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Abstract
The position x(t) of a particle diffusing in a one-dimensional uncorrelated and
time dependent random medium is simply Gaussian distributed in the typical
direction, i.e. along the ray x = v0t, where v0 is the average drift. However, it
has been found that it exhibits at large time sample to sample fluctuations char-
acteristic of the Kardar–Parisi–Zhang (KPZ) universality class when observed
in an atypical direction, i.e. along the ray x = vt with v �= v0. Here we show,
from exact solutions, that in the moderate deviation regime x − v0t ∝ t3/4 these
fluctuations are precisely described by the finite time KPZ equation, which thus
describes the crossover between the Gaussian typical regime and the KPZ fixed
point regime for the large deviations. This confirms heuristic arguments given
in [2]. These exact results include the discrete model known as the Beta random
walk in a time dependent random environment, and a continuum diffusion. They
predict the behavior of the maximum of a large number of independent walk-
ers, which should be easier to observe (e.g. in experiments) in this moderate
deviations regime.

Keywords: random walk in random environment, Kardar–Parisi–Zhang uni-
versality, random matrices, large deviations, extreme value theory, Langevin
equation

1. Introduction

It has been found that diffusion in uncorrelated time dependent random environments, observed
away from the typical direction, exhibits at large time the behavior of the Kardar–Parisi–Zhang
(KPZ) universality class. Specifically, and restricting here to one space dimension d = 1, the
typical behavior, i.e. in the direction of the drift v0 along the space time ray x = v0t, is simple
Gaussian diffusion. However, if one looks along the ray x = vt, with v �= v0, the sample to
sample fluctuations (i.e. fluctuations due to the randomness of the environment) of the log-
arithm of the probability distribution are described by the Tracy–Widom (TW) distribution,
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Figure 1. Schematic plot of the PDF of the distribution of the diffusion x(t) (we assume
that the average drift v0 = 0 for simplicity). At first sight this is a Gaussian curve,
with some roughness because of sample to sample fluctuations. There are three dis-
tinct regimes, symmetric with respect to the origin. For each one, we indicate the order
of decay of the PDF as well as the nature of the sample to sample subleading fluctua-
tions: Edwards–Wilkinson (EW) in the Gaussian typical regime, TW distributed in the
large deviations regime, and distributed as the KPZ equation in the moderate deviations
regime, which is the main focus of this paper.

characteristic of the KPZ class. This has been first discovered, and shown rigorously, for a
discrete model of random walk in a time dependent random environment (RWRE) known as
the Beta RWRE [1]. This result concerns the far tail of the probability distribution, in the so-
called large deviation regime. In other terms, if one considers a sufficiently large collection
of N independent random walkers in the same environment, with log N ∝ t, the TW distri-
bution also describes the sample to sample fluctuations of the rightmost walker. In principle,
although quite challenging, this may be detectable in experiments on e.g. tracer diffusion in
fluids.

A quite simple physical argument was given in [2] for a broad connection (in any space
dimension d) between continuum diffusions in random environments and the KPZ equation.
Let us recall that the KPZ equation [3] (here restricted in d = 1) was introduced to describe the
stochastic growth of an interface parameterized by a height field h(x, t), x ∈ R, as a function
of time t and reads

∂th = ν0∂
2
x h +

λ0

2
(∂xh)2 +

√
D0η(x, t), (1)

where ν0 is diffusivity, λ0 the non-linearity and D0 measures the amplitude of the noise. Here
η is the noise and the case of main interest is when η is a unit space-time white noise. The
KPZ equation (1) describes the crossover between the simpler linear EW equation (i.e. (1) with
λ0 = 0) at short time t � t∗ and the KPZ fixed point at large time t � t∗. When η is unit space-
time white noise the crossover time scale is given by t∗ = 2(2ν0)5/(D2

0λ
4
0) and one defines a

corresponding length scale x∗ = (2ν0)3/(D0λ
2
0). The KPZ fixed point describes the universal

large time behavior of all models in the KPZ class. It was argued in [2] that not only the KPZ
fixed point, but the KPZ equation itself, hence the EW to KPZ crossover, should be observable
in the regime of moderate deviations of the diffusion (see figure 1). This regime corresponds
to x − v0t ∝ t3/4, i.e. in the tail, but closer to the typical direction than the aforementioned
large deviation regime. The argument, recalled in details in section 2, uses a transformation
of the diffusion problem into an equation identical to the KPZ equation up to some additional
terms, and assuming that these terms are RG irrelevant above a certain (small) length and time
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scale. Since it was somewhat heuristic, it seems useful to obtain confirmation and exact results
about the moderate deviation regime. This, and exploring some consequences, is the aim of the
present paper. One of the consequences is a precise estimate of the position of the maximum of
N walkers, when log N is now scaled as t1/2. Since it requires a smaller number of walkers than
in the large deviation regime, this suggests that the moderate deviation regime will be easier
to detect in experiments.

Besides the results of [1, 2] let us mention a few other relevant works. First, the KPZ
equation also arises from random walks or diffusions under a different scaling: in the large
deviation regime, but when the noise amplitude parameter is scaled to 0, the KPZ equation
appears. This was proved in [4] for a large class of discrete random walks in space-time ran-
dom environments and in [5] for an integrable model of diffusions in random environment1.
The fact that the KPZ equation arises from different scalings should not be a surprise. It is well-
known that models in the KPZ class possessing tunable parameters controlling the strength of
the noise or the amplitude of the non linearity should converge to the KPZ equation when
the model is rescaled and these parameters are appropriately tuned. This phenomenon is usu-
ally referred to as weak universality. The result of [4] corresponds to the so-called weak noise
scaling of random walks in random environment, while we investigate in this paper the weak
non linearity scaling (sometimes called weak asymmetry scaling). In the typical direction, i.e.
along the ray x = v0t, we have mentioned that the behavior is Gaussian. This was proved rigor-
ously in the mathematics litterature, see e.g. [6] and references therein. The subleading sample
to sample fluctuations are described by the EW universality class (i.e. 1 with λ0 = 0). This was
proved in [7] for discrete models of random walks in random environment in dimension 1 + 1,
and in [8] for a certain class of continuous diffusions which we discuss below in section 3.1. In
the large deviation regime (i.e along the ray x = vt with v �= v0), the fact that the probability
distribution admits a large deviation principle for almost every environment was proved in [9]
in a quite general setting. It was then shown in [1], using the exactly solvable Beta RWRE, that
the second order corrections to the large deviation principle fluctuate sample to sample accord-
ing to the TW distribution, as we have already mentioned. Note that the exact solvability of the
Beta RWRE is rooted in a work of Povolotsky [10] on Bethe ansatz solvable probabilistic mod-
els of interacting particles. The connection between the Beta RWRE and the KPZ universality
class was further strengthened and refined in [11, 12].

