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Abstract
We consider the asymmetric simple exclusion process (ASEP) on the positive integers
with an open boundary condition. We show that, when starting devoid of particles and
for a certain boundary condition, the height function at the origin fluctuates asymp-
totically (in large time � ) according to the Tracy–Widom Gaussian orthogonal ensem-
ble distribution on the �1=3-scale. This is the first example of Kardar–Parisi–Zhang
asymptotics for a half-space system outside the class of free-fermionic/determinantal/
Pfaffian models.

Our main tool in this analysis is a new class of probability measures on Young
diagrams that we call half-space Macdonald processes, as well as two surprising
relations. The first relates a special (Hall–Littlewood) case of these measures to the
half-space stochastic six-vertex model (which further limits to the ASEP) using a
Yang–Baxter graphical argument. The second relates certain averages under these
measures to their half-space (or Pfaffian) Schur process analogues via a refined Lit-
tlewood identity.
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1. Introduction
The large-scale statistics of random complex systems are often qualitatively inde-
pendent from much of the microscopic details of the system, so that the laws of
large universality classes can be probed via exactly solvable examples. In particu-
lar, particle systems in one spatial dimension—modeling, for instance, phenomena in
nonequilibrium transport, traffic jams, and interface growth models—are believed to
lie, under mild hypotheses, in the Kardar–Parisi–Zhang (KPZ) universality class (see
[28], [37], [38], [54]). The large-scale statistics of such one-dimensional particle sys-
tems have been extensively studied in infinite volume. The case of particle systems
connected to boundary reservoirs is physically relevant (see [53]) yet less mathemat-
ically tractable.

In this article, we study the asymmetric simple exclusion process (ASEP) on the
positive integers with an open boundary at the origin in contact with a reservoir of
particles kept at a constant density. It is expected (due to known results for the totally
asymmetric simple exclusion process [TASEP], a degeneration of the ASEP) that a
phase transition happens depending on the local density imposed by the boundary
reservoir at the origin between a maximal-current phase and a low-density phase. The
critical case happens when the boundary imposes an average particle density equal to
1=2 at the origin. In this article, we study the statistics of the number of particles in the
system when started empty and with boundary conditions tuned to this critical point.
We prove that, after a very long time � , the random variable scales (around its law
of large numbers centering) like �1=3 and converges in this scale weakly to the GOE
Tracy–Widom distribution (Theorem A).1 Further, our results also shed light on the
distribution of the solution to the KPZ equation with Neumann boundary condition
(Theorem B), which arises as a limit of the height function of the weakly asymmetric
half-line ASEP around this critical point (see [31], [46]).

This is the first proof of (KPZ/random-matrix-theoretic) asymptotics in a non-
free-fermionic half-space model. Free-fermionic full-space systems have been well
studied via robust mathematical approaches, such as the Schur processes (see [44]).
These are determinantal systems, meaning that correlation functions are written as
determinants of a large matrix. The half-space analogues of such systems are Pfaffian
Schur processes (see [6], [23], [47], [49]), whose correlation functions are given via

1G(U/O/S)E stands for Gaussian (unitary/orthogonal/symplectic) ensemble, and Tracy–Widom distributions
were introduced in [55] and [56] as the limiting distributions of the fluctuations of the largest eigenvalues of
these ensembles. See Definition 6.1 in the GOE case.
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Pfaffians. The full- and half-space TASEP (where jumps only go in one direction) and
a small handful of other models fit into the free-fermionic framework.

The ASEP and many other important models do not fit into the free-fermionic
framework. In the last decade, starting from the work of Tracy and Widom [58]
on the ASEP (on the full line), many KPZ-type limit theorems have been obtained
for non-free-fermionic models in a full space. These results have helped refine and
expand the notion of KPZ universality. Some attempts have been made to study simi-
lar half-space systems, but until now no method has yielded rigorous distributional
asymptotics without a Pfaffian structure. Among the existing works on non-free-
fermionic half-space systems, O’Connell, Seppäläinen, and Zygouras [43] studied
the log-gamma directed polymer in a half-quadrant using properties of the geometric
Robinson–Schensted–Knuth algorithm on symmetric matrices, and they conjectured
integral formulas, but these are presently not amenable for asymptotic analysis. Using
the coordinate Bethe ansatz, Tracy and Widom [59] derived integral formulas for the
transition probabilities in the half-line ASEP for certain specific boundary conditions,
but these formulas are not amenable to asymptotic analysis either.

Inspired by recent developments relating the integrability of the ASEP on the
full line to the stochastic six-vertex model (see [3], [19]–[21]), we study the half-
line ASEP as a scaling limit of a stochastic six-vertex model in a half-quadrant
with a boundary condition corresponding to off-diagonally symmetric alternating-
sign matrices considered in [40]. Our analysis of the half-quadrant stochastic six-
vertex model relies upon two surprising relations.

The first relation is between the half-quadrant stochastic six-vertex model and
a family of measures on sequences of partitions that we call the half-space Hall–
Littlewood processes. These measures (see Definition 2.2) are half-space variants of
Macdonald processes (introduced in [17] for the full-space case) that generalize Pfaf-
fian Schur processes by replacing Schur functions by Macdonald symmetric functions
which rely on two parameters, q, t . Using a graphical interpretation of the Yang–
Baxter and reflection equations, we show that the height function in the half-quadrant
stochastic six-vertex model has the same law as an observable of the half-space Hall–
Littlewood process, that is, the degeneration of the half-space Macdonald process for
q D 0 (Theorem 4.4).

The second relation is between certain expectations of observables under the half-
space Hall–Littlewood and Schur processes. Extracting statistical information from
half-space Macdonald processes is, in general, a difficult task (see [8] for an approach
using Macdonald operators in the spirit of [17]). In this article, an important technical
tool that will considerably simplify our analysis is a refined Littlewood summation
identity (Proposition 2.7) for Macdonald symmetric polynomials, which was conjec-
tured in [11] and proved in [48]. This allows us to relate certain observables of Mac-
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donald measures for different values of q and consequently connect the Pfaffian Schur
process (case q D t ) and the half-space Hall–Littlewood process (case q D 0). The
outcome is finally an identity between the t -deformed Laplace transform of the cur-
rent in the half-line ASEP and a multiplicative functional of a Pfaffian point process
with an explicit correlation kernel (Proposition 5.4), which can be analyzed (using
Pfaffian point process methods) asymptotically in several interesting limit regimes.

In statistical mechanics, a lot of effort went into obtaining determinant represen-
tations for partition functions or correlation functions for the XXZ spin chain/six-
vertex model, despite the fact that the model is non-free-fermionic (see, e.g., the
review [39]). Our approach achieves this general goal for the half-line ASEP and the
half-space stochastic six-vertex model: we uncover a “hidden” fermionic structure
and hence compute observables as Pfaffians.

ASEP with an open boundary
The ASEP on a half-line with an open boundary at the origin is an interacting particle
system on Z>0 where each site is occupied by at most one particle. Formally, this is
a continuous-time Markov process on the state of particle configurations (see Defini-
tion 5.1). Each particle jumps by one to the right at rate p and to the left at rate q,
with q< p, provided that the target site is empty. At the origin, we have a reservoir of
particles that injects a particle at site 1 (whenever it is empty) at rate α and removes a
particle from site 1 (whenever it is occupied) at rate γ (see Figure 1).

It was proved in [41] that, when

α
p
C

γ
q
D 1; (1.1)

there exist stationary measures for this process. Moreover, by assuming (1.1), there
is a phase transition as % D α

p varies. This parameter % 2 .0; 1/ corresponds to the
density of particles that the reservoir imposes at site 1. When % < 1=2, the system
admits stationary measures that are product measures such that each site is occupied
independently with probability %. When % � 1=2, stationary measures are spatially
correlated and more complicated: there is a rarefaction fan with a density of particles
% near the origin and density 1=2 at C1.

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

p q p pqα

γ

Figure 1. Jump rates in the half-line ASEP. In this article we will study more precisely the case
when pD 1, qD t , αD 1=2, γ D t=2.
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When qD 0, the process becomes the TASEP, and this phase transition is much
better understood. It was shown in [7] and [5] (see also [49]) that, by starting from an
empty configuration, the total number of particles in the system N.�/ at time � has
Gaussian fluctuations on the scale �1=2 when % < 1=2, but has Tracy–Widom GSE
fluctuations on the scale �1=3 when % > 1=2 and has Tracy–Widom GOE fluctua-
tions on the scale �1=3 in the critical case %D 1=2. We refer to [5, Section 6.1] for a
heuristic explanation of this phase transition using last passage percolation.

Let us go back to the asymmetric case. We expect that, modulo a rescaling of time
by p�q, the total number of particles in the half-line ASEP undergoes the same phase
transition with the same limiting statistics (based on the fact that the full-line TASEP
and ASEP asymptotics are identical modulo such time rescaling). Before stating our
results, let us mention some of the progress made to uncover the integrability of the
model. The stationary distributions in the open ASEP with one or two boundaries can
be computed via the matrix product ansatz (see [32], [35]). This realization led to a
number of results (generally in the physics literature) such as the derivation of the
hydrodynamic limit, understanding of phase diagrams, and large deviation principles.
There exists an abundant literature on the subject (see for instance [34] and refer-
ences therein). An alternative understanding of stationary measures for the half-line
ASEP was proposed in [51] using the staircase tableaux (see also [25]–[27], [62]).
For the half-line ASEP with a finite constant number of particles (i.e., with closed
boundary conditions αD γ D 0), Tracy and Widom [60] were able to express tran-
sition probabilities using the coordinate Bethe ansatz. For the half-line ASEP with
general boundary condition, Tracy and Widom [59] derived integral formulas for the
transition probabilities, combining the formulas in the closed boundary case with the
analysis of the reservoir. These formulas are explicit only when ˛ or � equal 0 and
are presently not amenable for asymptotic analysis in any case.

Let us now state our main result. Without loss of generality,2 we can assume
that pD 1. The left jump rate q will be denoted t , as it will coincide in our analysis
with the deformation parameter t of Macdonald symmetric functions. Hence, we will
denote time rather by the letter � or T . Our main result is a limit theorem about the
fluctuations of the current in the ASEP in the critical case.

THEOREM A (Theorem 6.2)
Under the assumption (1.1) (existence of stationary measures) and for %D 1=2 (crit-
ical density), that is, when the jump rates are given by

pD 1; qD t; αD 1=2; γ D t=2;

2Multiplying all jump parameters by a constant corresponds to a division of time by the same multiplicative
factor.
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we have for any t 2 Œ0; 1/ the weak convergence

T
4
�N. T

1�t
/

2�4=3T 1=3
HHHH)
T!C1

LGOE;

where N.�/ denotes the total number of particles in the half-line ASEP at time � and
LGOE is the Tracy–Widom GOE distribution (see Definition 6.1).

When t D 0, the ASEP becomes the TASEP, and the result was proved as Theo-
rem 1.3 in [5] (see also [7], [49] for very similar results in the context of last passage
percolation in a half-space with geometric weights). For the half-line TASEP, the cur-
rent fluctuations are also known for %¤ 1=2 (equivalently, ˛ ¤ 1=2; see [5]). Thus,
we expect that current fluctuations of the half-line open ASEP are Tracy–Widom GSE
distributed when % > 1=2 and Gaussian when % < 1=2. Extending Theorem A to other
values of % does not seem to be immediately accessible from the techniques developed
in this article.

Stochastic six-vertex model in a half-quadrant
We will approach the half-line ASEP through a scaling limit of another integrable
model, the stochastic six-vertex model in a half-quadrant, which we believe is also
interesting in its own right. On the whole line Z, this approach was recently used
for studying the ASEP in [2], [3], [21], and [29]. Our half-space model is closely
related to off-diagonally symmetric alternating-sign matrices, whose weighted enu-
meration was computed in [40]. Consider the half-quadrant ¹.x; y/ 2 Z2>0 W x � yº.
The stochastic six-vertex model in the half-quadrant is a probability measure on col-
lections of up-right paths (see Figure 2) determined by the Boltzmann weights (see
Section 4.1 for a more precise definition)

P

� �
D
1� axay

1� taxay
; P

� �
D
.1� t /axay

1� taxay
;

P

� �
D
t .1� axay/

1� taxay
; P

� �
D

1� t

1� taxay
;

and boundary condition

P

� �
D P

� �
D 1; P

� �
D P

� �
D 0: (1.2)

Since these weights are stochastic, in the sense that

P

� �
C P

� �
D P

� �
C P

� �
D 1;
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7

Figure 2. Sample configuration of the stochastic six-vertex model in a half-quadrant.

the measure on paths can be constructed in a Markovian way starting from the left
boundary of the quadrant. When the parameters ax go to 1, the paths will turn at
almost every vertex point and, hence, follow a straight staircase path in the �=4-
direction. If one scales those parameters as ax � 1 � " and rescales time by "�1,
one can interpret the horizontal positions of paths in a finite neighborhood of the
diagonal as a particle system that converges to the half-line ASEP as " goes to 0 (see
Proposition 5.2). The assumption that %D 1=2 in Theorem A comes from the specific
choice of boundary condition (1.2). More general boundary conditions do not seem
to be related to the half-space Hall–Littlewood measure considered in this article. It is
likely that a result similar to Theorem A can also be proved for the six-vertex model
in a half-quadrant by our methods (see Remark 4.15), but we do not pursue that here.

KPZ equation on the positive reals
The KPZ equation on R�0 with Neumann boundary condition is the (ill-posed)
stochastic partial differential equation´

@�H D 1
2
�H C 1

2
.@xH /2C PW ;

@xH .�; x/jxD0 DA .8� > 0/;
(1.3)

where W is a space-time white noise. We say that H solves this equation in the
Cole–Hopf sense with narrow-wedge initial condition when H D logZ and Z is a
mild solution (see Definition 7.1) to the multiplicative stochastic heat equation with
Robin boundary condition
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@�Z D

1
2
�Z CZ PW ;

@xZ .�; x/jxD0 DAZ .�; 0/ .8� > 0/;
(1.4)

with delta initial condition. Based on the convergence of the weakly asymmetric
ASEP to the KPZ equation from [31], we expect that a certain limit of the half-line
ASEP height function (denoted H .�/ in the next theorem) weakly converges as t goes
to 1 and has the same distribution as H .�; 0/, where H solves (1.3) with AD�1=2.
We explain, however, in Section 7 that the results of [31] do not directly apply to
the boundary and initial conditions that we are considering ([31] assumes A� 0 and
Hölder continuous initial conditions). After the posting of the first version of this arti-
cle, [46, Theorem 1.2] extended the convergence result from [31] and showed that
the random variable denoted H .�/ in the next theorem has the same distribution as
H .�; 0/, where H solves (1.3) with AD�1=2.

THEOREM B (Theorem 7.6 and Corollary 7.7)
Under the scalings

t D e��; � D
"�3 Q�

1� t
� "�4 Q�;

the random variable

U". Q�/D
t .N.�/�"

�3 Q�=4/

1� t2

weakly converges as "! 0 to a positive random variable U. Q�/. Furthermore, if

H .�/ WD log
�
4 U.8�/

�
�
�

24
;

then for any z > 0,

E

h
exp

��z
4

exp
� �
24
CH .�/

��i
D E

hC1Y
iD1

1p
1C z exp..�=2/1=3ai /

i
;

where ¹aiº1iD1 forms the GOE point process (i.e., the sequence of rescaled eigenvalues
of a matrix from the GOE; see Definition 6.1).

Remark 1.1
One can deduce immediately from the above theorem that, as � goes to infinity,

lim
�!C1

P

�H .�/C �
24

2�1=3�1=3
� x

�
D P.a1 � x/D FGOE.x/:

This is the half-space analogue of [4, Corollary 1.3] (see also [24], [33], [50]), where
a similar limit theorem was proved for the solution to the KPZ equation on R. (The
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scaling there is exactly the same, but the limit distribution is the Tracy–Widom GUE
distribution instead of the GOE.)

