(
1

θ

)2

,

τ (θ) = 1

2
a(a + b)

(
1

θ

)3

+ O
(
1

θ

)4

,

ρ(θ) =
(
3

2
a(a + b)

)1/3 (
1

θ

)5/3

.

On the other hand, we have from Theorem 7.1 the convergence in distribution

T (n, κ(θ)n) − τ(θ)n

ρ(θ)n1/3
�⇒ LGUE ,

where LGUE is the GUE Tracy–Widom distribution.
Scaling θ by n1/3 suggests a limit theorem for the shape of the convex envelope of

the percolation cluster after a fixed time. Of course, there is a non-rigorous interchange
of limits here, and one should use the Fredholm determinant representation in order
to make this rigorous (we do not include this here).

123
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Fig. 9 Percolation set in the Bernoulli-FPP model at different times for parameters a = b = 1. The
different shades of gray corresponds to times 0, 0.1, 0.2, 0.3, 0.4, 0.6, 1 and 4. Although it seems on the
picture that the convex envelope of the percolation cluster at time t = 4 is asymptotically a cone, this is an
effect due to the relatively small size of the grid (300 × 300), and it is not true asymptotically: n = 300 is
not enough to discriminate between cn and c′n2/3 (see Sect. 7.3)

Let us set θ = n1/3. Then

κ(θ)n = a

b
n + 3a(a + b)

2b
n2/3 + O(n1/3)

and

τ(θ)n = 1

2
a(a + b) + O(n−1/3).

This suggests that the border of the percolation cluster at time 1
2a(a + b) is asymp-

totically at a distance 3a(a+b)
2b n2/3 from the point a

b n (see Fig. 9). The fact that
ρ(θ)n1/3 = O(n−2/9) suggests an anomalous scaling for the fluctuations of the border
of the percolation cluster. We leave this for future consideration.
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