Outline of the paper. In this paper, we first recall in section 2 the physical arguments from
[2]. We then consider in section 3 an exactly solvable model of one-dimensional diffusions in
random environment. This model was first introduced by Le Jan and Raimond [13] using the
language of stochastic flows (see also [14, 15]) and further studied in [16, 17] in connection to
families of so-called sticky Brownian motions and the Brownian web/net (see the review [18]).
The exact distribution of the probability distribution of a diffusion in this model (conditionally
on the random environment) was computed exactly in [5]. We use the exact formulas from
[5] to prove that the fluctuations of the probability distribution in the regime x − v0t ∝ t3/4

are described by the KPZ equation, thereby confirming the heuristic arguments from section 2.
More precisely, we show that the moments of the cumulative distribution function (CDF) of the
random diffusion (with possibly varying starting points), when appropriately scaled, converge
to the (exponential) moments of the KPZ equation. In section 4, we prove an analogous state-
ment on another exactly solvable model, the Beta random walk, introduced in [1]. In section 5,

1 The result was proved in [5] in terms of convergence of moments, while it was proved in a much stronger sense in
[4], i.e. weak convergence in the space of continuous functions of space and time. In the present paper, we will ignore
these mathematical aspects.
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we state the main consequences of our results concerning the maximum of N = ec
√

t diffusions
{xi(t)}i=1,...,N drawn independently in the same environment: the position of the maximum of
these diffusions has fluctuations given by the sum of a Gumbel random variable and a random
variable distributed as the solution to the KPZ equation. Finally, in appendix A, we consider
a continuous model interpolating between the KPZ equation and the model from section 3. It
is worth noticing that this interpolation is still Bethe ansatz solvable in a similar way as in [5]
(this fact was hinted in earlier works, in particular [19]), but this model does not introduce new
physics since it reduces to the model from section 3 after appropriate scalings and changes of
variables.

2. First model: physical argument and length scales

In this section we recall and summarize the physical argument given in [2] and the discussion of
the important length scales. It was given in arbitrary space dimension d, but here we will discuss
it only in d = 1. Consider the following Langevin equation which describes the position x(t)
of a particle (also called a walker below) in the time dependent random force field ξ(x, t) + v0

(called the environment), with E [ξ(x, t)] = 0 and a bias v0

d
dt

x(t) = ξ(x(t), t) + v0 +
√

2Db ζ(t), (2)

with ζ a (thermal) unit Gaussian white noise, 〈ζ(t)ζ(t′)〉 = δ(t − t′), and Db the bare diffusion
coefficient. Here and below 〈·〉 refers to the average over thermal fluctuations ζ,E[·] the average
over the environment ξ(x, t), and ‘sample to sample’ fluctuations refer to fluctuations over the
environment. For definiteness we will consider ξ(x, t) a smooth Gaussian random field with
short-range correlations in space (over scale rc) and time (over scale τ c),

E
[
ξ(x, t)ξ(x′, t′)

]
= σ δrc (x − x′)δτc (t − t′) , model I, (3)

which together with (2) defines model I. Here r0 has dimension of a length. Here δa(x) denotes a
mollified delta function, i.e. δa(x) = a−1g(x/a) for some choice of a rapidly decaying function
g(x) with

∫
dxg(x) = 1. We also define a version of the model, which we call model II, such

that the correlation time τ c is taken to be zero, i.e for an environment delta correlated in time,
with Ito convention

E
[
ξ(x, t)ξ(x′, t′)

]
= σ δrc (x − x′)δ(t − t′) , model II. (4)

The associated Fokker–Planck equation for the probability distribution function (PDF),
P(x, t) = 〈δ(x(t) − x)〉, of the position x of the particle at time t in a given environment ξ reads

∂tP = D∂2
x P − ∂x[(ξ(x, t) + v0)P]. (5)

In the model I where ξ(x, t) is smooth in time, (5) holds with D = Db, however in the model II,
the diffusion coefficient is dressed by the small time scale fluctuations of the random field, and
from the Ito rule one obtains D = Db + σδrc (0). Note that σ/D defines a length scale, called
r0 in [2] (this renormalisation effect of D was not taken into account there).

One then performs a change of variable which is motivated as follows. In model II, i.e. with

τ c = 0, the sample averaged PDF is simply the GaussianE [P(x, t)] = 1√
4πt

e−
(x−v0 t)2

4Dt with a drift
velocity v0. This actually also describes the typical walk (i.e. in the direction of the drift) in
the typical environment. We are interested in looking in the direction x = vt + o(t), away from
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the typical direction x = v0t. We denote u = v − v0 the difference between the observation
direction and the typical direction. It means that we are probing the tail of the PDF, and it is
thus natural to factor out the main dependence in x (which is exponential) in that region, and
perform the change of variable

P((v0 + u)t + x, t) = e−
xu
2D− u2

4D t Ẑ(x, t). (6)

Then Ẑ(x, t) satisfies

∂tẐ(x, t) = D∂2
x Ẑ(x, t) +

u
2D

ξ̂(x, t)Ẑ − μ∂x(ξ̂Ẑ) (7)

with μ = 1. Here ξ̂(x, t) = ξ(x + (v0 + u)t, t) is a Gaussian noise with the same correla-
tions as ξ(x, t) (for model II). The equation with μ = 0 is the stochastic heat equation
(SHE), which is related to the KPZ equation (1) with ν0 =

λ0
2 = D, via the Cole–Hopf

transform h(x, t) = log Ẑ(x, t). In [2] (see also the supplementary material there) it was
argued that the additional term ∂x(ξẐ) in (7), since it contains additional derivatives, is
irrelevant by power counting above a certain scale. This scale was estimated to be the
diffusion scale x = x0 = D/u and t = t0 = x2

0/D = D/u2 (above this scale the free dif-
fusion starts to feel the bias u). Hence above this scale, and in the region x = o(t),
Ẑ(x, t) should behave as the solution of the SHE with a noise amplitude ∝ u/(2D),
and h(x, t) as the corresponding solution of the KPZ equation. This implies KPZ fixed
point behavior at large time for the diffusion. It predicts e.g. a GUE-TW distribution
for the sample to sample fluctuations of log P(x, t) when properly centered and scaled by t1/3,
for an initial condition (IC) P(x, t = 0) localized in space. It predicts a GOE-TW distribution
for the IC P(x, 0) ∝ e−

xu
2D . Such a behavior was confirmed numerically for a lattice version of

the model in [2].
The above arguments predict more, i.e. they predict a crossover from EW to KPZ behaviors.