Remark 1.2
The KPZ equation (1.3) with boundary parameter A is considered in the case A D
C1 in the physics paper [36], where large-time Tracy–Widom GSE asymptotics are
obtained via a nonrigorous replica method. The paper [15] studies the case A D 0,
though the results are also based on a nonrigorous replica method and some partially
conjectural combinatorial simplifications. It is not yet clear whether the conjectural
results from the latter work are compatible with the assumption that the ASEP and
TASEP have the same fluctuations. Indeed, if the height function in the ASEP and
TASEP satisfies the same limit theorem modulo a rescaling of time by the asymmetry,
one would expect that, when the parameters of the ASEP are scaled so as to obtain
A D 0 in the KPZ equation limit, the large-time fluctuations of the height function
would be related to a crossover distribution between Tracy–Widom GOE and GSE
distributions as in [5] and [7] (rather than the Tracy–Widom GSE distribution in [15],
which would arise only when the density of particles enforced by the boundary near
the origin is strictly greater than 1=2).

Outline of the article
In Section 2, we define half-space Macdonald processes and explain how a refined
Littlewood summation identity for Macdonald symmetric polynomials (see Proposi-
tion 2.7) allows us to relate certain observables of half-space Macdonald measures
for different values of q. More precisely, in Section 3 we express certain observables
of the half-space Hall–Littlewood process (case q D 0) as Fredholm Pfaffians involv-
ing the correlation kernel of the Pfaffian Schur process (case q D t ). In Section 4,
we show that half-space Hall–Littlewood processes are related to the stochastic six-
vertex model in a half-quadrant, horizontal sections of the latter being marginals of
the former. This type of connection between Macdonald measures and a (higher-spin)
vertex model goes back to [14], but our proof is a half-space variant of the corre-
sponding full-space result in [16]. The main ingredients are a t -boson representa-
tion of Hall–Littlewood polynomials and also graphical interpretations of the Yang–
Baxter and reflection equations from [63]. Under a scaling limit, the height function
of the stochastic six-vertex model converges to the ASEP, so that we obtain in Sec-
tion 5 a Fredholm Pfaffian formula characterizing the distribution of the current in the
half-line ASEP. We exploit this formula in two asymptotic regimes. In Section 6, we
perform asymptotic analysis on these formulas to prove the convergence of the cur-
rent in the ASEP to the GOE Tracy–Widom distribution (Theorem 6.2). In Section 7
we discuss the convergence of the ASEP height function to the KPZ equation based
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on [31] and prove that the height function of the ASEP at the origin converges in
the weak-asymmetry regime to a multiplicative functional of the GOE point process
(Theorem 7.6 and Corollary 7.7).

2. Half-space Macdonald processes
A partition � is a nonincreasing sequence of nonnegative integers �1 � �2 � � � �
only finitely many of which are nonzero. We will sometimes use the notation � D
1m12m2 � � � for a partition �, where mj is the multiplicity of the integer j in the
sequence of �i ’s. We denote by Y the set of all partitions. The length of � is the
number of nonzero elements and is denoted `.�/. The transpose �0 of a partition is
defined by �0i D ]¹j W �j � iº. In particular, �01 D `.�/. A partition can be identified
with a Young diagram. For a box � in a Young diagram, `.�/ is equal to the number
of boxes in the diagram below it (the leg length) and a.�/ is equal to the number
of boxes in the diagram to the right of it (the arm length; see Figure 3). A partition
is called even if all �i ’s are even. We write � � � if �i � �i for all i and call �=�
a skew Young diagram. A partition � interlaces with � (denoted by � 	 �) if, for
all i , �i � �i � �iC1. In the language of Young diagrams, this means that � can be
obtained from � by adding a horizontal strip in which at most one box is added per
column.

Let Sym be the ring of symmetric functions in countably many independent vari-
ables (see [42, Chapter I, Section 2]). The skew Macdonald P -functions (resp., Q-
functions) P�=� (resp., Q�=�) (introduced in [42, Chapter VI]) are symmetric func-
tions indexed by skew partitions �=� and have coefficients that are rational functions
of two auxiliary parameters q; t , which we will assume to be in Œ0; 1/ throughout the
article. Macdonald symmetric functions become Hall–Littlewood symmetric func-
tions when q D 0 and become Schur functions when q D t .

Figure 3. The leftmost diagram corresponds with partition �D .6; 4; 2; 2; 1/. The black box has
arm length a.�/D 4 and leg length `.�/D 3. The next diagram is �’s transpose

�0 D .5; 4; 2; 2; 1; 1/.
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For � 2Y, define symmetric functions

E� D
X
�0 even

bel
�Q�=�; (2.1)

where “el” stands for “even leg” and bel
� 2QŒq; t � is given by

bel
� D

Y
�2�

`.�/ even

b�.�/; b�.�/D
´
1�qat`C1

1�qaC1t`
� 2 �;

1 � … �;
(2.2)

with ` D `.�/ and a D a.�/ in the definition of b�.�/. All summations over par-
titions will always be over the set Y, sometimes subject to specified additional con-
straints, for example, �0 even.

We now recall or derive certain identities involving Macdonald symmetric func-
tions which will be used in the remainder of the article. The skew Cauchy identity
(see [42, Section VI.7]) holds for two sets of formal variables x and y,X

�

P�=�.x/Q�=�.y/D….xIy/
X
�

Q�=� .y/P�=� .x/; (2.3)

where ….xIy/ is given by (see [42, Chapter VI, (2.5)])

….xIy/ WD
X
�2Y

P�.x/Q�.y/D
Y
i;j

	.xiyj /; where 	.u/D
.tuIq/1

.uIq/1
(2.4)

and .aIq/n D .1�a/.1�qa/ � � � .1�qn�1a/ is the q-Pochhammer symbol (with infi-
nite product form when nD1). Macdonald P - and Q-functions satisfy a branching
rule whereby (see [42, Section VI.7])X

�

P�=�.x/P�=�.y/D P�=�.x; y/ and

X
�

Q�=�.x/Q�=�.y/DQ�=�.x; y/:
(2.5)

They also satisfy a Littlewood identity (see [42, Section VI.7, Example 4(i)])X
�0 even

bel
� P�.x/D

Y
i<j

	.xixj /DWˆ.x/: (2.6)

Turning to the E�-function, it follows from the definition along with the branching
rule (2.5) that X

�

Q�=�.x/E�.y/D E�.x; y/: (2.7)

We also have a skew version of the Littlewood identity.
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PROPOSITION 2.1
For a set of formal variables x,X

�0 even

bel
� P�=�.x/Dˆ.x/

X
�0 even

bel
�Q�=�.x/Dˆ.x/E�.x/: (2.8)

Proof
Consider first the one-variable case. P�=�.x/ and Q�=�.x/ are 0 unless �	 �	 
.
For a given � 2 Y, there are unique � and 
 such that �0 and 
0 are even and
�	 �	 
. It was proved in [42, p. 350, (4)] by an explicit computation that

bel
� P�=�.x/D b

el
�Q�=�.x/:

Since in the single-variable case ˆ.x/ D 1, the identity (2.8) is established in that
case. To deduce the result for more general x D .x1; : : : ; xn/, denote F�.x/ DP
�0 even b

el
� P�=�.x/, so that

F�.x1; : : : ; xn/D
X
�0 even

bel
� P�=�.x1; : : : ; xn/

D
X
�0 even

bel
�

X
�

P�=� .xn/P�=�.x1; : : : ; xn�1/

D
X
�

X
�0 even

bel
�Q�=�.xn/P�=�.x1; : : : ; xn�1/

D….x1; : : : ; xn�1Ix1/
X
�0 even

bel
�

X
�

Q�=� .xn/P�=� .x1; : : : ; xn�1/

D….x1; : : : ; xn�1Ix1/
X
�

Q�=� .xn/F� .x1; : : : ; xn�1/;

where in the second equality we have used the branching rule (2.5), in the third equal-
ity we have used the single-variable case established above, and in the fourth equality
we have used the skew Cauchy identity (2.3). We may now iterate the relation

F�.x1; : : : ; xn/D….x1; : : : ; xn�1Ix1/
X
�

Q�=� .xn/F� .x1; : : : ; xn�1/;

use the branching rule (2.5), and deduce that

F�.x/D
Y
i<j

	.xixj /
X
�0 even

bel
�Q�=�.x/;

as desired.
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Now combining the skew Cauchy and skew Littlewood identities, we obtainX
�

E�.x/P�=�.y/D….x;y/ˆ.y/E�.x; y/: (2.9)

In particular, X
�

E�.x/P�.y/D….x;y/ˆ.y/: (2.10)

A specialization � of Sym is an algebra homomorphism of Sym ! C. For
instance, evaluating symmetric functions at a fixed finite set of variables defines such
a homomorphism (see [17, Section 2.2.1] for a more detailed discussion). We denote
the application of � to f 2 Sym as f .�/, thus extending the usual notation for the
evaluation at a set of variables. The trivial specialization � D ∅ takes the value 1
for the constant function 1 2 Sym and 0 for all homogeneous functions f 2 Sym of
higher degree. The union of two specializations �1; �2 is defined via the relation

pk.�1; �2/D pk.�1/C pk.�2/

and extended to all of Sym by linearity. Here pk.x/D xk1 C x
k
2 C � � � are the Newton

power sum symmetric functions. Notationally, we may write the union of �1, �2 by
putting a comma between them. We say a specialization � is Macdonald nonnegative
if, for every skew diagram �=�, P�=�.�/� 0.

Definition 2.2
For two Macdonald-nonnegative specializations �C, ��, we define the half-space
Macdonald measure as a probability measure PMM on Young diagrams � 2 Y such
that

PMM.�/D
1

….�CI��/ˆ.�C/
P�.�

C/E�.�
�/:

We will denote by EPMM the corresponding expectation. This is a well-defined prob-
ability measure thanks to (2.10), provided that the series converges. In this article, we
deal with Macdonald-nonnegative specializations corresponding to evaluating func-
tions into finitely many symmetric variables in .0; 1/, so that the sums (2.3) and (2.8)
always converge.

Definition 2.3
For Macdonald-nonnegative specializations �C1 ; : : : ; �

C
n and ��1 ; : : : ; �

�
n , we define the

half-space Macdonald process as a probability measure PMP on sequences of Young
diagrams
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∅
 �.1/ ��.1/ 
 �.2/ � �.2/ 
 � � � � �.n�1/ 
 �.n/ �∅

such that

PMM.�;�/

D
1

Z.�/
P�.1/.�

C
1 /Q�.1/=�.1/.�

�
1 /

�P�.2/=�.1/.�
C
2 /Q�.2/=�.2/.�

�
2 / � � �P�.n/=�.n�1/.�

C
n /E�.n/.�

�
n /; (2.11)

where

Z.�/Dˆ.�C/
Y
i�j

….�Ci I�
�
j /

and �C D .�C1 ; : : : ; �
C
N /. We will denote by EPMP the corresponding expectation. One

may check that this indeed defines a probability measure by repeated application of
the skew Cauchy and Littlewood identities (2.3) and (2.8), provided that all series
converge.

PROPOSITION 2.4
Under the notations of Definition 2.2 and 2.3, the marginal distribution of �.k/ under
the half-space Macdonald process is the half-space Macdonald measure with special-
izations

�C D .�C1 ; : : : ; �
C
k
/; �� D .��k ; : : : ; �

�
n /:

Proof
The result follows from summing the probabilities (2.11) over all �.i/ and �.j / for
j ¤ k, using the branching rule (2.5), the skew Cauchy identity (2.3), and the sum-
mation formula (2.9).

Remark 2.5
Half-space Macdonald measures/processes naturally generalize Pfaffian Schur mea-
sures/processes introduced in [23] and [6], the latter corresponding to the degenera-
tion when q D t . The term Pfaffian comes from the fact that the Pfaffian Schur process
defines a Pfaffian point process (see [23, Theorem 3.3]). However, half-space Mac-
donald processes do not correspond to any Pfaffian point process.

Definition 2.6
We define the ascending half-space Macdonald process as the half-space Macdonald
process defined by specializations3 ��1 D � � � D �

�
n D∅ and �Ci D .ai / (specialization
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into a single variable ai ), where the variables .a1; : : : ; an/ are in .0; 1/. This process
is supported on sequences of interlaced partitions

�.1/ 	 �.2/ 	 � � � 	 �.n/:

In the rest of this section, we focus on the marginal of �.n/ for the ascending
half-space Macdonald process, that is, the half-space Macdonald measure with spe-
cializations

�C D .a1; : : : ; an/; �� D∅:

We will need one more identity, first conjectured in [11] and proved in [48].

PROPOSITION 2.7 ([48, Proposition 6.26])
For an even integer n and any u 2C, Macdonald symmetric polynomials satisfy

1

ˆ.x/

X
�0 even

Y
i even

.1� uq�i tn�i / bel
�P�.x1; : : : ; xn/

D
PfŒ xi�xj

1�xixj
� u

xi�xj
1�txixj

�

PfŒ xi�xj
1�xixj

�
: (2.12)

The most striking fact in the above identity (2.12) is that the right-hand side does
not depend on q. This yields identities that relate half-space Macdonald measures for
different values of q. Consider a set of parameters a1; : : : ; an 2 .0; 1/ for n even, and
let us denote by PSM and EPSM the half-space Macdonald measure and expectation
associated with parameters ai in the Schur case q D t . It is important to note that
PSM and EPSM do not depend on the parameter q D t . In this context, (2.12) implies
that, for any q; t 2 Œ0; 1/ and u 2C,

EPMM
hY
i even

.1� uq�i tn�i /
i
D EPSM

hY
i even

.1� ut�iCn�i /
i
: (2.13)

Letting uD�tx and dividing both sides by .�txI t2/1, we rewrite this identity as

EPMM
h Y
i22Z�0

�1C q�n�i txCi
1C txCi

�i
D EPSM

h Y
i22Z�0

�1C txC�n�iCi
1C txCi

�i
; (2.14)

for any x 2R, with the convention that ��m DC1 for m> 0.

3We could allow ��n to be arbitrary to study more general boundary conditions.
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Remark 2.8
One could prove using (2.14) a half-space analogue of [14, Corollary 5.9]: the distri-
bution of the length of a half-space Macdonald random partition is asymptotically the
same whatever the values of q and t , in the sense of asymptotic equivalence as in [14,
Definition 5.2]. We do not need this result for the present article.

3. Fredholm Pfaffian formulas

3.1. Notation
The Pfaffian of a skew-symmetric 2k � 2k matrix A is defined by

Pf.A/D
1

2kkŠ

X
	2S2k

sgn.�/a	.1/	.2/a	.3/	.4/ � � �a	.2k�1/	.2k/; (3.1)

where sgn.�/ is the signature of the permutation � . Let .X;�/ be a measure space.
For a 2� 2 matrix-valued skew-symmetric kernel

K.x; y/D
�

K11.x; y/ K12.x; y/
K21.x; y/ K22.x; y/

�
; x; y 2X;

we define the Fredholm Pfaffian (introduced in [47, Section 8]) by

PfŒJCK�L2.X;�/

D 1C

1X
kD1

1

kŠ

Z
X

� � �

Z
X

Pf
�
K.xi ; xj /

�k
i;jD1

d�˝k.x1; : : : ; xk/; (3.2)

provided that the series converges, where �˝k is the product measure. The kernel J
is defined by

J.x; y/D ıxDy

�
0 1

�1 0

�
:

For a function f WX!R, we define

PfŒJC f �K�L2.X;�/ WD PfŒJCK�L2.X;f�/

D 1C

1X
kD1

1

kŠ

Z
X

� � �

Z
X

� kY
iD1

f.xi /
�

� Pf
�
K.xi ; xj /

�k
i;jD1

d�˝k.x1; : : : ; xk/;

provided that the series converge. We will use the notation PfŒJC K�L2.X/ when X

is a subset of Rn equipped with Lebesgue measure, and we will use the notation
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PfŒJCK�`2.X/ when X is a discrete set equipped with the counting measure. In order
to study limits of Fredholm Pfaffians, we will need that the expansion in (3.2) is
absolutely convergent, and for that we will use Hadamard’s bound in the form of the
next lemma.