For small enough rc, one can estimate the scales of the EW-KPZ crossover by using those of the
KPZ equation with white noise. For the model II the parameters of the associated KPZ equation
are D0 = u2r0/(4D), ν0 = λ0

2 = D. The scales of the EW-KPZ crossover are then estimated as

x∗ = (2ν0)3/(D0λ
2
0) = 8D2

r0u2 , t∗ = 2(2ν0)5/(D2
0λ

4
0) = (4D)3/(r2

0u4). Hence if t∗ � t0, that is for

small enough dif f erence u = v − v0 with the typical direction, more precisely for u � 8D/r0,
the PDF of logP should be described by the finite time KPZ equation. The crossover from EW
to KPZ should thus be observable, above the scales x0 and t0 (see the supplementary material
of [2] p 13–14). It was thus predicted that, for small enough u and for x � x0, t � t0 it is
reasonable to expect that

log P((v0 + u)t + x, t) � −u2t
4D

− xu
2D

+ hKPZ
( x

x∗
,

t
t∗

)
, x∗ =

8D2

r0u2
,

t∗ =
(4D)3

r2
0u4

, (8)

where here and below we denote hKPZ(x, t) = h(x, t) the solution of the KPZ equation in the
reduced units defined by

∂th = ∂2
x h + (∂xh)2 +

√
2 η(x, t), (9)

where η(x, t) is a unit space-time white noise (in these units x∗ = t∗ = 1). The proper definition
of the solution is via the Cole–Hopf formula h(x, t) = log Z(x, t) where Z(x, t) satisfies the
SHE
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∂tZ = ∂2
x Z +

√
2η(x, t)Z. (10)

The prediction (8) is expected to be valid as a process, i.e. as x is varied within x = o(t),
and for a large set of initial conditions (which should include the droplet, flat and Brownian
initial conditions considered usually). We discuss just below and in section 3.2 several initial
conditions P(x, 0) which lead to droplet initial data for hKPZ.

The argument in [2] goes on by considering the droplet IC for the KPZ equation, which
corresponds to an initial particle at x(0) = 0 for the diffusion. The prediction (8) for the one-
point PDF (setting x = 0) interpolates between two limits, KPZ fixed point and Gaussian:

(a) For fixed (and small) u and large t � t∗ ∝ 1/u4 we can use that hKPZ(0, t/t∗) = − t
12t∗

+
(

t
t∗
)1/3

χ2 where χ2 is a GUE-TW random variable, and obtain

log P((v0 + u)t, t) � −J(u)t + λ(u)t1/3χ2, J(u) � u2

4D
+

2r2
0u4

3(8D)3
,

λ(u) � r2/3
0 u4/3

4D
, (11)

an estimate which should be valid in the weak bias limit u = O(1) � D/r0 of the large
deviation regime (for which the KPZ fixed point behavior extends to any u �= 0). This is
very reminiscent of the results obtained in [1] for the Beta polymer (see discussion below).

(b) If we set u = x/t, and consider t � t∗ small, the first term in (8) dominates, and one

recovers the Gaussian P(v0t + x, t) � e−
x2
4Dt .

In between these two limits, an intermediate regime was identified, by comparing t and
t∗ ∝ 1/u4 = t4/x4, i.e. x ∝ t3/4. For x = ut = x − v0t = O(t3/4), it was argued from (8) that

log P(v0t + x, t) � − x2

4Dt
+ hKPZ(0, x̃4), ˜x =

x

r0

(
4Dt

r2
0

)3/4 , (12)

which describes the EW to KPZ crossover. In the EW regime x̃ � 1 the second term is dis-
tributed as c0 x̃ω, where ω is a unit Gaussian random variable and c0 a constant. The crossover
to pure diffusion occurs when considering x ∝

√
4Dt, in which case the fluctuations are Gaus-

sian of magnitude proportional to

(
r2
0

4Dt

)1/4

. A consistency check is that it corresponds to the

lower edge of the validity of (8), i.e. x = x0 since one estimates x0 = D/u = Dt
x . The main

message is that above this scale, the physics of the KPZ equation sets in.
These arguments, although physically meaningful, are quite heuristic. The first step is the

neglect of the terms ∂x(ξP) above a small scale x0, t0. The second is extending the results
at fixed u, to smaller values of u = x/t. From the results on the Beta polymer [1, 11] we
know that the PDF, P, exhibits additional local fluctuations, with a Gamma distribution, not
present in the CDF, P>, and this distinction does not seem to be captured by the above
arguments.

It would thus be very useful to obtain more controlled results. In this paper we provide some
examples of exactly solvable models for which such controlled results can be obtained. They
confirm the above predictions and allow to refine the subleading error terms.