LEMMA 3.1 ([5, Lemma 2.5])
Let K.x; y/ be a 2� 2 matrix-valued skew-symmetric kernel. Assume that there exist
constant C > 0 and constants 0� a < b such that, for x;y 2X
R,ˇ̌

K11.x; y/
ˇ̌
< CeaxCay ;ˇ̌

K12.x; y/
ˇ̌
D
ˇ̌
K21.y; x/

ˇ̌
<Ceax�by ;ˇ̌

K22.x; y/
ˇ̌
< Ce�bx�by :

Then, for all k 2 Z>0, x1; : : : ; xk 2X,

ˇ̌
Pf
�
K.xi ; xj /

�k
i;jD1

ˇ̌
< .2k/k=2C k

kY
iD1

e�.b�a/xi :

3.2. Pfaffian Schur measure correlation kernel
Consider a Pfaffian Schur measure with parameters .a1; : : : ; an/ 2 .0; 1/n, that is, a
measure of the form

PSM.�/D
Y
i<j

.1� aiaj /s�.a1; : : : ; an/1�0 even; � 2Y:

We know from [23, Theorem 3.3] that the random point configuration ƒ WD ¹�i �
iºi2Z>0 generates a Pfaffian point process on Z. This means that, for y1; : : : ; yk 2 Z,

P
�
¹y1; : : : ; ykº 
ƒ

�
D Pf

�
K.yi ; yj /

	k
i;jD1

;

where K.u; v/ is a 2� 2 matrix-valued skew-symmetric kernel

K.u; v/D
�

K11.u; v/ K12.u; v/
K21.u; v/ K22.u; v/

�
; u; v 2 Z;

with K12 D�.K21/T . We refer to [5, Section 4.1] for general background on Pfaffian
point processes. For the Pfaffian Schur process, the kernel is (see [23, Theorem 3.3])

KSchur
11 .u; v/D

1

.2i�/2

“
z �w

.z2 � 1/.w2 � 1/.zw � 1/

�

nY
jD1

� .z � aj /.w � aj /

zw.1� aj z/.1� ajw/

�dz

zu
dw

wv
;
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KSchur
12 .u; v/D

1

.2i�/2

“
z �w

.z2 � 1/w.zw � 1/

�

nY
jD1

� .z � aj /.w � aj /

zw.1� aj z/.1� ajw/

�dz

zu
dw

wv
;

KSchur
22 .u; v/D

1

.2i�/2

“
z �w

zw.zw � 1/

�

nY
jD1

� .z � aj /.w � aj /

zw.1� aj z/.1� ajw/

�dz

zu
dw

wv
;

where for KSchur
11 and KSchur

12 , the contours for z and w are positively oriented cir-
cles around 0 with radius between 1 and min¹a�1j º (so that, in particular, jzwj > 1
along these contours), whereas for KSchur

22 , the contours for z and w are positively
oriented circles around 0 with radius smaller than 1 (so that jzwj < 1 along these
contours).

Note that �`.�/ is the leftmost hole in the point process ƒ (or leftmost point in
ƒ� WD Znƒ). The correlation kernel ofƒ� is K0 D J�KSchur. Indeed, the probability
that a set Y D ¹y1; : : : ; ykº is included in ƒ� is also the probability that there are no
points of ƒ in Y , that is, the gap probability, which is given by PfŒJ � KSchur�`2.Y /.
For a finite set Y , the Fredholm Pfaffian on `2.Y / is simply the Pfaffian of the matrix
indexed by elements of Y , that is, PfŒK0.yi ; yj /�ki;jD1, such that the correlation kernel

of the point process ƒ� is K0 as claimed. In particular,

P
�
�`.�/ > x

�
D PfŒKSchur�`2.�1;x
 D PfŒJ�K0�`2.�1;x
:

Shifting the point process by n, we obtain that the correlation kernel of nCƒ� is K�,
where

K�
11.u; v/D

1

.2i�/2

“
w � z

.z2 � 1/.w2 � 1/.zw � 1/

�

nY
jD1

� .z � aj /.w � aj /

.1� aj z/.1� ajw/

�dz

zu
dw

wv
; (3.3a)

K�
12.u; v/D 1uDv C

1

.2i�/2

“
w � z

.z2 � 1/w.zw � 1/

�

nY
jD1

� .z � aj /.w � aj /

.1� aj z/.1� ajw/

�dz

zu
dw

wv
; (3.3b)
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K�
22.u; v/D

1

.2i�/2

“
w � z

zw.zw � 1/

�

nY
jD1

� .z � aj /.w � aj /

.1� aj z/.1� ajw/

�dz

zu
dw

wv
; (3.3c)

where the contours are as before. The point process n C ƒ� is almost surely sup-
ported on the nonnegative integers, so that one can compute the Fredholm Pfaffian on
`2Œ0; x� instead of `2.�1; x�. Thus, by [47, Theorem 8.2], one may write that, for
any function f W Z�0!R,

EPSM
h Y
�2nCƒ�

�
1C f.�/

�i
D PfŒJC f �K��`2.Z�0/; (3.4)

whenever both sides admit absolutely convergent expansions. In particular,

PSM
�
n� `.�/ > x

�
D PfŒJ�K��`2Œ0;x
:

It will be more convenient to work with integral formulas where the contours are
all circles with radius less than 1 (because we will later let aj � a go to 1 and there
is a pole at 1=a). When deforming the contours inside the unit circle, we pick some
residues which yield the following formulas.

LEMMA 3.2
Denoting f .z/D

Qn
jD1

z�aj
1�aj z

, for n even and u;v 2 Z�0, we have that

K�
11.u; v/D

1

.2i�/2

“
.w � z/f .z/f .w/

.z2 � 1/.w2 � 1/.zw � 1/

dz

zu
dw

wv

C
1

2i�

Z
f .w/

w2 � 1

dw

wv
1u22Z

�
1

2i�

Z
f .w/

w2 � 1

dw

wu
1v22ZC r.u; v/;

K�
12.u; v/D

1

.2i�/2

“
.w � z/f .z/f .w/

.z2 � 1/w.zw � 1/

dz

zu
dw

wv

C
1

2i�

Z
f .z/

zvC1
dz 1u22Z;

K�
22.u; v/D

1

.2i�/2

“
.w � z/f .z/f .w/

zw.zw � 1/

dz

zu
dw

wv
;

where the contours are all positively oriented circles around 0 with radius smaller
than 1, and
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r.u; v/D
1

4

�
.�1/u � .�1/v

�
C
1

2
sgn.v � u/1v�u22ZC1; (3.5)

with the convention that

sgn.x/D

8̂̂
<
ˆ̂:
1 if x > 0;

�1 if x < 0;

0 if x D 0:

Proof
Let C>1 be a contour defined by a (positively oriented) circle of radius larger than
1 but arbitrarily close to 1, let C<1 be a contour with radius smaller than 1 but arbi-
trarily close to 1, and let C�1 be a contour with radius arbitrarily close to 0. In the
formula for K�

11.u; v/ in (3.3a), the integration variables z andw are such that jzj; jwj;
jzwj> 1. We may first deform the z-contour from C>1 to C�1, thus picking residues
at z D˙1 and z D 1=w. This yields

K�
11.u; v/D

1

.2i�/2

Z
C>1

dw
Z
C�1

dz
.w � z/f .z/f .w/

.z2 � 1/.w2 � 1/.zw � 1/

1

zu
1

wv

C
1

2i�

Z
C>1

dw
1

2.w2 � 1/

f .w/

wv

�
f .1/C .�1/uf .�1/

�

C

Z
C>1

dw
1

1�w2
1

wv�u
:

Evaluating the residues at ˙1 in the second integral and taking into account that n is
even so that f .1/D f .�1/D 1, we find

K�
11.u; v/D

1

.2i�/2

Z
C>1

dw
Z
C�1

dz
.w � z/f .z/f .w/

.z2 � 1/.w2 � 1/.zw � 1/

1

zu
1

wv

C
1

2i�

Z
C�1

dw
1

w2 � 1

f .w/

wv
1u22ZC r.u; v/;

where r.u; v/ is defined in (3.5). This term r.u; v/ corresponds to taking residues in
the variable z and then in the variables w in (3.3a) for values of .z;w/ equal to

.1=w;1/; .1=w;�1/; .1=w;0/; .1; 1/;

.1;�1/; .�1; 1/; and .�1;�1/:

One readily checks that the sum of all these residues equals r.u; v/.
Deforming the contour for the variable w in the first integral from C>1 to C�1

we pick residues at ˙1, which yield
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K�
11.u; v/D

1

.2i�/2

Z
C�1

dw
Z
C�1

dz
.w � z/f .z/f .w/

.z2 � 1/.w2 � 1/.zw � 1/

1

zu
1

wv

�
1

2i�

Z
C�1

dw
1

w2 � 1

f .w/

wu
1v22Z

C
1

2i�

Z
C�1

dw
1

w2 � 1

f .w/

wv
1u22ZC r.u; v/:

In the formula for K�
12.u; v/ in (3.3b), we may deform the contour for w to

C<1 without picking any residue. Then, deforming the contour for z to C<1 we pick
residues at z D 1=w and z D˙1, which yield

K�
12.u; v/D 1uDv C

1

.2i�/2

Z
C<1

dw
Z
C<1

dz
.w � z/f .z/f .w/

.z2 � 1/w.zw � 1/

dz

zu
dw

wv

C
1

2i�

Z
C<1

dw
�1

wv�uC1
C

1

2i�

Z
C<1

f .w/

wvC1
1u22Z;

which simplifies to

K�
12.u; v/D

1

.2i�/2

Z
C<1

dw
Z
C<1

dz
.w � z/f .z/f .w/

.z2 � 1/w.zw � 1/

dz

zu
dw

wv

C
1

2i�

Z
C<1

f .w/

wvC1
1u22Z:

3.3. Hall–Littlewood observables
We can use the relation between Pfaffian Schur and Hall–Littlewood measure (2.13)
to express certain observables of the latter using the correlation kernel of the former.

PROPOSITION 3.3
For any x 2R, n 2 2Z>0, and any parameters .a1; : : : ; an/ 2 .0; 1/n,

EPHL
h 1

.�txCn�`.�/; t2/1

i
D PfŒJC fx �K��`2.Z�0/; (3.6)

where

fx.j /D
.�txCjC1I t2/1

.�txCj I t2/1
� 1: (3.7)

Before proving this proposition, it is worth noting that fx.j / 2 .�1; 0/ and fx.j /
is increasing in x and j . This will be of importance later when we consider scaling
limits.
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Proof
Letting uD�tx and q D 0 in identity (2.13) implies that

EPHL
h Y
i22Z\Œ0;n�`.�/�2


.1C txCi /
i
D EPSM

h Y
i22Z\Œ0;n


.1C txC�i�iCn/
i
: (3.8)

The left-hand side of (3.8) can be rewritten as

.�txI t2/1EPHL
h 1

.�txCn�`.�/; t2/1

i
;

and the right-hand side can be rewritten as

EPSM
hY
j2J

.1C txCj /
i
;

where J D ¹�i � i C nºi22Z[Œ0;n
. Since �1 D �2; �3 D �4; : : : under the Pfaffian
Schur measure that we consider, the set J is characterized by J t .J C 1/D .nC
ƒ/\Z�0, where t denotes the union of disjoint sets andƒD ¹�i � iºi2Z>0 as before.
Let us call P.x/ the product inside the last expectation. We have

P.x/P.xC 1/D
Y

j2.nCƒ/\Z�0

.1C txCj /DWN.x/:

This implies that

P.x/D
N.x/N.xC 2/N.xC 4/ � � �

N.xC 1/N.xC 3/N.xC 5/ � � �
D

Y
j2.nCƒ/\Z�0

.�txCj I t2/1

.�txCjC1I t2/1
:

Thus, we have shown that

EPSM
h Y
i22Z\Œ0;n


.1C txC�i�iCn/
i

D EPSM
h Y
j2.nCƒ/\Z�0

.�txCj I t2/1

.�txCjC1I t2/1

i
: (3.9)

Note the simplification

Y
j2Z�0

.�txCj I t2/1

.�txCjC1I t2/1
D .�txI t2/1;

so that dividing both sides of (3.9) by that quantity gives
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1

.�txI t2/1
EPSM

h Y
i22Z\Œ0;n


.1C txC�i�iCn/
i

D EPSM
h Y
j2nCƒ�

.�txCjC1I t2/1

.�txCj I t2/1

i
:

At this point we have shown the following relation between observables of the half-
space Schur and Hall–Littlewood processes:

EPHL
h 1

.�txCn�`.�/; t2/1

i
D EPSM

h Y
j2nCƒ�

.�txCjC1I t2/1

.�txCj I t2/1

i
:

To complete the proof, we note that the multiplicative functional of the Pfaffian Schur
measure on the right-hand side can be computed using (3.4) as in the statement of the
proposition.

4. Half-space Hall–Littlewood measures and stochastic six-vertex model in a
half-quadrant

We will define a measure on lattice paths as in Figure 2. There are two types of
vertices: bulk and corner vertices.

4.1. Definition of the model
Consider the square lattice. A bulk vertex is the crossing of a horizontal line and
a vertical line, as well as the four edges which surround the point of intersection.
We refer to the four edges which constitute a vertex as its north, east, south, and
west edges, following standard compass orientation. Bulk vertices have the following
generic form:

i1 j1

i2

j2

ay

ax

; ¹i1; i2; j1; j2º 2 ¹0; 1º: (4.1)

The four indices placed around the vertex represent its edge states. We refer to i1; i2
as incoming states, whereas j1; j2 are called outgoing. These indices take values in
¹0; 1º D ¹empty;occupiedº. Whenever an edge state is equal to 1 we draw an up-
oriented or right-oriented path on that edge, but leave the edge empty if its state
is equal to 0. A vertex centered at position .x; y/ also has two parameters ax ; ay
associated to it and is assigned a Boltzmann weight that depends on its edge states and
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which is a function of the product axay . Of the 16 possible edge state configurations,
only six receive nonzero Boltzmann weights: these are precisely the six that exhibit
conservation of paths passing through the vertex. We list their weights below:

ay

ax

ay

ax

ay

ax

ay

ax

ay

ax

ay

ax

1 1
1� axay

1� taxay

t .1� axay/

1� taxay

.1� t /axay

1� taxay

1� t

1� taxay
(4.2)

The Boltzmann weights are stochastic in the following sense.

PROPOSITION 4.1 (Stochasticity)
Let waxay .i1; i2Ij1; j2/ be the weight of the vertex in (4.1). The parameters ax , ay ,
t can be chosen such that 0�waxay .i1; i2Ij1; j2/� 1 for all ¹i1; i2; j1; j2º, and for
any fixed i1, i2, we have X

j1;j22¹0;1º

waxay .i1; i2Ij1; j2/� 1: (4.3)

Proof
The first property holds if we assume that ax , ay , t are real and satisfy 0 � ax ;
ay ; t < 1. The four cases ¹i1; i2º D ¹0; 0º; ¹1; 1º; ¹0; 1º; ¹1; 0º of (4.3) can be easily
checked, using the vertex weights (4.2).

A corner vertex is a vertex formed by the union of a north and west edge (with
the omission of south and east edges). They have the following form:

i

j

ax

ax

; ¹i; j º 2 ¹0; 1º: (4.4)

There are two types of corner vertices to which we assign Boltzmann weight 1: those
in which a path enters from the left and is absorbed at the center of the vertex, with
no path emerging from the top; and those in which no path enters from the left, with
a path being created at the center of the vertex and then emerging from the top. The
remaining two corner vertex configurations are disallowed and receive a weight of 0:
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ax

ax

ax

ax

ax

ax

ax

ax

1 1 0 0

(4.5)

In contrast to bulk vertices, the Boltzmann weight assigned to a corner vertex is inde-
pendent of the parameter ax which is attached to it.

The Boltzmann weights are chosen as in (4.2) and (4.5) because they satisfy
the Yang–Baxter equation (bulk vertices) and a boundary Yang–Baxter or reflection
equation (corner vertices).