Quantum mechanical formulation. To close this section, and tie up with the following,
let us make some remarks on the analogy with quantum mechanics which was very useful

6
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Figure 2. Left: simulation of two sticky Brownian motions x1(t) and x2(t) starting from
x = 0 at t = 0 up to time t = 1 (taken from [5]). Right: simulation of five sticky Brow-
nian motions, note that for most of the time, at least two trajectories are stuck together.
Both simulations were performed using a discretization of n-tuples of sticky Brown-
ian motions (here n = 2 or 5) as n random walks in the same space-time iid random
environment (see more details in section 4.2 about this discretization).

for the study of the KPZ equation and directed polymer problem [20]. Consider the model
II defined above in (2), (4), i.e. with a Gaussian random environment delta correlated in time
and with a smooth short range correlation in space on scale rc, E

[
ξ(x, t)ξ(x′, t′)

]
= r0D δrc (x −

x′)δ(t − t′). The probability Q(x, t) = E(𝟙x(0)>0|x(−t) = x) satisfies the backward Kolmogorov
equation

∂tQ(x, t) = D∂2
x Q(x, t) + ξ(x, t)∂xQ(x, t), (13)

with initial condition Q(x, 0) = 𝟙x>0, and we use Ito prescription. One easily shows that the
joint moments

Qn(�x, t) = E

[
n∏

i=1

Q(xi, t)

]
(14)

satisfy

∂tQn = −HnQn, Hn = −D
n∑

i=1

∂2
xi
− σ

2

∑
1�i �= j�n

δrc (xi − x j)∂xi∂x j . (15)

Here the operator−Hn is the generator of the diffusion of n particles in the same environment. It
can be interpreted as a quantum model of interacting bosons of Hamiltonian Hn, but a different
model from the standard Bose gas obtained to describe the (exponential) moments of the KPZ
equation. Some aspects of the relation will be discussed in appendix. A delta function version
of this model will be solved below.

3. An exactly solvable continuous model

The model II defined by (2) can be seen as a model of diffusion in random environment ξ. In this
section, we study an exactly solvable model of diffusion in random environment introduced by
Le Jan and Raimond [13, 14] and further studied in [5, 15, 16, 18]. This model cannot be defined
by a stochastic differential equation as in (2), but rather using stochastic flows and the theory of
sticky Brownian motions. We first review some general properties of sticky Brownian motions,
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and in a second stage consider the integrable model for which one can show convergence to
the KPZ equation in the moderate deviation regime.

3.1. Sticky Brownian motions

The limit of the model II (see (4)) as rc → 0 is mathematically quite subtle and was investigated
in [21, 22]. Motivated by the study of Kraichnan’s model [23] of passive scalar in turbulence
(see also [24–27]) Gawedzki–Horvai [21] showed that two independent diffusions x1(t), x2(t)
following the Langevin equation (2) with the same drift ξ converge as rc goes to 0 to a pair
of so called sticky Brownian motions (the sticky interaction was first introduced in [28]). This
means that x1(t) and x2(t) behave as standard Brownian motions when x1(t) �= x2(t), however,
the two trajectories stick together in such a way that the Lebesgue measure of coincidence
times between the two trajectories has a positive expectation (see figure 2, left).

Warren [22] further proved that n independent diffusions x1(t), . . . , xn(t) following (2) with
the same drift ξ converge as rc goes to 0 to an n-tuple of sticky Brownian motions. More
precisely [22] considered n diffusions with generator

r2
c

2

n∑
j=1

∂2
x j
+

1
2

∑
1�i, j�n

ψ

(
xi − x j

rc

)
∂xi∂x j (16)

where ψ is a smooth function which decays at ±∞ and ψ(0) = 1. The way these Brownian
motions stick together in the rc → 0 limit, depends on a family of parameters θ(k, l) (which
measure the rate at which k + l paths stuck together will split into groups of k and l paths).
See figure 2 for an example of trajectory of five sticky Brownian motions. The values of these
θ(k, l) were explicitly computed in [22] and depend on ψ

′′
(0).

In general, families of sticky Brownian motions, can be considered from different points of
view:

(a) As limits of discrete random walks in random environment: consider a random walk on the
integers XT indexed by T ∈ Z�0, jumping by ±1 to one of the nearest neighbor, with a
probability wX,T (resp. 1 − wX,T) to jump from X to X + 1 (resp. X − 1) between times
T and T + 1, where the variables wX,T are iid. If με(dw) denotes the law of the wX,T

and ε−1w(1 − w)με(dw) ⇒ ν(dw) for some finite measure ν on (0, 1) as ε→ 0+, then
xε(t) = εXε−2 t converges to a diffusion x(t) in a random environment. Likewise, several
random walks X 1

T ,X 2
T . . . (sampled independently but using the same transition prob-

abilities wX,T) converge to diffusions x1(t), x2(t), . . . .which can be seen as independent
diffusions in the same environment. These diffusions will have the same joint distribution
as sticky Brownian motions where the splitting rates θ(k, l) are related to the measure ν
via

θ(k, l) =
∫ 1

0
wk−1(1 − w)l−1ν(dw). (17)

This convergence was first studied in [15] in a specific case, and then more generally in
[16].

(b) As independent diffusions in a random environment. The environment was constructed
explicitly [17] (see also the review [18]) using results on the so-called Brownian web [29,
30] and Brownian net [31]. The diffusions follow paths of the Brownian web/net, and at
special points of the Brownian web/net (classified in [30, 32–34]), trajectories may branch
according to a random variable of law ν (potentially renormalized to be a probability
measure), we refer to [18] for details.
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(c) As a diffusion process characterized by a martingale problem, see [16, 18].

Sticky Brownian motions fit in the theory of stochastic flows of kernels [13, 35]. A stochas-
tic flow of kernels is a family of random probability measures Kst(x, dy) which represent the
probability for a diffusion starting at x at time s to arrive in [y, y + dy] at time t. For any family
of sticky Brownian motions characterized by a given sequence of parameters θ(k, l) there exist
a stochastic flow of kernels such that n sticky Brownian motions corresponds to n diffusions
having transition probabilities equal to the product E

[∏n
i=1 Kst(xi, dyi)

]
.

3.2. Integrable model

In this section, we consider families of sticky Brownian motions depending on a single param-
eter λ > 0, and the corresponding diffusions in random environment, in the special case where

θ(k, l) =
λ

2
B(k, l) =

λ

2
Γ(k)Γ(l)
Γ(k + l)

. (18)

This family of sticky Brownian motions was considered by [14, 15] in the context of stochastic
flows of kernels. It was shown in [5] that this model is exactly solvable. It can also be formally
associated with the generator

n∑
i=1

1
2
∂2

xi
+

1
λ

∑
1�i< j�n

δ(xi − x j)∂xi∂x j. (19)

Remark 3.1. Although the function δrc in (15) converges in the limit rc → 0 to a delta func-
tion δ as in (19), this integrable model is different from the rc → 0 limit obtained by Warren
in [22]. Indeed, [22] obtains in the limit sticky Brownian motions characterized by rates θ(k, l)
which are explicit but depend on the second derivative of the functionψ in (16) and are clearly
different from the choice of θ(k, l) given in (18) which makes the model integrable.

Let K−t,0(x, [0,+∞)) be the probability for a diffusion in random environment (in the
special case (18)) starting at x at time −t to end in [0,+∞) at time 0. Let us define

Qλ
k (�x, t) = E

[
K−t,0(x1, [0,+∞)) . . .K−t,0(xk, [0,+∞))

]
. (20)

For x1 � · · · � xk, and t � 0, we have [5, proposition 1.20]

Qλ
k (�x, t) =

∫
α1+iR

dw1

2iπ
. . .

∫
αk+iR

dwk

2iπ

∏
1�A<B�k

wB − wA

wB − wA − wAwB

×
∏
j=1

k
exp

(
λ2w2

j t/2 + λx jw j

) 1
w j

, (21)

where for i < j, 0 < αi <
α j

1+α j
. Equivalently, we may use the change of variables zi = 1/wi

in (21) and write

9
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Qλ
k (�x, t) =

∫
r1+iR

dz1

2iπ
. . .

∫
rk+iR

dzk

2iπ

∏
1�A<B�k

zA − zB

zA − zB − 1

×
∏
j=1

k
exp

(
tλ2

2z2
j

+
λx j

z j

)
1
z j

, (22)

where for i < j, ri > rj + 1.
One may observe [5, section 6] that Qλ

k (�x, t) is a solution u(�x, t) of the following heat
equation on {�x ∈ R

k : x1 � . . . � xk} subject to boundary conditions⎧⎨
⎩∂tu(�x, t) =

1
2
Δu(�x, t), t � 0,�x ∈ R

k,

(∂xi∂xi+1 + λ(∂xi − ∂xi+1 ))u(�x, t)|xi=xi+1 = 0.
(23)

It is natural to associate to (23) the following equation on R
k with point interactions, which

involves the generator (19)

∂tv(t,�x) =
1
2
Δv(t,�x) +

1
2λ

∑
i �= j

δ(xi − x j)∂xi∂x jv(t,�x). (24)

so that v = u on the set {�x ∈ R
k : x1 � . . . � xk}.

We now state two important properties which will imply the convergence to the KPZ
equation in the moderate deviation regime. First, the exact formula (21) obeys the scaling
property

Qλ
k (�x, t) = Q1

k(λ�x,λ2t). (25)

Second it was shown in [5, proposition 6.3] that the moments of the stochastic flow of kernels
converge, in the weak disorder and large deviation regime, to the moments of the SHE

lim
λ→+∞

Qλ
k (−λ2t − λ�x,λ2t)∏k

i=1 Cλ,t,xi

= E

[
k∏

i=1

Z(xi, t/2)

]
, (26)

where Z(x, t) is the solution of the SHE (10) with droplet initial data, Z(x, t = 0) = δ(x) and

Cλ,t,x =
1
λ

exp

(
−λ2t

2
− λx

)
. (27)

is a normalization factor.
Using the scaling (25) we can convert asymptotics in the weak noise large deviation regime

into asymptotics in the moderate deviation regime with fixed amplitude of the noise. Denoting
L = λ4 we obtain

lim
L→+∞

Q1
k(−L3/4t − L1/2�x, Lt)∏k

i=1 C′
L,t,xi

= E

[
k∏

i=1

Z(xi, t/2)

]
, (28)

where

C′
L,t,x =

1
L1/4

exp

(
−L1/2t

2
− L1/4x

)
. (29)

10
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Equivalently, this may be interpreted as the following. For x̃ > 0 and y ∈ R and λ = 1,

log P
(

x(0) � 0
∣∣∣x(−t) = −(x̃t3/4 + t1/2y)

)
+

1
2

x̃2t1/2 + x̃t1/4y +
1
4

log(t) − log(x̃)

=⇒[t→+∞]h
KPZ(yx̃2, x̃4/2), (30)

in the sense that the exponential moments of the left-hand side converge to the exponential
moments of the right-hand side. We expect the convergence to be true in terms of convergence
in distribution, and not only for fixed y, x̃, but as well as a process indexed by y, x̃ ∈ R× R>0.

Remark 3.2. In general, the convergence of moments does not imply the weak convergence
of probability measures. In the present case, the moments of Z(x, t) grow too fast to even
determine uniquely the distribution. Thus, the convergence of moments (28) does not imply
distributional convergence, but this a very strong indication of it. Proving the convergence in
distribution remains a mathematical open problem.

Remark 3.3. We can compare the exact result (30) with the prediction (12). To compare
them, we must set v0 = 0, D = 1/2 and r0 = 2 in (12) so that σ = 1. One then sees that
x̃4 in (12) becomes identical to x̃4/2 in (30) (note that x, t are the same coordinates in both
models). The KPZ term is thus identical. The diffusion term −x2/(4Dt) in (12) also equals
1
2 x̃2t1/2 in (30). Note that the comparison is made setting y = 0, since (30) contains additional
finer information about the spatial dependence on scales t1/2. Finally the log term is absent
in (12).

In addition, in the large deviation regime, x = ut but for small values of u, one can
also match the prediction (11) with the exact result in [5, theorems 1.13 and 1.15]. Indeed
the rate function obtained there has the following expansion at small u (where u = x/t in
both cases), J(u) = u2

2 + u4

24 + O(x6), and the function λ(u) denoted σ(u) there2 behaves as
λ(u) = 2−1/3u4/3. Setting again D = 1/2 and r0 = 2 in (11) reproduces this result.

4. An exactly solvable discrete model

In this section, we study a discrete analogue of the model considered in section 3.2, for which a
similar convergence toward the KPZ equation in the moderate deviation regime can be proved.

4.1. Random walk in beta distributed random environment

Let α, β > 0 be two parameters. Let (BT,X) be a family of iid random variables in (0, 1),
indexed by T ∈ Z�0 and X ∈ Z, marginally distributed according to the Beta distribution with
parameters α, β, i.e. with density

P(B ∈ d x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1 − x)β−1. (31)

For a fixed X ∈ Z, consider the discrete time nearest neighbor random walk in random envi-
ronment (X X

T )T�0 in Z (called Beta RWRE below), starting from X X
0 = X (we will sometimes

2 There is a typo in the expression given for σ(u) in [5]. In [5, equation (12)], in the expression for σ, the factor 1/2
should be 1/21/3, so that 2σ3 = h′′′(θ).