PROPOSITION 4.2 (Yang–Baxter equation)
For any fixed 0� i1; i2; i3; j1; j2; j3 � 1, we haveX
0�k1;k2;k3�1

waz=ay .i1; i2Ik1; k2/waxaz .k1; i3Ij1; k3/waxay .k2; k3Ij2; j3/

D
X

0�k1;k2;k3�1

waxay .i2; i3Ik2; k3/waxaz .i1; k3Ik1; j3/waz=ay .k1; k2Ij1; j2/;

where ax , ay , az are three arbitrary parameters. (waz=ay is obtained from waxay by
substituting az=ay in place of axay in (4.2).)

Proof
This is a classical result in statistical mechanics (see [9]). It can also be checked by
direct computation, although in this case there are 26 individual equations to verify.

PROPOSITION 4.3 (Reflection equation)
Let the weight of the corner vertex in (4.4) be denoted by c.i Ij /D ıi;1�j . For any
fixed 0� i1; i2; j1; j2 � 1, we haveX
0�k1;k2;`1;`2�1

way=ax .i1; i2Ik1; k2/c.k1I`1/waxay .k2; `1I`2; j1/c.`2Ij2/

D
X

0�k1;k2;`1;`2�1

c.i2Ik2/waxay .i1; k2Ik1; `2/c.k1I`1/way=ax .`2; `1Ij2; j1/;

(4.6)

where ax ; ay are two arbitrary parameters. (way=ax is obtained from waxay by sub-
stituting ay=ax in place of axay in (4.2).)
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Proof
This result is due to Kuperberg [40], [52]. One can eliminate redundant sums in (4.6),
using the fact that c.i Ij /D ıi;1�j . This givesX

0�k1;k2�1

way=ax .i1; i2Ik1; k2/waxay .k2; 1� k1I1� j2; j1/

D
X

0�`1;`2�1

waxay .i1; 1� i2I1� `1; `2/way=ax .`2; `1Ij2; j1/;

which can then be checked for the 16 possible values of ¹i1; i;2 ; j1; j2º.

Propositions 4.2 and 4.3 are the reasons behind the integrability of the stochastic
six-vertex model and its symmetries, and this is why we mention them. We will not
use Propositions 4.2 and 4.3 explicitly in the following, because these results are
superseded by Propositions 4.8 and 4.10 below, which apply to a slightly more general
model.

4.2. Markov process on the half-quadrant
Let us consider the following subset of Z2:®

.x; y/ 2 Z2>0 W x � y
¯
:

We refer to this as the half-quadrant. There is a bulk vertex at each point .x; y/ 2 Z2>0
such that x < y, whereas the points .x; x/ 2 Z2>0 are occupied by corner vertices (see
the left panel of Figure 4). We now study a discrete-time Markov process of up-right
paths on the half-quadrant. It is defined inductively as follows.
� Let there be an incoming path on the west edge of each vertex at .1; j /, j 2

Z�1.
� Assume that, for some n � 2, the incoming edge states of the vertices

¹.x; y/ºxCyDn are all determined. Choose the outgoing edge states of these
vertices by sampling from the Bernoulli distribution imposed by the vertex
weights (4.2) and (4.5):

P

� �
D
1� axay

1� taxay
; P

� �
D
.1� t /axay

1� taxay
;

P

� �
D
t .1� axay/

1� taxay
; P

� �
D

1� t

1� taxay
:

When n is even, choose the configuration of the corner vertex according to

P

� �
D P

� �
D 1; P

� �
D P

� �
D 0:

This determines the incoming states of the vertices ¹.x; y/ºxCyDnC1.
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1

1 2

2 3

3 4

4 5

5 6

6 7

7

1

1 2

2 3

3 4

4 5

5 6

6 7

7

Figure 4. Left: The half-quadrant. Right: Sample configuration C of the stochastic six-vertex
model in the half-quadrant, for which h.7; 7/D 4. The seventh path string is given by

�7.C/D .1; 1; 1; 0; 1; 0; 0/.

� One can repeat this procedure to fill out the whole of the half-quadrant by
induction on n.

This Markovian procedure defines the stochastic six-vertex model on the half-
quadrant. Equivalently, one can think of this procedure as inducing a probability mea-
sure on random configurations of paths in the half-quadrant: the probability of the
cylindric set of the path that starts off some fixed finite configuration near the origin
is just the product of the Boltzmann weights of the vertices in that configuration. The
latter point of view will be especially useful in what follows.

4.3. Height function and path-string distribution
The height function h is a random variable defined on the vertices of the half-quadrant.
For all .x; y/ such that x � y, we define

h.x; y/D number of paths that cross

one of the vertices .i; y/ for 1� i � x: (4.7)

More generally, we will be interested in the distribution of up-right paths which exit
to the north of the nth horizontal gridline, for some n � 1. This collection of paths
forms a random binary string .s1; : : : ; sn/, where each sk equals 1 if the north edge
of the vertex .k; n/ is occupied and equals 0 otherwise. We refer to it as the nth path
string. If C is a configuration of the stochastic six-vertex model on the half-quadrant,
then we let �n.C/ denote its nth path string (see the right panel of Figure 3). The
problem of finding the distribution of �n.C/ is equivalent to calculating the partition
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functions on triangles in the half-quadrant

P
�
�n.C/D ¹s1; : : : ; snº

	
D

s1

1

1

s2

2

2

s3

3

3

s4

4

4

s5

5

5

where summation is implicit over all internal edges in the lattice shown above.
When one knows �n.C/D ¹s1; : : : ; snº, one can clearly reconstruct the value of

the height function everywhere along the nth horizontal gridline, using the fact that

h.x;n/D

xX
kD1

sk : (4.8)

Now we state the main result of this section.

THEOREM 4.4
Let �.1/ 
 � � � 
 �.n/ be a sequence of partitions in the ascending half-space Hall–
Littlewood process (i.e., the process of Definition 2.6, at q D 0), with associated prob-
ability measure

PHL.∅D �.0/ 
 �.1/ 
 � � � 
 �.n/ D �/

D
P�.1/=�.0/.a1/ � � �P�.n/=�.n�1/.an/

ˆ.a1; : : : ; an/
bel
�1�0 even: (4.9)

Let Œ�.1/ 
 � � � 
 �.n/� encode the support of the sequence �.1/ 
 � � � 
 �.n/, defined
as the vector obtained by taking the difference in lengths of adjacent partitions:

Œ�.1/ 
 � � � 
 �.n/� WD
�
`.�.i//� `.�.i�1//

�
1�i�n

:

The following equivalence of distributions holds:

PHL
�
Œ�.1/ 
 � � � 
 �.n/�D .s1; : : : ; sn/

�
D P

�
�n.C/D .s1; : : : ; sn/

	
; (4.10)

where the right-hand side is the path-string distribution in the stochastic six-vertex
model.



STOCHASTIC SIX-VERTEX MODEL 29

In view of (4.8), this theorem straight away yields the following corollary.

COROLLARY 4.5
Let .`.�.i///1�i�n be the lengths of partitions in an ascending half-space Hall–
Littlewood process (4.9), and let .h.i; n//1�i�n be the values of the height function
along the nth horizontal line in the half-space six-vertex model. These two random
vectors are equally distributed:

PHL
��
`.�.i//

�
1�i�n

D .ki /1�i�n
�
D P

��
h.i; n/

�
1�i�n

D .ki /1�i�n
�
:

The rest of the section is devoted to the proof of Theorem 4.4. It proceeds along
parallel lines to a proof in [16], relating the distribution of lengths of partitions in
an (ordinary) ascending Hall–Littlewood process to the distribution of the six-vertex
model height function in the full quadrant Z2�0. Both the proof in [16] and the proof
in the present article are extensions of ideas that were developed in [63], where inte-
grability in a model of t -deformed bosons was used to prove refined Cauchy- and
Littlewood-type summation identities involving Hall–Littlewood polynomials. Simi-
lar ideas in the context of slightly more general, higher-spin, six-vertex models were
developed independently in [13] and [22].

Remark 4.6
One could prove a slightly more general version of Theorem 4.4 relating a not nec-
essarily ascending half-space Hall–Littlewood process with the height distribution in
a six-vertex model in a more complicated domain (jagged domain) following along
the same lines as in the proof of [16, Theorem 5.6]. This is not useful for our present
purposes, and we do not pursue it.

4.4. An integrable model of t -bosons
Following [16] and [63], we consider another integrable model of up-right paths, in
which horizontal edges of the lattice can be occupied by at most one path, but no
restriction is imposed on the number of paths that traverse a vertical edge. Assuming
conservation of lattice paths through a vertex, four types of vertices are possible. We
indicate these below, along with their associated Boltzmann weights:

m

m

m

m� 1

m

mC 1

m

m

1 a .1� tmC1/ a

(4.11)
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Herem denotes the number of incoming vertical arrows, a is the horizontal parameter
associated to the vertex, and t is a global parameter of the model. The vertex model
that comes from such a construction is called the t -boson model, and we will call
vertices with such weights bosonic vertices. It is ideal for our purposes, since, on the
one hand, the wave functions of the t -boson model are known to be Hall–Littlewood
polynomials (see [61]), while on the other its integrability is intrinsically related to
the stochastic six-vertex model. It is therefore a useful tool for bridging the two sides
of (4.10), which we wish to prove.

THEOREM 4.7
For any fixed 0� i1; i2; j1; j2 � 1 and m;n 2 Z�0, the Yang–Baxter equation holds:

X
k1;k22¹0;1º

1X
pD0

i1

k1
i2

k2
j2

j1

m

p

n

b�1

a

D
X

k1;k22¹0;1º

1X
pD0

k1

j1
k2

j2i1

i2

m

p

n

a

b�1

(4.12)

where the spectral parameters of the bosonic vertices are a and b�1 as indicated on
the picture, and the diagonally attached vertices are vertices in the stochastic six-
vertex model of (4.2) with parameters ax D a and ay D b, rotated clockwise by 45ı.

Proof
This is by direct computation, since there are only 16 relations to verify (all possible
choices of i1, i2, j1, j2), treatingm and n as arbitrary nonnegative integers. The sums
over p are finite and easily taken, since the Boltzmann weight of the configuration
(either on the left- or right-hand side) vanishes unless jm� pj; jn� pj � 1.

It is important to introduce an alternative normalization of the vertex weights
(4.11), obtained by sending a! b�1 and then simply multiplying the weights of all
vertices by b:
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m

m

m

m� 1

m

mC 1

m

m

b 1 b.1� tmC1/ 1

(4.13)

We use a dark gray background to indicate that this normalization is employed, rather
than that of (4.11).4

4.5. Row operators and their exchange relations
For all integers i � 1, let Vi be an infinite-dimensional vector space with basis vectors
¹jmiiºm2Z�0 . Its dual space V �i is spanned by ¹hmjiºm2Z�0 , where hmji jnii D ım;n
for all m;n 2 Z�0. Further, we let V1:::L denote the tensor product

NL
iD1 Vi . Joining

L of the vertices (4.11) with common spectral parameter a horizontally (likewise for
the vertices (4.13)) and summing over all possible states on internal horizontal edges,
we obtain a row vertex. We denote the Boltzmann weight of a row vertex as shown
below:

wa

0
BBBB@ i j

mL

nL

� � �

� � �

m1

n1

1
CCCCA

DWwa
�
i; ¹m1; : : : ;mLº

ˇ̌
j; ¹n1; : : : ; nLº

�
; (4.14)

wb

0
BBBB@ i j

mL

nL

� � �

� � �

m1

n1

1
CCCCA

DW Nwb
�
i; ¹m1; : : : ;mLº

ˇ̌
j; ¹n1; : : : ; nLº

�
: (4.15)

We then construct row operators that act linearly on V1:::L as follows:

Ta.i jj / W jn1i1˝ � � � ˝ jnLiL

7!
X

m1;:::;mL�0

wa
�
i; ¹m1; : : : ;mLº

ˇ̌
j; ¹n1; : : : ; nLº

�
jm1i1˝ � � � ˝ jmLiL;

4Diagrams and figures in color, in which red is used instead of dark gray, are included in the screen-enhanced
version of this article at https://doi.org/10.1215/00127094-2018-0019.

https://doi.org/10.1215/00127094-2018-0019
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NTb.i jj / W jn1i1˝ � � � ˝ jnLiL

7!
X

m1;:::;mL�0

Nwb
�
i; ¹m1; : : : ;mLº

ˇ̌
j; ¹n1; : : : ; nLº

�
jm1i1˝ � � � ˝ jmLiL:

There are in total four such operators, corresponding to all possible values of 0 �
i; j � 1. It is more conventional to label them alphabetically, by writing�

Ta.0j0/ Ta.0j1/

Ta.1j0/ Ta.1j1/

�
DW

�
AL.a/ BL.a/

CL.a/ DL.a/

�
;

�
NTb.0j0/ NTb.0j1/
NTb.1j0/ NTb.1j1/

�
DW

�
NAL.b/ NBL.b/
NCL.b/ NDL.b/

�
:

(4.16)

Now consider the limit L!1, assuming that jaj; jbj < 1. In this limit, Ta.i jj /
only remains finite when i D 0. Indeed, when L tends to infinity, since only finitely
many mi ’s and mj ’s will remain nonzero, one finds that Ta.1jj / produces infinitely
many of the last type of vertex appearing in (4.11) with mD 0, whose weight is a,
giving the row operator a vanishingly small Boltzmann weight. Similarly, NTb.i jj /
only remains finite when i D 1. As for the cases which have a nonvanishing limit, we
find it convenient to define

A.a/ WD lim
L!1

AL.a/; B.a/ WD lim
L!1

BL.a/;

NC.b/ WD lim
L!1

NCL.b/; ND.b/ WD lim
L!1

NDL.b/:

PROPOSITION 4.8
Let a; b be two complex parameters satisfying jabj< 1. The following exchange rela-
tions hold:

.1� ab/ NC.b/A.a/D .1� tab/A.a/ NC.b/;

.1� ab/ NC.b/B.a/D t .1� ab/B.a/ NC.b/C ab.1� t /A.a/ ND.b/;

.1� ab/ ND.b/A.a/D .1� ab/A.a/ ND.b/C .1� t /B.a/ NC.b/;

.1� ab/ ND.b/B.a/D .1� tab/B.a/ ND.b/:

(4.17)

Graphically, we can write all of these equations in the form

� 1� ab
1� tab

� X
p1;p2;:::�0

a j2

b j1

m1

p1

n1

m2

p2

n2

� � � � � �
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D
X

k1;k22¹0;1º

X
p1;p2;:::�0

b

a

k1

j1
k2

j2

m1

p1

n1

m2

p2

n2

� � � � � � (4.18)

where bosonic vertices on the same row have the same spectral parameter (as indi-
cated on the left of each row). The four possibilities in (4.17) are given by the four
possible choices of j1; j2 2 ¹0; 1º in (4.18).

Proof
These identities are all relations in the Yang–Baxter algebra satisfied by the matrix
entries Ta.i jj / and NTa.i jj /, in the limitL!1, assuming the parameters a; b satisfy
jabj< 1. For more details of their derivation, using the same notation as in the present
article, see [16].

4.6. A boundary relation
In this section we note another property of the t -boson model, namely, a reflection
equation that it satisfies with respect to a particular choice of boundary (see [63]).

PROPOSITION 4.9
Let n � 0 be any nonnegative integer, and fix i; j 2 ¹0; 1º. The following identity
holds:

1X
mD0

mY
kD1

.1� t2k�1/�wa

0
BBBBB@

2m

n

i j


1
CCCCCA

D

1X
mD0

mY
kD1

.1� t2k�1/�wa

0
BBBBB@

2m

n

i j


1
CCCCCA ; (4.19)

where the dot has a path-annihilating/path-creating property: if a rightward-pointing
path approaches the dot from its left, no path will emerge to the right of the dot.
(Similarly, if no path approaches the dot from its left, a rightward-pointing path will
emerge to the right of the dot.)
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Proof
We need to check the four possible values for the pair .i; j /. In each case, the value
of 2m at the base of the vertex is completely determined by path conservation, so the
infinite sums over m trivialize. Below we list the four cases.

Case 1: i D j D 0. On the left-hand side of (4.19), the vertex vanishes unless 2mC
1D n. On the right-hand side, the vertex vanishes unless 2mD nC 1. In either case,
we see that n must be odd; otherwise, both sides vanish identically. When n is odd,
we have

.n�1/=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

n� 1

n

0 0


1
CCCCCA

D

.nC1/=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

nC 1

n

0 0


1
CCCCCA ;

with the equality obviously holding thanks to the vertex weights (4.11) and (4.13).

Case 2: i D 0, j D 1. By the conservation of paths, the left- and right-hand sides of
(4.19) vanish unless 2mD n. The equation then reads

n=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

n

n

0 1


1
CCCCCA

D

n=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

n

n

0 1


1
CCCCCA ;

and the equality of the two sides is immediate, since both vertices have weight equal
to a.

Case 3: i D 1, j D 0. Similarly to Case 2, one finds that the left- and right-hand sides
of (4.19) vanish unless 2mD n. This yields the identity



STOCHASTIC SIX-VERTEX MODEL 35

n=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

n

n

1 0


1
CCCCCA

D

n=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

n

n

1 0


1
CCCCCA ;

which holds because the vertices on both sides have Boltzmann weight equal to 1.

Case 4: i D j D 1. This case is analogous to Case 1. Again we find that both sides of
(4.19) vanish unless n is odd, and in the situation where n is odd, one has

.nC1/=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

nC 1

n

1 1


1
CCCCCA

D

.n�1/=2Y
kD1

.1� t2k�1/�wa

0
BBBBB@

n� 1

n

1 1


1
CCCCCA ;

where the equality can be easily checked using the Boltzmann weights (4.11) and
(4.13).

For a partition �D 1m12m2 � � � , we introduce the shorthand notation

h�j D

1O
iD1

hmi ji ; j�i D

1O
iD1

jmi ii :

Proposition 4.9 is a local relation on t -boson vertices, which can be extended to a
global relation in the following way.

PROPOSITION 4.10
Define a boundary covector
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hevj WD
X
�0 even

bel
� h�j D

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/�

1O
iD1

h2mi ji ;

where the sum is over partitions �D 12m122m2 � � � so that only finitely manymj ’s are

nonzero. We will use the notation
�P

to denote summations over infinite sequences
of nonnegative integers, finitely many of which are nonzero. The boundary covector
satisfies the following reflection equations:

hevjA.a/D hevj ND.a/; hevjB.a/D hevj NC.a/: (4.20)

Proof
We need to check all possible components of (4.20), by projecting onto the arbitrary
state jni WD

N1
iD1 jni ii . Let us first consider the proposed equation hevjA.a/jni D

hevj ND.a/jni, which when expressed pictorially reads

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/

�wa

0
BBBBBB@ 1 
 0

2m1

n1

2m2

n2

2m3

n3

� � �

� � �

� � �

� � �

1
CCCCCCA

D

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/

�wa

0
BBBBBB@ 1 
 0

2m1

n1

2m2

n2

2m3

n3

� � �

� � �

� � �

� � �
1
CCCCCCA
: (4.21)

This relation is now seen to be true by infinitely many applications of (4.19) (there
will be finitely many nontrivial ones as only finitely manymi ’s and nj ’s are nonzero),
transferring the dot at the left edge of the lattice all the way to the right edge. The proof
of the relation hevjB.a/jni D hevj NC.a/jni follows by the same argument; one needs
only to replace the state 0 on the right edge of the partition functions in (4.21) by the
state 1.
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4.7. One-variable skew Hall–Littlewood polynomials
Comparing the Boltzmann weights (4.11) and (4.13) used in the row-to-row operators
with the explicit form of the one-variable skew Hall–Littlewood polynomials, one
obtains the following lemma.

LEMMA 4.11 ([16, Lemma 5.3])
The matrix elements of the operators A.a/, B.a/, NC.b/, ND.b/ are one-variable skew
Hall–Littlewood polynomials:

h�jA.a/j�i D .1`.�/D`.�//P�=�.a/;
(4.22)

h�jB.a/j�
˛
D .1`.�/D`.�/C1/P�=�.a/;

h�j NC.b/
ˇ̌
�i D .1`.�/D`.�/C1/Q�=�.b/;

(4.23)
h�j ND.b/j�i D .1`.�/D`.�//Q�=�.b/;

where � and � are any two partitions.

Remark 4.12
In light of Lemma 4.11, the exchange relation in Proposition 4.8 corresponds to the
skew Cauchy identity (2.3) in the case q D 0 when Hall–Littlewood polynomials are
evaluated in a single variable, while the exchange relation in Proposition 4.10 corre-
sponds to the skew Littlewood identity (2.8).

PROPOSITION 4.13
Let S D .s1; : : : ; sn/ denote a binary string, with each sk 2 ¹0; 1º. The support distri-
bution (defined in Theorem 4.4) in the ascending half-space Hall–Littlewood process
can be written in the form

PHL
�
Œ�.1/ 
 � � � 
 �.n/�D .s1; : : : ; sn/

�
D

1

ˆ.a1; : : : ; an/
� hevj

nY
kD1

OSk .ak/j∅i; (4.24)

where we have defined

OSk .a/D

´
A.a/ sk D 0;

B.a/ sk D 1;

and where the product in (4.24) is ordered from right to left as the index k increases.

Proof
We insert the identity

P
�.k/ j�

.k/ih�.k/j at the left of each operator OS
k
.ak/, for all
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1 � k � n. By using the formulas (4.22) for the one-variable skew Hall–Littlewood
polynomials, this produces the sum

hevj
nY
kD1

OSk .ak/j∅i

D
X

�.1/�			��.n/D�

1�0 even � b
el
�

nY
kD1

�
P�.k/=�.k�1/.ak/1`.�.k//�`.�.k�1//Dsk

�
;

which when divided byˆ.a1; : : : ; an/ recovers precisely the claimed distribution.

4.8. Equivalence between support and path-string distributions
We are now ready to prove Theorem 4.4, the direct equivalence between the support
distribution in the ascending half-space Hall–Littlewood process and the path-string
distribution in the half-space stochastic six-vertex model.

Proof of Theorem 4.4
We start by expressing the support distribution as an expectation value in the t -boson
model, as in (4.24). Graphically, this relation takes the form

PHL
�
Œ�.1/ 
 � � � 
 �.n/�D .s1; : : : ; sn/

�
D

Y
1�i<j�n

� 1� aiaj
1� taiaj

�

�

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/

sn

s1a1

:::
:::

an

2m12m22m3
� � �

000� � �

(4.25)

where the boundary conditions of the partition function are as follows.
(1) No paths enter from the left edge of the lattice, which is considered to be

infinitely far to the left.
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(2) 2mi paths enter from the bottom of the i th column, where columns are counted
from right to left.

(3) si 2 ¹0; 1º paths leave via the right boundary of the i th row, where rows are
counted from top to bottom.

(4) No paths leave from the top of the lattice.
Now consider the nth row of the lattice. Depending on the value of sn, it either

encodes the operator A.an/ (in the case sn D 0) or the operator B.an/ (in the case
sn D 1). Irrespective of the value of sn, we will be able to apply one of the relations
(4.20) to convert this operator into ND.an/ or NC.an/. This takes us to the partition
function

PHL
�
Œ�.1/ 
 � � � 
 �.n/�D .s1; : : : ; sn/

�
D

Y
1�i<j�n

� 1� aiaj
1� taiaj

�

�

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/




sn�1

sn

s1a1

:::
:::

an�1

an

2m12m22m3
� � �

000� � �

(4.26)

Noting that the factor
Qn�1
iD1.1� aian/=.1� taian/ is present in (4.26), we can now

use the relation (4.18) n times to transfer the dark gray row to the top of the lattice.
The result of this procedure is

PHL
�
Œ�.1/ 
 � � � 
 �.n/�D .s1; : : : ; sn/

�
D

Y
1�i<j�n�1

� 1� aiaj
1� taiaj

�

�

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/
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�



s1

sn�1
sn

a1

:::

an�1

an

2m12m22m3
� � �

000� � �

(4.27)

We can then iterate the steps in (4.26) and (4.27) a further n� 1 times. This converts
all light gray rows into dark gray ones:

PHL
�
Œ�.1/ 
 � � � 
 �.n/�D .s1; : : : ; sn/

�
D

�X
m1;m2;:::

1Y
iD1

miY
kD1

.1� t2k�1/

�




sn








s1

an

:::

a1

2m12m22m3
� � �

000� � �

(4.28)

Now we observe that the bosonic lattice is completely trivialized, since the n incom-
ing paths at the left edge cannot leave the lattice via the top external edges. This forces
them to propagate horizontally, so that the dark gray horizontal lines are completely
saturated by paths. This in turn means that eachmi must be equal to 0, trivializing the
summation. The resulting frozen lattice configuration has weight 1, so we remove it
and retain only the six-vertex partition function emerging from the right:
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PHL
�
Œ�.1/ 
 � � � 
 �.n/�D ¹s1; : : : ; snº

�

D

s1


a1

s2


a2

s3


a3

s4


a4

s5


a5

s6


a6

(4.29)

The partition function appearing on the right-hand side evaluates the probability that
the nth path string in the stochastic six-vertex model is equal to ¹s1; : : : ; snº, that is,
P.�n.C/D ¹s1; : : : ; snº/, completing the proof of (4.10).

COROLLARY 4.14
For any x 2R, n 2 2Z>0, and any parameters .a1; : : : ; an/ 2 .0; 1/n,

E

h 1

.�txCn�h.n;n/; t2/1

i
D PfŒJC fx �K��`2.Z�0/; (4.30)

where h.n;n/ is the height function at .n;n/ in the half-space stochastic six-vertex
model and fx is defined in (3.7).

Proof
This follows immediately from Proposition 3.3 and Corollary 4.5.

Remark 4.15
Corollary 4.14 could be used to show an analogue of Theorem A for the height func-
tion of the half-space stochastic six-vertex model, that is, proving that h.n;n/ has
Tracy–Widom GOE fluctuations as n goes to infinity. A possible approach would be
to adapt the arguments of [3, Appendix B] to the half-space case, but we do not pursue
that here.

5. Half-line ASEP with open boundary
Consider the six-vertex model in a half-quadrant from Section 4.1 where ax � a, and
scale a as

aD 1�
.1� t /"

2
; "��!

">0
0;
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so that to first order in ",

P

� �
� "; P

� �
� 1� ";

P

� �
� t "; P

� �
� 1� t ":

(5.1)

Moreover, we rescale n as nD �"�1 with finite � > 0.

Definition 5.1
The half-line ASEP is a continuous-time Markov process on the state space param-
eterized by occupation variables ¹.
x/x2Z>0 2 ¹0; 1º

Z>0º. The state 
.�/ at time
� evolves according to the following dynamics: at any given time � 2 Œ0;1/ and
x 2 Z>0, a particle jumps from site x to xC 1 at exponential rate


x.�/
�
1� 
xC1.�/

�
2 ¹0; 1º

and jumps from site xC 1 to x at exponential rate

t 
xC1.�/
�
1� 
x.�/

�
2 ¹0; tº:

Further, a particle is created or annihilated at site 1 at exponential rates

α
�
1� 
1.�/

�
and γ 
1.�/:

All these events are independent. We will restrict our attention to the case αD 1=2
and γ D t=2 (see Figure 5) and to the empty initial condition where there are no
particles in the system at time 0. We define the current at site x by

Nx.�/D

1X
iDx


i .�/;

and we simply denote by N.�/ D N1.�/ the number of particles in the system at
time � .

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

1 t 1 1t
1=2

t=2

Figure 5. Jump rates in the half-line ASEP.
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PROPOSITION 5.2
Under the scalings and boundary and initial conditions as in Definition 5.1 (with
αD 1=2 and γ D t=2), for any x 2 ¹1; 2; : : :º,

n� x � h.n� x;n/HH)
"!0

Nx.�/;

where h is defined in (4.7) and Nx.�/ is defined in Definition 5.1. Moreover, along a
sequence of "’s such that n is even,

n� h.n;n/HH)
"!0

˙
N.�/



2
;

where for an integer k, we define

dke2 WDmin¹i 2 2Z W i � kº:

Remark 5.3
For the stochastic six-vertex model in a quadrant and the ASEP on Z, a heuristic
approach to the convergence was provided in [19]. Consider the ensemble of paths
in the six-vertex model, and interpret each path as the trajectory of a particle where
the vertical axis is the time. Under the scalings that we consider, the dynamics of this
particle system converge to those of the ASEP (modulo a shift of particle positions
by time). The convergence was proven rigorously in [1] for general initial conditions.
The main difficulty is that, for a system with infinitely many particles, the distribu-
tion of one particle may depend on the position of other particles far away. This is
why [1] considers versions of both models restricted to an interval Œ�N;M� (which
consequently have finitely many particles), proves that the convergence holds for the
bounded models, and shows that the unbounded models are well approximated by the
bounded ones asM andN go to infinity. In our case, the only additional complication
is the boundary, which we address in the below proof.

Proof of Proposition 5.2
For the empty initial condition that we consider in this article, we will show that the
tail distribution of the total number of particles injected by the reservoir into the sys-
tem decays exponentially fast, uniformly in �, so that the convergence of the dynamics
of finitely many particles is enough to prove Proposition 5.2. Hence, we will focus on
carefully justifying that the boundary behavior in the six-vertex model converges to
that of the half-line ASEP as in Definition 5.1.

The first step is to apply a particle-hole inversion to the ensemble of paths defined
by the stochastic six-vertex model in a half-quadrant (see Figure 6). This means that
edges of the lattice occupied by a path become empty and empty edges become occu-
pied by a path. Next we associate to the (particle-hole transformed) ensemble of paths
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1

2

3

4

5

6

7

time

1 2 3 4 5

Figure 6. Left: The same arrow configuration as in Figure 2 after particle-hole transformation.
Right: Corresponding particle configurations. The presence of the particle in gray at 0 is
completely determined by the rest of the configuration, ensuring that the total number of

particles and the time have the same parity. A particle may be injected at site 1 in the next step
only when there is a gray particle at 0. A particle may be removed from the system in the next

step only when there is no gray particle at 0.

the evolution of a particle configuration. Let �i .s/ (viewed as an occupation variable
at position i and time s) be 1 if there is an outgoing vertical arrow out of vertex
.s � i; s/ and 0 otherwise (see Figure 6). Denote by

y1 > y2 > � � �> yM.s/ > 0

the associated positions of the M.s/ particles occupying positive sites. We do not
record the presence of the particle at 0, because it can be deduced from the parity of
sCM.s/. (Indeed, sCM.s/C �0.s/ is always even.) Note thatM.s/D s�1�h.s�
1; s/, and for even s, one can write dM.s/e2 D s � h.s; s/.

The particle configuration .yi /i2Z>0 can be constructed as a discrete-time
Markov process where particles are updated from right to left—that is, y1, then y2,
and so on—according to the following rules.
(1) For 1 � i �M.s/, the i th particle jumps by 1 at time s C 1 with probability

" C o."/, provided that yi�1.s C 1/ > yi .s/ C 1 (with the convention that
y0 D1).

(2) For 1� i �M.s/ and for all 1� j � yi .s/�yiC1.s/�1 such that yi .s/�j >
0, the i th particle jumps by �j at time sC 1 with probability .t "/j C o."j /.
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(3) If M.s/ C s is odd and yM.s/.s/ > 1, then a new particle is created at
yM.sC1/.s C 1/D 1 and M.s C 1/DM.s/C 1, happening with probability
"C o."/.

(4) If M.s/C s is odd and yM.s/.s/ D k > 0, then this particle ejects from the
system at time sC1 andM.sC1/DM.s/�1 with probability .t "/kCo."k/.