11
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omit the superscript when the starting point is clear from the context or does not matter), with
random transition probabilities

P(XT+1 = X + 1|XT = X) = BT,X , P(XT+1 = X − 1|XT = X) = 1 − BT,X . (32)

We use the symbol P to denote the probability measure of random walks conditionally on the
environment (quenched), while P denotes the probability measure of the environment, and E

is the expectation associated to P as above. Let us define

QRW
k (�X, T) = E

[
k∏

i=1

P(X Xi
T � 0)

]
. (33)

The time evolution of the function QRW
k can be related to a difference operator acting on func-

tions of the variable �X, which can be diagonalized using coordinate Bethe ansatz [1, section 3].
For X1 � X2 � · · · � Xk, one has [1, proposition 3.4]

QRW
k (�X, T) =

∫
γ1

dz1

2iπ
. . .

∫
γk

dzk

2iπ

∏
A<B

zA − zB

zA − zB − 1

k∏
j=1

(
α+ β + z j

z j

) T+Xi
2 +1

×
(

α+ z j

α+ β + z j

)T 1
z j + α+ β

, (34)

where the contours γ i are positively oriented closed curves around 0 such that for i < j, γi

contains γj + 1 and all contours exclude −α− β. [1, proposition 3.4] deals with a variant of
the model called Beta polymer therein, the translation of the result in terms of the Beta RWRE
defined above was given in [1] and more explicitly in [5, proposition 6.2].

4.2. Convergence to the continuous model

As we have already mentioned in section 3.1, families of discrete random walks in space-time
iid random environment converge to families of sticky Brownian motions. Consider a simple
random walk on the integers XT indexed by T ∈ Z�0, jumping by ±1 to one of the nearest
neighbor,

P(XT+1 = X + 1|XT = X) = wT,X , P(XT+1 = X − 1|XT = X) = 1 − wT,X . (35)

where the variables wX,T are iid and are distributed according to a probability measure με(dw).
Assume that ε−1w(1 − w)με(dw) ⇒ ν(dw) for some finite measure ν on (0, 1). Then, it

was shown in [16] (see also [18, section 5]) that xε(t) = εXε−2t converges to a diffusion x(t) in
a random environment as ε→ 0+. Several diffusions x1(t), x2(t), . . . .in the same environment
will have the same joint distribution as sticky Brownian motions where the splitting rates θ(k, l)
are related to the measure ν via

θ(k, l) =
∫ 1

0
wk−1(1 − w)l−1ν(dw). (36)

This convergence was first studied in [15] in a specific case (Beta RWRE on the torus), and
then proved for more generally random walks in random environment in [16].

In the case of the Beta RWRE, the limiting disorder measure ν is ν(d x) = λ
2 d x, so that the

Beta RWRE model converges to the model studied in section 3.2 when the parameters α, β
of the Beta RWRE are scaled as α = β = λε, and paths are rescaled diffusively as above. In

12
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particular, recalling the notations QRW
k (�X, T) from (33) and Qλ

k (�x, t) from (20), we have the
convergence

QRW
k (ε−1�x, ε−2t)−→

ε→0
Qλ

k (�x, t). (37)

4.3. Convergence to the KPZ equation

Note that for �X = (−X,−X, . . . , −X), the function QRW
k corresponds to the kth moment of the

CDF of a random walk in random environment starting from 0, that is

QRW
k (�X, T) = E

[
P(X 0

T � X)k
]

, (38)

so that the knowledge of the functions QRW
k (�X, T) fully characterizes the probability distribu-

tion of the random variable P(X 0
T � X).

Let v0 = (α− β)/(α+ β) be the average drift of the random walk XT . For T = tL and X =

x
√

L, it can be shown that P
(

XT−v0T√
1−v2

0

� X

)
converges as L goes to infinity to the deterministic

limit
∫ +∞

x/
√

t dye−y2/2/
√

2π [6]. This is the Gaussian regime of typical events.
When, however, one considers large deviation events, i.e. for T = L and X = xL, then

log P(XT � X) � −LI(x) + σ(x)L1/3χGUE, (39)

where χGUE denotes a random variable following the TW GUE distribution, for some explicit
functions I(x), σ(x) [1, 11] which depend on α, β.

In this paper, we are interested in the intermediate regime where X ∝ L3/4. More precisely,
let us consider the scalings

X = −2α2tL3/4 − αxL1/2, (40)

T = 2α2tL, (41)

β = α− V/
√

L, (42)

z → z − α+ αL1/4. (43)

Then, for x1 � · · · � xk,

lim
L→∞

QRW
k (�X, T)∏k
i=1 C′′

L,t,xi

=

∫
r1+iR

dz1

2iπ
. . .

∫
rk+iR

dzk

2iπ

∏
A<B

zA − zB

zA − zB − 1

k∏
j=1

etz2
i +(xi−Vt)zi , (44)

= E

[
k∏

i=1

Z(xi − Vt, t)

]
. (45)

where the renormalization factor C′′
L,t,x is given by

C′′
L,t,x =

1
αL1/4

exp

(
−α2t

(√
L +

1
6

)
− αL1/4(x − Vt)

)
(46)

and the contours are vertical lines oriented from bottom to top with real parts ri such that for
i < j, ri > rj + 1. Equation (44) is readily obtained by plugging the scalings (40)–(42) and

13
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the change of variables (43) into the integral formula (34). The limit can be mathematically
justified by dominated convergence, we refer to [4, 5, 36] where very similar limits were con-
sidered. The equality between the mixed moments of the multiplicative SHE in (45) and the
integral formula (44) was shown in [36, proposition 6.2.3] (see also [37]), modulo some fac-
tors of 2 accounting for the difference of conventions between the physics and the mathematics
literature.

Hence, we have shown that under the scalings (40)–(42), the random variable P(XT � −X),
when appropriately rescaled, converges to Z(x − Vt, t), in the sense that all moments converge.
Again, convergence in distribution is an open problem from the mathematical point of view
(see remark 3.2), although it was rigorously proved under a different scaling in [4] using chaos
series expansions. Note also that in order to formulate the convergence of mixed moments in
space and time, one a priori has to vary the starting points of the Beta RWRE, not the ending
points, and reverse time.

Equivalently, this may be interpreted as the following. For x̃ > 0 and y ∈ R,

log P
(
X0 � 0 |X−T = −

(
x̃T3/4 + yT1/2 +

Vx̃2

2α
T1/2

))
+

x̃2T1/2

2
+ x̃yT1/4

+
1
4

log(T) − log(x̃/α) +
x̃4

12
=⇒

T→+∞
hKPZ

(
yx̃2

α
,

x̃4

2α2

)
, (47)

where on the l.h.s. the Beta RWRE has a fixed parameter α whereas β is scaled so that α− β
= Vx̃2T−1/2. This induces as driftE[XT −X0] = V

2α x̃2T1/2, which accounts for the same factor
inside the l.h.s. Hence x̃T3/4 + yT1/2 represent the deviations with respect to the typical walk.
Again, the convergence (47) means that the exponential moments of the lhs converge to those
of the rhs, but we expect that the convergence holds

Remark 4.1. The convergence of quenched transition probabilities in the Beta RWRE model
to the KPZ equation was already proven in [4], though this was under a different scaling.
Indeed, models in the KPZ universality class depending on some tunable parameters gener-
ally converge to the KPZ equation under appropriate scaling. Two specific scalings are often
considered in the literature, a scaling of weak noise and a scaling of weak asymmetry (weak
non-linearity scaling). In the Beta RWRE model, there are two parameters α, β so that one can
use both scalings (or a mixture of the two). The result of [4] corresponds to convergence to the
KPZ equation under weak noise scaling, and this requires to consider the quenched probability
of large deviation events. The scaling that we considered above corresponds to the convergence
to the KPZ equation under weak asymmetry scaling.

5. Extrema of many diffusions

A natural setting to observe in experiments the sample to sample fluctuations in the tail of
the probability distribution P>(x, t) = Prob(x(t) > x) is to consider a large number N � 1 of
independent particle xi(t) in the same environment, and to measure the position of the rightmost
particle xmax(t) = maxi=1,...,Nxi(t) (we focus here on one space dimension) As is well known,
for N particles performing independent Brownian motions, the position of the maximum at a
given time t is distributed for N � 1 as

14
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xmax =
√

4Dt

(√
log N +

G − cN

2
√

log N

)
, Prob(G < g) = e−e−g

,

cN =
1
2

log(4π log N), (48)

where G is a Gumbel random variable, describing the ‘thermal’ noise experienced by the par-
ticles. This is the usual Einstein description of the motion of a tracer molecule in a fluid,
above the collision scale, where D is the molecular diffusion coefficient. Here however we are
interested in a more subtle effect, which arises by considering the fluid as a time-dependent
random environment. In that case one predicts sample to sample fluctuations of xmax as
we now discuss. Note that this is a non-trivial deviation from Einstein’s theory and arises
because some tracer particles can take advantage of ‘good spots’ in the space-time history
of the environment where they receive a strong bias to the right. Hence it requires a model
with random local bias. Whether it can be detected in experiments or not is as yet an open
question, but it is important to refine the predictions, and search for the most favorable condi-
tions (i.e. N not astronomically large and the sample to sample variance of detectable ampli-
tude). We expect that the moderate deviation regime studied here is a good candidate for
that.

This effect of the time-dependent environment was first predicted and studied rigorously in
[1] for the lattice model of the Beta random walk, and later in [2] for a continuum diffusion
model, using the qualitative arguments recalled in section 2.

Let us recall in simple terms the analysis, starting with the large deviation regime (for rig-
orous statements and derivations see [1]) and then considering the moderate deviation regime
which is the focus of this paper. The standard result for N � 1 independent random variables
gives that

Prob(xmax < x) = eN log(1−P>(x,t)) � e−NP>(x,t) = e−elog N+log P>(x,t)
(49)

since P>(x, t) is small in the region where the argument of the double exponential is of order
unity (i.e. one probes the tail of P>). Since the Gumbel CDF is Prob(G < g) = e−e−g

, the
random variable xmax is distributed so that

log N + G + log P>(xmax, t) = 0. (50)

When P> is the CDF of the simple Gaussian, it gives x2
max

4Dt = log N + G + 1
2 log(Dt/πx2

max),
recovering (48). Note that (50) does not necessarily imply Gumbel fluctuations for xmax

and remains valid in the two other domains of attraction of max stable distributions (e.g. if
P>(x, t) ∝ x−α (50) leads to Frechet fluctuations for xmax since eG/α has Frechet distribution).
The models considered here however are in the Gumbel domain of attraction. In presence of
the random environment log P> additionally fluctuates from sample to sample, and so does
xmax. One distinguishes two regimes.

5.1. Large deviation regime: TW fluctuations

The large deviation regime with u = x
t fixed, which leads to KPZ class fluctuations, is probed

by considering both log N and t large, with a fixed ratio γ = 1
t log N [1, 2]. This leads to a

maximum growing linearly with time, xmax ∝ t. From (50) and (11) one obtains

J(um)t = log N + G + λ(um)t1/3χ2 + o(t1/3), um =
xmax

t
, (51)
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where the rate function J(u) and λ(u) depend on the model. To leading order, the position of

the maximum is determined by J

(
x0

max
t

)
= γ, hence x0

max = J−1(γ)t. Denoting xmax = x0
max

+ δxmax and expanding in powers of δxmax one finds

xmax � J−1(γ)t +
1

J′(J−1(γ))

(
λ
(
J−1(γ)

)
t1/3χ2 + o(t1/3) + G

)
. (52)

For the continuum diffusion model II, using J(u) and λ(u) given in (11), the arguments in

section 2 predict, in the limit of small γ, precisely in an expansion in
γr2

0
D � 1

xmax � t
√

4Dγ

(
1 − γr2

0

96D
+ O

((
γr2

0

D

)2
))

+
1
2

r2/3
0 (4Dγ)1/6t1/3χ2

+ o(t1/3) +

√
D
γ

G. (53)

In equations (52) and (53) the term containing G represents the Gumbel ‘thermal’ fluctua-
tions for different particles in the same environment, while the term containing χ2, the TW
random variable, as well as its subleading correction denoted o(t1/3) represents the sample to
sample fluctuations. Note that in that regime the latter which grow as t1/3 are larger than the
former.