(5) Each particle stays put with the complementary probability.
Let x"i .�/ WD yi .�"

�1/ be the position of the particles at large times. Let I6v.s/
(resp., I.�/) be the total number of particles injected in the six-vertex process � (resp.,
the ASEP process 
) between times 0 and s (resp., 0 and � ). Observe that the tail
distribution of I6v.s/ can be naively bounded by

P
�
I6v.�"

�1/ > x
�
< P

�
Bin.�; �"�1/ > x

�
< e�cx; (5.2)

for some constant c > 0 independent of �, where Bin.p;n/ denotes a binomial ran-
dom variable with parameters p and n. If, for any x;k 2 Z�0,

P
�
M.�"�1/D x & I6v.�"

�1/D k
�
���!
"!0

P
�
N.�/D x & I.�/D k

�
; (5.3)

then we may sum over k and use (5.2) to conclude that

P
�
M.�"�1/D x

�
���!
"!0

P
�
N.�/D x

�
:

Now we turn to the proof of (5.3). Fix k 2 Z�0, and let us restrict our analy-
sis to the event where I6v.�"�1/D k, so that we need to consider the dynamics of
only finitely many particles x"1.�/; : : : ; x

"
k
.�/. It is clear (from the convergence of

the discrete-time random walk on Zd to a continuous-time one or, more precisely,
from [1]) that dynamics of particles away from the boundary converge to the ASEP.
According to rule .3/ of the dynamics, whenever site 1 is empty, a particle is added
to the system at site 1 after a random time that converges to an exponential with
rate 1=2. (This 1=2 comes from the fact that the particle creation is not possible at
all times but only half of them because of the parity condition.) Similarly, accord-
ing to rule .4/ of the dynamics, whenever site 1 is occupied, this particle is removed
from the system after a random time that converges to an exponential with rate t=2.
Hence, we have shown that, on the event where I6v.�"�1/D k, the joint distribution
of x"1.�/; : : : ; x

"
k
.�/ converges as " goes to 0 to the distribution of ASEP particles

x1.�/; : : : ; xk.�/, which implies (5.3). One can similarly deduce the convergence of
n� x � h.n� x;n/ to Nx.�/ for any x 2 ¹1; 2; : : :º.

PROPOSITION 5.4
For any time � > 0 and x 2R,

E

h 1

.�txCdN.�/e2 ; t2/1

i
D PfŒJC fx �KASEP�`2.Z�0/; (5.4)
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where fx is defined in (3.7) and

KASEP
11 .u; v/D

1

.2i�/2

“
.w � z/g.z/g.w/

.z2 � 1/.w2 � 1/.zw � 1/

dz

zu
dw

wv

C
1

2i�

Z
g.z/

z2 � 1

dz

zv
1u22Z

�
1

2i�

Z
g.z/

z2 � 1

dz

zu
1v22ZC r.u; v/; (5.5a)

KASEP
12 .u; v/D

1

.2i�/2

“
.w � z/g.z/g.w/

.z2 � 1/w.zw � 1/

dz

zu
dw

wv

C
1

2i�

Z
g.z/

zvC1
dz 1u22Z; (5.5b)

KASEP
22 .u; v/D

1

.2i�/2

“
.w � z/g.z/g.w/

zw.zw � 1/

dz

zu
dw

wv
; (5.5c)

where g.z/D exp. .1�t/�
2

zC1
z�1

/, r.u; v/ is defined in (3.5), and the contours are chosen
as positively oriented circles with radius less that 1.

Proof
Recall that, from Corollary 4.14,

EPHL
h 1

.�txCn�h.n;n/; t2/1

i
D PfŒJC fx �K��`2.Z�0/: (5.6)

Fix � > 0, and consider an even integer n and the corresponding " such that nD �"�1.
Recall that a is a parameter also depending on n through ". We will let n go to infinity
along the even integers. Under the scalings considered, with f .z/ D . z�a

1�az
/n as in

Lemma 3.2,

.�1/nf .z/����!
n!1

g.z/

uniformly on compact subsets of C n ¹1º, and we can discard this factor .�1/n, since
n is assumed even.

By Proposition 5.2, the left-hand side of (5.6) converges to the left-hand side of
(5.4) as n goes to infinity. (Note that the observables under expectations have values
in .0; 1/; thus, pointwise convergence is sufficient.)

On the other hand, K� converges pointwise to KASEP as "! 0. To conclude that
the Fredholm Pfaffians also converge, it is enough to check that the Fredholm deter-
minant expansion is absolutely convergent. The integrand of the kernel is uniformly
(in ") bounded on its contour and the integrals are on finite contours, so the kernel
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is bounded. One concludes using Hadamard’s bound (see Lemma 3.1) to control the
Fredholm Pfaffian expansion.

Remark 5.5
We could define a Pfaffian point process with correlation kernel KASEP. The Pfaffian
point process describes the edge of the Pfaffian Schur measure under the specific limit
that we considered. For the (determinantal) Schur measure, a similar limit was com-
puted in [21] and called the discrete Laguerre ensemble due to its close connection to
Laguerre orthogonal polynomials.

6. Fluctuations of the current in half-line ASEP

Definition 6.1
The GOE Tracy–Widom distribution (see [56]) is a continuous probability distribution
on R with cumulative distribution function given by (see, e.g., [5, Section 2.3])

FGOE.x/D PfŒJ�KGOE�L2.x;1/;

where KGOE is the 2� 2 matrix-valued kernel defined by

KGOE
11 .x; y/D

1

.2i�/2

Z
dz
Z

dw
z �w

zCw
ez
3=3Cw3=3�xz�yw ; (6.1a)

KGOE
12 .x; y/D�KGOE

21 .x; y/

D
1

.2i�/2

Z
dz
Z

dw
w � z

2w.zCw/
ez
3=3Cw3=3�xz�yw

C
1

2

1

2i�

Z
dz ez

3=3�xz ; (6.1b)

KGOE
22 .x; y/D

1

.2i�/2

Z
dz
Z

dw
z �w

4zw.zCw/
ez
3=3Cw3=3�xz�yw

C
1

2i�

Z
ez
3=3�zx dz

4z
�

1

2i�

Z
ez
3=3�zy dz

4z
�

sgn .x � y/

4
; (6.1c)

where all integration contours are C
�=3
1 , the contour formed by the union of two semi-

infinite rays departing 1 with angles �=3 and ��=3, oriented from 1C1e�i�=3 to
1C1eCi�=3. Moreover, there exists a Pfaffian point process on R having this kernel,
and we call this point process the GOE point process. We will denote its points by
a1 > a2 > � � � .

THEOREM 6.2
For any t 2 Œ0; 1/,
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lim
T!1

P

�N. T
1�t
/� T

4

2�4=3T 1=3
>�x

�
D F GOE.x/: (6.2)

Proof
First we remark that dN.�/e2 and N.�/ differ by at most one and consequently have
the same limit under the scalings considered in the statement of the theorem. Recall
that, from Proposition 5.4,

E

h 1

.�tyCdN.�/e2 ; t2/1

i
D PfŒJC fy �KASEP�`2.Z�0/: (6.3)

Define the scaling function

s.x/ WD
T

4
� 2�4=3xT 1=3:

We can let � D T
1�t

and scale y as y D�s.�/ for a fixed � 2 R. Assume that under
this scaling the right-hand side of (6.3) converges for every � 2 R to the distribution
function F GOE.�/. Then, by using [17, Lemma 4.1.39], the random variable

N. T
1�t
/� T

4

2�4=3�T 1=3
(6.4)

weakly converges to a random variable with distribution function F GOE.�/ as T goes
to infinity. We now consider the right-hand side of (6.3); the function fy multiplying
the kernel is asymptotically an indicator function.

LEMMA 6.3
For a fixed � 2R, the function R! .�1; 0/ defined by

f.T /� W x 7! fs.�/
�
s.x/

�
converges pointwise to x 7! �1x>� .

Proof
We have

f.T /� .x/D fs.�/
�
s.x/

�
D
.�t1C2

�4=3T 1=3.��x/I t2/1

.�t2
�4=3T 1=3.��x/I t2/1

� 1:

As T goes to infinity, if � > x, then the first argument in the q-Pochhammer symbols
goes to 0, so that the q-Pochhammer symbols themselves converge to 1 and f goes
to 0. If � < x, we need to show that the ratio of q-Pochhammer symbols converges
to 0. Let
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p.x/ WD
.�t1CxI t2/1

.�txI t2/1
:

We have

p.x/p.xC 1/D
1

1C tx
;

which, since p.x/ is increasing, shows that p.x/ goes to 0 as x goes to �1. Hence,
fs.�/.s.x// goes to �1 as T goes to infinity when � < x.

Thus, our main task is to compute the limit of KASEP. We will use Laplace’s
method to find the asymptotics of the kernel in (5.5a), (5.5b), and (5.5c). The limit of
(6.3) as T goes to infinity can be computed as the limit of

PfŒJC f.T /� �K
.T /�`2.DT /;

where K.T / is the rescaled kernel

K.T /.x; y/

WD
.�1/s.x/Cs.y/

2�4=3T 1=3

�

�
KASEP
11 .s.x/; s.y// 2�4=3T 1=3KASEP

12 .s.x/; s.y//

2�4=3T 1=3KASEP
21 .s.x/; s.y// .2�4=3T 1=3/2KASEP

22 .s.x/; s.y//

�
; (6.5)

and the domain DT of the Fredholm Pfaffian is defined so that s.DT / D Z�0. The
presence of the factor .�1/s.x/Cs.y/ is a technical convenience whose purpose shall
be explained later. It does not change the value of the Fredholm Pfaffian, because this
extra factor has the same effect as a conjugation of the kernel. (Since s.x/; s.y/ 2

Z, .�1/s.x/Cs.y/ D .�1/s.x/�s.y/ D .�1/�s.x/Cs.y/ D .�1/�s.x/�s.y/.) The power
of 2�4=3T 1=3 that multiplies each entry of KASEP is determined so that each entry
remains bounded as T goes to infinity, and the global factor .2�4=3T 1=3/�1 in front
of the kernel will disappear when we approximate discrete sums by integrals.

Let us first formally examine the limit of K.T /. In the formulas (5.5) for KASEP,
the parameter T appears in the function g.z/ and in the variables u;v through the
scalings that we consider. If s.x/ D T

4
� 2�4=3T 1=3x as above, we can rewrite the

factors depending on T using

g.z/

zs.x/
D exp

�
TG.z/C 2�4=3T 1=3x log.z/

�
; (6.6)

where

G.z/D
1

2

zC 1

z � 1
�
1

4
log.z/;
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and the branch cut of the logarithm is taken on the positive reals. The function z 7!
ReŒG.z/� will control the asymptotics of the kernel. One can check that G0.�1/D
G00.�1/D 0 and G000.�1/D 1=8, so that the Taylor expansion of G at �1 is

TG.�1C QzT �1=3/��T
i�
4
C
2�4. Qz/3

3
:

Moreover,

2�4=3T 1=3x ln.�1C QzT �1=3/D 2�4=3T 1=3xi� � 2�4=3x QzCO.T �1=3/;

so that for z D 1C QzT �1=3,

g.z/

zs.x/
D exp

�
s.x/i� C

2�4. Qz/3

3
� 2�4=3x Qz

�
CO.T �1=3/:

The factor exp.s.x/i�/ will be canceled by the .�1/s.x/ in the definition of K.T /

in (6.5), and this is why we have multiplied the kernel by a factor .�1/s.x/Cs.y/.
Thus, under the scalings considered, in the neighborhood of the critical point, the first
integrand in the formula for KASEP

11 will converge pointwise to

Qz � Qw

4 Qz Qw. QzC Qw/
exp

��3 Qz3
3
C
�3 Qw3

3
� � Qzx � � Qwy

�
;

where � D 2�4=3 and we have rescaled the integration variables as z D�1C QzT �1=3

and likewise for w. It is easy to see that all other integrands converge pointwise to
similar formulas as well, and we will produce the formulas later. However, the factors
1u22Z, 1v22Z, and 1v�u22ZC1 that appear in (5.5a) and (5.5b) do not have a pointwise
limit as T goes to infinity, since they depend on the parity of s.x/ and s.y/.

Since we are interested in the convergence of PfŒJ� f.T /� �K.T /�, we do not need to
prove the pointwise convergence of K.T /. Instead, we will first search for a kernel K1

defined on L2.�;1/ for any � 2 R such that, for any compact Lebesgue measurable
set K
Rk ,X
x1;:::;xk2K

Pf
�
K.T /.xi ; xj /

�k
i;jD1

����!
T!1

Z
K

dx1 � � � dxk Pf
�
K1.xi ; xj /

�k
i;jD1

; (6.7)

where the sum on the left-hand side is over all k-tuples .x1; : : : ; xk/ 2K such that, for
all 1� i � k, s.xi /D T

4
� 2�4=3T 1=3xi 2 Z. If k D 1, one may replace the indicator

functions in K.T / by their average value; that is,

1u22Z �
1

2
; 1v22Z �

1

2
:

One has to be careful that, in general, the average of a product is not the product of
averages. However, for any k � 1, if we expand the Pfaffian on the left-hand side of
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(6.7) as in (3.1), we note that indicator functions involving xi can be multiplied by
an indicator function involving xj only when j ¤ i , so that we can approximate all
indicator functions by their average value. More precisely, we will use

.�1/s.x/1s.x/22Z)
1

2
;

.�1/s.x/Cs.y/r
�
s.x/; s.y/

�
)

1

4
sgn.y � x/;

where) means that the convergence holds in the integrated sense of (6.7). Indeed,
we have

r.u; v/D
1

4

�
.�1/u � .�1/v

�
C
1

2
sgn.v � u/1v�u22ZC1:

The quantities .�1/u and .�1/v have average 0 and the quantity .�1/uCv1v�u22ZC1
has average �1=2, so that .�1/uCvr.u; v/ has average 1

4
sgn.u � v/. Finally,

sgn.s.x/� s.y//D sgn.y � x/.
We claim that Laplace’s method shows that (6.7) holds with K1 being the kernel

obtained by approximating all integrals in K.T / for z and w in a neighborhood of size
T �1=3 around the critical point, taking the pointwise limit of integrands, and replacing
indicator functions by their average values as prescribed above. In order to justify this
rigorously, we need to check two facts.
(1) The integration in (5.5) can be restricted to a neighborhood of �1 of arbitrarily

small size, making an error going to 0 as T goes to infinity uniformly in x;y.
(2) All integrands in K.T / can be indeed approximated by their pointwise limit,

making an error going to 0.
To prove (1), it is enough to show that the contour employed in KASEP can be freely
deformed to a finite contour C satisfying the following property: for any 
 > 0, there
exist � > 0 such that, for all z 2 C with jz C 1j > 
, we have ReŒG.z/� < �� . This
will result in the integrand being exponentially small as T goes to infinity outside
of an 
-neighborhood around the critical point. One readily checks that the circle of
radius 1 centered at 0 is a contour line for ReŒG.z/�. Moreover, the Taylor expansion
at �1 implies that there is also a contour line departing �1 with angles ˙�=6, and
because ReŒG.z/� is harmonic, it must enclose the singularity at 0 and stay inside
of the circle of radius 1. Hence, one may find a contour with the desired properties
between two closed contour lines (see Figure 7, where a possible choice is depicted),
and Taylor expansion of G around �1 shows that this contour C may depart �1 with
any angles between ˙�=6 and ˙�=2. Since integrations must avoid the pole at �1,
the contour needs to be modified in a region of size O.T �1=3/ around �1, and one
can choose a contour departing the point �1CT �1=3 with angles˙�=3, thus leading
in the limit to the contour C

�=3
1 from Definition 6.1.
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Figure 7. Contour C used in the proof of Theorem 6.2 and Lemma 7.11 (in black). The dashed
lines are contour lines of ReŒG.z/�, and we use the symbols C or � to indicate regions where
ReŒG.z/� is positive or negative. The gray area is the 
-neighborhood around �1. The part of the
contour formed by two segments departing �1 is the contour used in I1.x/, and the circular part

is the contour used in I2.x/. (I1.x/ and I2.x/ are defined in the proof of Lemma 7.11.)

Proving (2) amounts to controlling the error made by replacing all quantities with
their Taylor approximations, and it can be done using very standard bounds (see, e.g.,
[5, (71) and (72)]). Since the functions G and log admit a Taylor expansion at any
order and the exponential factors of the form (6.6) are simply multiplied by rational
functions in z and w, the necessary bounds are exactly the same as in previous papers
(e.g., [3], [5], [18]), so we do not repeat the argument here.

At this point, we have deduced that K.T / converges to K1 in the sense of (6.7)
where

K111.x; y/D
1

.2i�/2

“
dz dw

z �w

4zw.zCw/
exp

��3 Qz3
3
C
�3w3

3
� �zx � �wy

�

�
1

2i�

Z
dz

4z
exp

��3z3
3
� �zy

�
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C
1

2i�

Z
dz

4z
exp

��3z3
3
� �zx

�
C

sgn.y � x/

4
;

K112.x; y/D
1

.2i�/2

“
dz dw

z �w

2z.zCw/
exp

��3z3
3
C
�3w3

3
� �zx � �wy

�

C
1

2i�

Z
1

2
exp

��3z3
3
� �zy

�
;

K122.x; y/D
1

.2i�/2

“
dz dw

z �w

zCw
exp

��3z3
3
C
�3w3

3
� �zx � �wy

�
;

where the contour for z and w is C
�=3
1 (see Definition 6.1) in all integrals. In order to

conclude from (6.7) that

PfŒJ� f.T /� �K
.T /�`2.DT / ����!T!1

PfŒJ�K1�L2.�;1/;

one needs to estimate the entries of K.T / and use Hadamard’s bound (see Lemma 3.1)
to conclude that the Fredholm Pfaffian expansion converges to the desired limit using
the dominated convergence theorem. The following bounds are sufficient.

LEMMA 6.4
There exist positive constants C , c, T0 such that, for T > T0 and x;y > �,ˇ̌

T 1=3K.T /11 .x; y/
ˇ̌
<C;ˇ̌

T 1=3K.T /12 .x; y/
ˇ̌
<C exp.�cy/;ˇ̌

T 1=3K.T /22 .x; y/
ˇ̌
<C exp.�cx � cy/:

Proof
These bounds are obtained in a very similar way to those in [5, Lemmas 5.11 and
6.4], where the structure of the kernel considered is the same as ours. Let us explain
how the idea works for K.T /22 . Using the definition of the rescaled kernel K.T / in (6.5)
and the formula for KASEP

22 in (5.5c), we have for some constant C ,ˇ̌
T 1=3K.T /22 .x; y/

ˇ̌
� CT 2=3

ˇ̌̌ 1

.2i�/2

“
w � z

zw.zw � 1/

� exp
�
T
�
G.z/�G.w/

�
C 2�4=3T 1=3

�
x log.z/� y log.w/

��
dz dw

ˇ̌̌
:

The integrations can be restricted to a neighborhood of size 
 around �1, where 

can be arbitrarily small, by doing an error bounded by e�c1.�/T�c2.�/T

1=3x for some
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constants c1.
/, c2.
/. Now we make the change of variables z D�1C QzT �1=3 and
likewise for w. By using the Taylor expansion of G and approximations of the other
factors in the integrand, there exists a constant C such that, for T large enough,ˇ̌

T 1=3K.T /22 .x; y/
ˇ̌

�
C

.2i�/2

“ ˇ̌̌ z �w
zCw

ˇ̌̌

�
ˇ̌̌
exp

��3z3
3
C
�3w3

3
� �zx � �wy CCT �1=3.z4Cw4/

�ˇ̌̌
dz dw:

Let C
�=3
a be the contour formed by two semi-infinite rays departing a with directions

˙�=3. The integration contour in the integral above can be chosen as the intersection
of C

�=3
a —for some a that can be freely chosen in R>0—with the ball of radius T 1=3


around �1. Note that the prefactor T 2=3 canceled with the Jacobian of the change of
variables. On this contour, T �1=3z4 is bounded by 
jzj3, so that exp.T �1=3z4/ will
not compensate for the decay of exp.ReŒz3�/ for 
 small enough. Moreover, the factor
.z �w/=.z Cw/ stays bounded along the contour. Hence, there exists a constant C
such that

ˇ̌
T 1=3K.T /22 .x; y/

ˇ̌
�

C

.2i�/2

“ ˇ̌
exp.z3=3Cw3=3� zx �wy/

ˇ̌
dz dw: (6.8)

For x and y positive, it is easy to conclude from (6.8) that jT 1=3K.T /22 .x; y/j has
exponential decay in x and y.

To conclude the proof of Theorem 6.2, we have to show that

PfŒJ�K1�L2.�;1/ D PfŒJ�KGOE�L2.�;1/:

Note that the Fredholm Pfaffian of K1 does not depend on � , so that one may take
� D 1. In this case,

K111.x; y/D KGOE
22 .x; y/;

K112.x; y/D KGOE
12 .y; x/D�KGOE

21 .x; y/;

K122.x; y/D KGOE
11 .x; y/:

Exchanging the even rows and columns with the odd rows and columns, one multi-
plies the Pfaffian of .K1.xi ; xk//ki;jD1 by .�1/k . By multiplying even rows and even

columns by �1, the Pfaffian gets multiplied by .�1/k another time, and one arrives
at KGOE.
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7. KPZ equation on RC

In [31], the half-space open ASEP with specially tuned weak asymmetry and weak
boundary conditions is shown to converge to the half-space KPZ equation with
Neumann-type boundary conditions. That paper deals with a set of initial data which
they call “near equilibrium” and a boundary condition that makes the boundary repul-
sive, in a sense that we shall explain shortly. Neither the initial data (“narrow-wedge”
type) nor the boundary condition with which we work is covered by the results of
[31]. In fact, the type of initial data we consider requires a slightly different scaling (a
logarithmic correction at the level of the height function; see Remark 7.4).

We show in this section that the observable of the ASEP (Definition 5.1) that is
expected (in light of the results from [31]) to converge to the solution of the half-
space KPZ equation has a weak limit whose distribution can be characterized. When
the first version of this article was posted, the identification of this limit with the KPZ
equation solution had not yet been proved. However, subsequently, the work of [31]
was extended by [46] to include more general initial data (including narrow wedge)
and a general boundary condition parameter A 2R (which includes the relevant case
for us). We have not modified this section to reflect the work of [46] (besides adding
a few parenthetical notes or footnotes). Combining our Corollary 7.7 with [46, Theo-
rem 1.2] yields [46, Corollary 1.3], which is the one-point Laplace transform for the
half-space KPZ equation from narrow-wedge initial data with boundary parameter
AD�1=2.

Definition 7.1 (Half-space stochastic heat equation)
We say that Z .T;X/ is a mild solution to the stochastic heat equation (SHE)

@TZ D
1

2
�Z CZ PW ; (7.1)

on RC with delta initial data at the origin and Robin boundary condition with param-
eter A 2R,

@XZ .T;X/jXD0 DAZ .T; 0/ .8T > 0/; (7.2)

if Z .T; �/ is adapted to the filtration �¹Z .0; �/;W jŒ0;T 
º and

Z .T;X/DPR
T .X; 0/C

Z T

0

Z 1
0

PR
T�S .X;Y /Z .S;Y /dWS .dY /; (7.3)

where the last integral is the Itô integral with respect to the cylindrical Wiener process
W and PR is the heat kernel satisfying the Robin boundary condition

@XPR
T .X;Y /jXD0 DAPR

T .0;Y / .8T > 0;Y > 0/: (7.4)
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The Hopf–Cole solution to the half-space KPZ equation with Neumann boundary
condition with parameter A is defined to be logZ . It was shown in [31] that for
A � 0 the half-space SHE admits a unique solution. It has the property that almost
surely Z .T;X/ > 0 for all T > 0 and X � 0, so that the logarithm of Z .T;X/ is
well defined. When A> 0, the heat kernel PR

T corresponds to the transition kernel of
a Brownian motion killed at the origin at rate A times the local time. This is why the
boundary condition with A > 0 can be classified as a repulsive boundary condition.
When A< 0, the kernel PR

T corresponds to the transition kernel of Brownian motion
duplicating at the origin at rate jAj times the local time. When A D 0, PR

T is the
transition kernel of a Brownian motion reflected at the origin.

7.1. Convergence of ASEP to the SHE
In order to relate the ASEP with the SHE, we must perform a microscopic version of
the Cole–Hopf transform (also called the Gärtner transform). We will work presently
with the notation of [31] and then match it to that of the present article.

Definition 7.2 (Microscopic Cole–Hopf/Gärtner transform)
Consider the ASEP with left jump rate q, right jump rate p, input rate from the reser-
voir α, and output rate to the reservoir γ (see Figure 1). Define a height function h� .x/
at time � and position x 2 Z�0 by

h� .x/D h� .0/C

xX
yD1

O
� .y/;

where h� .0/ is 2 times the net number of particles that are removed (i.e., the number
of particles that move into the source minus the number that move out of the source)
from site x D 1 during the time interval Œ0; � � (in particular, h0.0/D 0), and O
� .x/D
2
� .x/� 1 is C1 if there is a particle at x at time � and �1 if there is not. For empty
initial data h0.x/D �x. For � � 0 and x 2 Z�0 define the microscopic Cole–Hopf
transform of the ASEP as

Z� .x/D exp
�
�λh� .x/C ν�

�
;

where

λD
1

2
log

q
p
; νD pC q� 2

p
pq:

The reason for the definition of Z� .x/ is that inside Z�0 (i.e., away from the
boundary) this transformation of the ASEP satisfies a discrete SHE. By assuming
further that the boundary rates satisfy (1.1), it is possible to extend the discrete SHE
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to the boundary of Z�0 in terms of a discrete Robin boundary condition (see [31,
Section 3]). In particular,

Z� .x/D
X
y2Z�0

pR� .x; y/Z0.y/C

Z �

0

X
y2Z�0

pR��s.x; y/dMs.y/;

where, for each y, the Ms.y/’s are explicit martingales, and pR� .x; y/ is the half-line
discrete heat kernel with Robin boundary condition pR� .�1;y/ D �p

R
� .0; y/ (see

[31, Lemma 4.5] for an explicit formula for this). The parameter � is related to α via
the equality αD p3=2.p1=2 � �

p
q/.p � q/�1, where we also assume (1.1); that is,

α=pC γ=qD 1.
We now introduce weakly asymmetric scaling of the half-line ASEP.

Definition 7.3
Introduce a small parameter � > 0, and then scale

pD
1

2
e
p
�; qD

1

2
e�
p
�;

αD
p3=2.

p
p� .1�A�/

p
q/

p� q
; γ D

q3=2.
p

q� .1�A�/
p

p/
q� p

:

Write Z�� .x/ to denote Z� .x/ with parameters given in terms of the above �-para-
meterizations, and write the space-time-rescaled version of Z as

Z �. O�; Ox/D ��1=2Z�
��2 O�

.��1 Ox/: (7.5)

For small �, we have the approximations

αD
1

4
C
�3
8
C
1

4
A
�p

�CO.�/; γ D
1

4
�
�3
8
C
1

4
A
�p

�CO.�/;

and

λD�
p
�; νD

�

2
C
�2

24
CO.�3/:

For the ASEP with empty initial data (i.e., h0.x/ D �x for x � 0), as �! 0, we
expect that Z �)Z as a space-time process, where Z is the unique mild solution to
the SHE on R�0 with delta initial data and Robin boundary condition with parameter
A at the origin. An analogous result was proved when A� 0 and for near-equilibrium
initial data as [31, Theorem 2.17].

Remark 7.4
The scaling considered in (7.5) differs from [31, Definition 2.16] by an extra factor
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��1=2 multiplying Z. This comes from the fact that the initial condition that we con-
sider is not “near equilibrium,” and this extra factor ensures that Z��D0.�/ converges
to the delta function. This is a very similar situation to those in the works of [10]
and [4] regarding the full-space ASEP and KPZ equation. The first case requires a
similar “near-equilibrium” type of initial data, while the second extends it to include
step initial data. The basic argument of [4, Section 3] shows that for short times (i.e.,
in the scaling in which the ASEP converges to the KPZ equation) the step initial data
height function becomes “near equilibrium.” Then, applying the existing convergence
results of [10] one gets a consistent family of measures which can be extended back
to time 0 and be shown to coincide with the desired “narrow-wedge” initial data KPZ
equation. We leave a rigorous proof of this for future work (and hence we will not use
the convergence result in the present article).

7.2. Matching notation
We now translate the convergence stated in Section 7.1 in terms of the notation used
throughout the present article. Let us consider the ASEP considered in Definition 5.1,
that is, the half-line ASEP with rates p D 1, q D t , α D 1=2, γ D t=2. Let us set
t D e�2

p
� , and rescale the time by 2e�

p
� , so that effectively the jump rates become

pD
1

2
e
p
�; qD

1

2
e�
p
�; αD

1

4
e
p
�; γ D

1

4
e�
p
�:

If we match those rates with the rates from Definition 7.3, this corresponds to choos-
ing the boundary parameter A D �1=2 C O.�/. This is why we cannot apply the
results of [31], since A is assumed to be nonnegative there. Since we have rescaled
the time by 2e�

p
� , we have

h� .x/D�2NxC1.�e
p
�=2/� x;

in the sense that the space-time processes have the same distribution, where Nx.�/
is defined in Definition 5.1 and h� .x/ is defined in Definition 7.2. Then, under the
scalings of Definition 7.3,

Z �. O�; Ox/

D ��1=2 exp
�
�2
p
�N1C��1 Ox.�

�2 O�e
p
�=2/� ��1=2 OxC ��1 O�=2C O�=24CO."/

�
:

At this point, it is more convenient to reparameterize using � D O�e
p
� and "D 2

p
�

so that t D e�".

Definition 7.5
For t D e�", under the notation of Definition 5.1, we define the space-time process
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Z"� .x/ WD 2"
�1 exp

�
�"N1C4x"�2.8"

�4�/� 2"�1xC 2"�2� � �"�1C 7�=24
�
:

We expect that Z�) Z as a space-time process, where Z is the unique mild
solution to the SHE on R�0 with delta initial data and Robin boundary condition with
parameter AD�1=2 at the origin.

7.3. Multiplicative functional of the GOE and KPZ equation on RC

One can readily adapt Propositions 3.3 and 5.4, changing �tx into �tx , so that, for
any y 2R and � 2C nR>0,

E

h 1

.�tyCdN.�/e2 ; t2/1

i
D PfŒJC hy �KASEP�`2.Z�0/; (7.6)

where

hy.j /D
.�tyCjC1I t2/1

.�tyCj I t2/1
� 1: (7.7)

We consider now the asymptotic behavior of this identity in the weakly asymmetric
regime.

THEOREM 7.6
Under the scalings

t D e�"; � D
"�3 O�

1� t
;

the random variable

U". O�/D
t .N.�/�

"�3 O�
4 /

1� t2
(7.8)

weakly converges to a random variable U. O�/ such that, for � < 0,

E
�
exp

�
� U. O�/

�	
D PfŒJC g �KGOE�L2.R/; (7.9)

where

g.x/D
1p

1� �e O	x
� 1 and O� D 2�4=3. O�/1=3:

Before proving the theorem, let us further interpret the result. Note that we have

NU".T / WDU"

�
.1� t /"�1T

�
D
"�1

2
exp

�
�"N."�4T /C

T

4
"�2 �

T

8
"�1C

T

24
CO."/

�
:
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On the one hand, NU".�/ converges5 to U.�/, a certain random variable having a
complicated yet explicit distribution. On the other hand, one may check that

Z"� .0/D 4
NU".8�/ exp

�
��=24CO."/

�
:

Thus, if we define

H .�/D log
�
4 U.8�/

�
�
�

24
;

we expect6 that H .�/ will have the same distribution as H .�; 0/ from Definition 7.1
with parameter A D �1=2. Furthermore, the Laplace transform of eH.�/ can be
expressed as a multiplicative functional of the GOE process.

COROLLARY 7.7
For any � > 0 and z > 0,

E

h
exp

��z
4

exp
� �
24
CH .�/

��i
D E

hC1Y
iD1

1p
1C z exp..�=2/1=3ai /

i
;

where ¹aiº1iD1 forms the GOE point process (see Definition 6.1).

This corollary is proved in Section 7.5.

7.4. Proof of Theorem 7.6
Our proof proceeds via the following three steps.
(1) If U". O�/ weakly converges to U. O�/, then the left-hand side of (7.6) converges

to EŒexp.�U. O�//�.
(2) The right-hand side of (7.6) converges to PfŒJC g �KGOE�L2.R/.
(3) The sequence U". O�/ indeed weakly converges to U. O�/ whose distribution is

determined by (7.9).

Step 1. Let us examine the scaling limit of the left-hand side in (7.6). We need a
lemma about the asymptotics of q-Pochhammer symbols.

LEMMA 7.8
If two positive real numbers � and � are related by

� D
t


1� t2
;

5The proof of Theorem 7.6 is still valid when O� is not a constant but converges to a constant as " goes to 0.
Hence, by letting O� D .1� t/"�1T , we obtain that NU".T / converges to U.T /.
6This is now proved in [46, Theorem 1.2].
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then as t goes to 1,

1

.�t
 I t2/1
�! exp.��/

uniformly for � in a compact subset of R�0 and for � in R�0.

Proof
By using the q-binomial theorem with q D t2,

1

.�t
 I t2/1
D

1X
kD0

�k�k.1� t2/k

.t2I t2/k
: (7.10)

This expansion is absolutely convergent for any � in a compact set and t close enough
to 1. We have

.1� t2/k

.t2; t2/k
���!
t!1

1

kŠ
:

We may use dominated convergence to conclude that the right-hand side of (7.10)
converges to

1X
kD0

�k
�k

kŠ
D exp.��/

as desired. It is easy to control the error made in order to show that the convergence
is uniform as � varies in a compact subset of R�0 and � 2R�0.

Let us scale y in (7.6) as y D �"�3 O�=4, and apply Lemma 7.8 with �" D y C
dN.�/e2 and � DU". Q�/. If U". O�/���!

"!0
U. O�/, then

1

.�tyCdN.�/e2 ; t2/1
���!
"!0

exp
�
�U. O�/

�
:

The left-hand side belongs to the interval .0; 1/, so that if U". O�/ weakly converges to
U. O�/, then

E

h 1

.�tyCdN.�/e2 ; t2/1

i
���!
"!0

E
�
exp

�
�U. O�/

�	
(7.11)

uniformly for � 2R�0.

Step 2. Now we examine the limit of the right-hand side in (7.6). We will rescale the
kernel using s.x/D "�3 O�=4� 2�4=3"�1 O�1=3x. Let us first examine the scaling limit
of hy under the scalings of Theorem 7.6.
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LEMMA 7.9
For a fixed � 2C nR>0 and with y D�"�3 O�=4,

hy
�
s.x/

�
���!
"!0

1p
1� �e O	x

� 1D g.x/:

Proof
Let

p.a/D
.�t�"

�1aC1I t2/1

.�t�"
�1aI t2/1

:

We have

p.a/p.aC "/D
1

1� �t�"
�1a
���!
"!0

1

1� �ea
;

so that

p.a/���!
"!0

1p
1� �ea

:

The convergence of KASEP to KGOE in the integrated sense of (6.7) is already
proved, since the scalings are exactly the same as those in the proof of Theorem 6.2,
with T D ��3 O� . The only thing left to check is that the dominated convergence the-
orem applies. More precisely, we need to show that, for any nonnegative integer k,
under the scalings y D�"�3 O�=4 and T D ��3 O� , the function

.x1; : : : ; xk/ 7!

kY
iD1

hy
�
s.xi /

�
� Pf
�
KT .xi ; xj /

	k
i;jD1

(7.12)

is absolutely summable on the domain7 DT of the Fredholm Pfaffian, uniformly as
"! 0. Since jhj is bounded by 1, using Lemma 6.4 to control KT .x; y/ as x;y
approach C1, we know that (7.12) is uniformly absolutely summable on sets of the
form .�;C1/k . The two next lemmas provide bounds for hy.s.x// and K.T /.x; y/
for x;y near �1, which prove that (7.12) is absolutely summable on the whole
domain DT .

LEMMA 7.10
For y D�"�3 O�=4, � < 0, and any x 2R,ˇ̌

hy
�
s.x/

�ˇ̌
� j�jex :

7That is, the preimage of Z�0 by the scaling function s.	/.
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Proof
When � < 0, the function hy.s.x// is increasing in the variable x and stays in .�1; 0/,
so that

�
hy
�
s.x/

�
C 1

�2
�
�
hy
�
s.x/

�
C 1

��
hy
�
s.x/� �

�
C 1

�
D

1

1� �t�"
�1xC1

:

It implies that

�hy
�
s.x/

��
hy
�
s.x/

�
C 2

�
�
��t�"

�1xC1

1� �t�"
�1xC1

:

Hence, since � < 0 and h 2 .�1; 0/,

0��hy
�
s.x/

�
���t�"

�1xC1 � j�jex :

LEMMA 7.11
There exist positive constants c, C , T0 such that, for T > T0,ˇ̌

T 1=3K.T /11 .x; y/
ˇ̌
< jxyjc ;ˇ̌

T 1=3K.T /12 .x; y/
ˇ̌
< jxyjc ; andˇ̌

T 1=3K.T /22 .x; y/
ˇ̌
< jxyjc :

(7.13)

Proof
If these bounds hold uniformly as T goes to infinity, they should, in particular, hold
for KGOE. Indeed, the entries in the kernel KGOE can be written as integrals of the
Airy function and its derivative (see, for instance, the formulas in [57], which are
equivalent to (6.1)). The Airy function can be defined as

Ai.x/D
Z
C
�=3
1

ez
3=3�zx dz;

where the contour C
�=3
1 is formed by the union of two semi-infinite rays departing 1

with angles �=3 and ��=3. Hence, the bounds (7.13) when T D1 may be deduced
from the bounds on the Airy function and its derivativeˇ̌

Ai.x/
ˇ̌
� C jxj�1=4;

ˇ̌
Ai0.x/

ˇ̌
� C jxj1=4;

which are classical (see [45, Chapter 11, (1.08), (1.09)]) and can be proved by saddle-
point analysis.

In order to prove the bounds (7.13) for the kernel K.T / uniformly in T , we will
likewise reduce the problem to the study of simpler functions that play roles analogous
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to those of the Airy function and its derivative for the kernel KASEP. The contours in
the definition of KASEP in (5.5) can all be chosen as circles with radius less than 1, so
that by using the expansions

1

1� zw
D

1X
kD0

.zw/k;
1

1� z2
D

1X
kD0

z2k;
1

1�w2
D

1X
kD0

w2k;

all entries of the kernel .�1/uCvKASEP.u; v/ can be written using sums of the func-
tions

A.u/D
.�1/u

2i�

Z
g.z/

zu
dz

and

B.u/D
.�1/u

2i�

Z
.zC 1/g.z/

zu
dz;

where

g.z/D exp
�T
2

zC 1

z � 1

�
and the contour is a circle around the origin. More precisely, A.u/ plays a role anal-
ogous to that of the Airy function, while B.u/ plays a role analogous to that of the
derivative of the Airy function. Then the kernel KASEP has the same structure as KGOE

provided that Airy functions are replaced by their discrete analogues and integrals
are replaced by sums. Since we are interested in the rescaled kernel K.T / instead of
KASEP, we are reduced to studying

AT .x/ WD T
1=3A

�
s.x/

�
D T 1=3

.�1/s.x/

2i�

Z
exp

�
TG.z/C 2�4=3T 1=3x log.z/

�
dz; (7.14)

where, as before,

G.z/D
1

2

zC 1

z � 1
�
1

4
log.z/

and BT .x/ WD T 2=3B.s.x//. Both functions AT and BT have exponential decay at
C1, for the same reasons as in Lemma 6.4. Hence, if we show polynomial bounds
as x approaches �1 for AT and BT , then sums of the form

T �1=3
1X
yDx

AT .y/; T �1=3
1X
yDx

BT .y/;
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where the summations are over y 2 DT , y > x, will also satisfy polynomial bounds
and K.T / will satisfy (7.13). Thus, we are left with showing thatˇ̌

AT .x/
ˇ̌
� C jxjcA ;

ˇ̌
BT .x/

ˇ̌
� C jxjcB

for some constants C; cA; cB > 0. The optimal exponents seem to be ca D�1=4 and
cB D 1=4—as for the Airy function and its derivative—but we will not need such
precision. Since the arguments are very similar for AT .x/ and BT .x/ we will only
explain how the bound is obtained for AT .

We will distinguish two cases, whether T > rx6 or T � rx6, where r is a con-
stant that we will optimize later to facilitate our analysis. First note that the circle of
radius 1 centered at 0 is a contour line for ReŒG.z/�; this will be used in both cases.

Case T � rx6. In this case, we may integrate (7.14) on a contour of radius 1� 
 for
a small 
 > 0. On such a contour, the real part of G.z/ tends to 0 as 
 goes to 0. We
can bound AT .x/ by

ˇ̌
AT .x/

ˇ̌
� T 1=3

1

2i�

Z
exp

�
T Re

�
G.z/

	
C 2�4=3T 1=3x log

�
jzj
��

dz:

Since this holds for any 
 > 0, one can let 
 go to 0 and conclude that, since the
integral goes to 1 as 
 goes to 0,ˇ̌

AT .x/
ˇ̌
� T 1=3 � r1=3jxj2:

Case T > rx6. Let 
 > 0 be a small parameter that we will choose more precisely
later. In (7.14), the contour can be deformed to be the contour C depicted in Figure 7,
that is, a contour formed by two segments of length 
 departing �1 at angles ˙�=3
and an arc of circle around 0 joining the extremities of these two segments.

We separately treat the contributions of the integral in a neighborhood of size 

around �1 and the contribution outside of that neighborhood. Let us write AT .x/D
I1.x/CI2.x/ according to this partition of the integration contour; that is, I1.x/ is the
integral in (7.14) where the integration is restricted to a neighborhood of �1 of size

, whereas I2.x/ equals the integration outside of that neighborhood (see Figure 7).
Outside of an 
-neighborhood along the contour C , we may use the boundsˇ̌

exp
�
TG.z/

�ˇ̌
< exp.�c1


3T /

for some fixed constant c1 (which does not depend on 
), andˇ̌
exp

�
2�4=3T 1=3x log.z/

�ˇ̌
< exp

�
c2
T

1=3jxj
�

for some fixed constant c2. Taking into account the prefactor T 1=3, we hence find that
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I2.x/

ˇ̌
< T 1=3 exp

�
�c1


3T C c2
T
1=3jxj

�
:

Now we analyze I1.x/. We make the change of variables z D�1C 24=3 QzT �1=3.
Using Taylor approximations of the functions G and log, we arrive at

I1.x/D
C2

2i�

Z
C
�=3
0

exp
� Qz3
3
� QzxCE. Qz;T; x/

�
d Qz;

where C2 is a fixed constant, E. Qz;T; x/ is an error term, and the new contour can be
chosen as C

�=3
0 , restricted to Qz such that j Qzj< 2�4=3T 1=3
. By using Taylor approxi-

mations, this error term can be bounded byˇ̌
E. Qz;T; x/

ˇ̌
< 
j Qzj3C x
j Qzj:

At this point, we can adapt standard techniques used to estimate the Airy function
Ai.x/ on the negative reals when x goes to �1. We refer, for instance, to Section 5
in [30] and more specifically after equation (5.6) therein. Let us make the change of
variables Qz D

p
jxjz. For negative x, the integral becomes

I1.x/D
C2jxj

1=2

2i�

Z
exp

�
jxj3=2

�z3
3
C z

�
CF.z;T; x/

�
d Qz;

where the integration contour has been changed according to the change of variables
and the error term can be bounded byˇ̌

F.z;T; x/
ˇ̌
< 
jxj3=2

�
jzj3C jzj

�
:

The function z 7! z3

3
C z has two critical points at z D˙i, which yield contributions

of the same order. One can make a new saddle-point approximation around both these
saddle points and control the approximations using the same steps as in [30]. Without
the error term F.z;T; x/, we could bound the integral I1.x/ by a constant as in [30].
Taking into account the error term which grows as jxj goes to infinity, we can only
arrive at ˇ̌

I1.x/
ˇ̌
<C3 exp

�
c3
jxj

3=2
�
;

for some constants8 C3; c3 > 0.
Summing the contributions of the integral in (7.14) inside and outside of a 
-

neighborhood, we arrive atˇ̌
AT .x/

ˇ̌
D
ˇ̌
I1.x/CI2.x/

ˇ̌
<C3 exp

�
c3
jxj

3=2
�
CT 1=3 exp

�
�c1


3T Cc2
T
1=3jxj

�
:

8If we were bounding the function BT .x/ instead of AT .x/, then the constant C3 would be replaced by
C3jxj

c4 for a certain exponent c4 . Although this term grows as jxj goes to infinity, the rest of the argument can
be adapted as for AT .



STOCHASTIC SIX-VERTEX MODEL 67

Recall that 
 is a real number that can be taken arbitrarily small, and recall that the
constants c1, c2, and C3 are independent of 
. By letting 
D 1=jxj3=2, the first term
is bounded, and the second term becomes

T 1=3 exp
�
�c1T=jxj

9=2C c2T
1=3=jxj1=2

�
:

We need to maximize this quantity over T 2 .r jxj6;C1/. Let us write T D jxj6U
so that we are interested in

max
U2.r;C1/

®
jxj2U 1=3 exp

�
jxj3=2.�c1U C c2U

1=3/
�¯
:

One may choose r large enough, so that, for any U > r ,

�c1U C c2U
1=3 <�c1U=2;

in which case

max
U2.r;C1/

®
jxj2U 1=3 exp

�
jxj3=2.�c1U C c2U

1=3/
�¯

< jxj2 max
U2.0;C1/

®
U 1=3 exp.�jxj3=2c1U=2/

¯
<C4

for some constant C4. Finally, we have found that in any caseˇ̌
AT .x/

ˇ̌
<max¹r1=3jxj2;C3e

c3 ;C4º<C jxj
2

for some constant C , which is the desired polynomial growth estimate.

Step 3. We employ the same argument as in Step 3 of the proof of Theorem 11.6 in
[21], which we reproduce here.9 Lemma 7.8 shows that, under the same scalings as
above,

E

h 1

.�tyCdN.�/e2 ; t2/1

i
�E

�
exp

�
�U". O�/

�	
(7.15)

goes to 0 as "! 0 uniformly for � 2R�0. By the compactness of the space of positive
measures in the weak topology, the distribution of U". O�/ must have limiting points
as "! 0 in the space of positive measures on R�0 of total mass at most 1. Let � be
one such limiting point. We have seen in Step 2 that

9Although the proof of Theorem 11.6 in [21] is only a sketch, Step 3 is rigorous. One can also prove Step 3 by
adapting the arguments in [12, Example 5.5].
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E

h 1

.�tyCdN.�/e2 ; t2/1

i
���!
"!0

PfŒJC g �KGOE�L2.R/;

which together with (7.15) implies thatZ
R�0

exp.�y/�.dy/D PfŒJC g �KGOE�L2.R/: (7.16)

Since positive measures with mass at most 1 are uniquely determined by their Laplace
transform, the limiting point � is unique. Finally, since the right-hand side of (7.16)
goes to 1 as � goes to 0,� is actually a probability measure. Denote by U. O�/ a random
variable with distribution �. Then U". O�/ weakly converges to U. O�/ with, for � � 0,

E
�
exp

�
� U. O�/

�	
D PfŒJC g �KGOE�L2.R/:

7.5. Proof of Corollary 7.7
Since 1C g.x/D 1p

1C�e�x
,

PfŒJC g �KGOE�L2.R/ D E

hC1Y
iD1

1p
1C �e	ai

i
; (7.17)

provided that both sides are absolutely convergent. We know from the proof of Theo-
rem 7.6 that the left-hand side of (7.17) is absolutely convergent. One can show that
the infinite product on the right-hand side is absolutely convergent as well using the
same estimates on KGOE.

Recall that � D 2�4=3 O�1=3. In light of (7.17), the statement of Corollary 7.7 is
just a reformulation of Theorem 7.6.
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