5.2. Moderate deviation regime: KPZ equation fluctuations

We now consider the regime log N ∝
√

t, more precisely we define the dimensionless param-
eter g such that

log N = g

√
4Dt
r0

, (54)

and consider the limit where N, t are large at fixed g. From (50) and (12) one predicts that xmax

is distributed such that

x2
max

4Dt
+ O(log t) = log N + G + hKPZ(0, x̃4

max), x̃max =
xmax

r0

(
4Dt

r2
0

)3/4 , (55)

where the O(log t) term is deterministic and cannot be predicted by the arguments in section 2
(it includes the effect of considering the CDF rather than the PDF). Hence the sample to sample
fluctuations will be controlled by the droplet solution, hKPZ, of the KPZ equation defined in
(9), at an ‘effective time’ equal to x̃4

max. More precisely, expanding around the leading behavior
xmax = x0

max =
√

4Dt log N and using that

x̃0
max =

(
r0 log N√

4Dt

)1/2

= g1/2, (56)

one predicts
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xmax �
√

4Dt log N +

√
Dt

log N

(
G + hKPZ(0, g2) + O(log t)

)
(57)

� r0
√

g

(
4Dt
r2

0

)3/4

+
r0

2
√

g

(
4Dt
r2

0

)1/4 (
G + hKPZ(0, g2) + O(log t)

)
. (58)

At fixed g the leading behavior of the position of the maximum (the first term in (57), which
is deterministic) behaves as xmax ∝ t3/4 in this moderate deviation regime. The fluctuations
are O(t1/4) and are given by the sum of two random variables, i.e. the law of the sum is a
convolution of a Gumbel distribution and of the PDF of the height of the droplet solution of the
KPZ equation at effective time g2. At fixed g of order unity the Gumbel ‘thermal’ fluctuations
(different particles in the same environment) are of the same order as the sample to sample
fluctuations governed by the KPZ equation. The latter exhibit a crossover from being Gaussian
and ∝ g1/4 for g � 1, to being large and ∝ g1/3 for g � 1 where they smoothly match the
the TW result in (53). It is important to stress that, in the limit of large t, the present regime,
i.e. log N ∝

√
t, is attained for more moderate values of N than the large deviation regime

log N ∝ t. Hence it should be easier to detect in experiments.
The exact solution for the model in section 3.2 gives in addition the precise value of the

deterministic O(logt) term mentioned above. From (30) we obtain

P(xmax < 21/4√gt3/4 + yt1/2) � exp

(
−e

−21/4√gt1/4y− 1
4 log t

2g2 +ht

)
, (59)

where ht is a random variable converging in law to hKPZ(0, g2). This leads to

xmax = 21/4√gt3/4 +
1

21/4√g
t1/4

(
G + hKPZ(0, g2) − cN + log

√
2πt

)
. (60)

These results are in agreement with (57), if one sets r0 = 2, D = 1/2, and predict in addition
the O(logt) term which was not explicit in (57) (recall that cN was defined in (48)).

Remark 5.1. The distribution of the random variable in (57) and (60) also appears in an
apparently unrelated context of fermions in a trap at finite temperature [38].
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Appendix A. More general continuous model

The equation (24) can be—quite formally [5, section 6]—associated to the stochastic PDE

∂tZ =
1
2
∂2

x Z +
1√
λ
ξ∂xZ, (61)
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in the sense that the mixed momentsE [Z(x1, t) . . . Z(xk, t)] solve (24) when one applies naively
the definition of the covariance of the white noise E[ξ(x, t)ξ(s, y)] = δ(x − y)δ(t − s). The rea-
son why this cannot be more than a formal computation is because one expects that a solution
of (61) with initial data Z0(x) satisfies

Z(x, t) = pt ∗ Z0 +

∫
R

dy
∫ t

0
ds pt−s(x − y)ξ(y, s)∂yZ(y, s), (62)

where pt(x) is the standard heat kernel and ∗ denotes the convolution of functions (in the space
variable). The integral in (62) cannot be directly understood as an Itô integral: indeed, there is
a priori no reason for ∂yZ(y, s) to be a function adapted to the filtration generated by ξ(y′, s′)
for y′ ∈ R, s′ < s. The term ∂yZ(y, s) should be understood as a distribution and making sense
of (62) requires to define the product of two distributions ∂yZ(y, s) and ξ(y, s).

A.1. Interpolation between multiplicative SHE and stochastic flows

Discarding the mathematical issues to make sense of (61) that we have just explained, let us
study the stochastic PDE

∂tZ = ∂2
x Z + ξ(g0 + g1∂x)Z, (63)

where g0 and g1 are two parameters and ξ(x, t) a unit space time white noise. It interpolates
between (61) for g0 = 0 and the multiplicative noise stochastic equation (10) for g1 = 0.3

Through the Cole–Hopf transformation, it is associated to a variant of the KPZ equation with
additional gradient noise

∂th = ∂2
x h + (∂xh)2 + ξg1∂xh + g0ξ. (64)

Note that there is a particular solution of the equation (63) which reads

Zd(x, t) = e

g2
0

g2
1

t− g0
g1

x

(65)

and which does not see the noise since (g0 + g1∂x)Zd = 0. It is thus natural to write

Z(x, t) = Zd(x, t)Z̃(x, t), (66)

leading, for g1 �= 0, to the equation

∂tZ̃ = ∂2
x Z̃ + ξg1∂xZ̃ − 2g0

g1
∂xZ̃. (67)

This can be solved as

Z̃(x, t) = Ẑ

(
x − 2

g0

g1
t, t

)
(68)

where Ẑ satisfies (61) (without the prefactor 1/2 in front of the Laplacian), that is

∂tẐ = ∂2
x Ẑ + ξ̂g1∂xẐ, (69)

3 An interesting and more general interpolation reads ∂tZ = ∂2
x Z + g0ξ0 + g1ξ1∂xZ, where ξ0 and ξ1 are two Gaussian

noises with an arbitrary mutual correlation.
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where ξ̂(x, t) = ξ
(

x + 2 g0
g1

t, t
)

is also a unit space time white noise if ξ is one. Thus, we have

found that as long as g1 �= 0, the model associated with the stochastic PDE (63) reduces, after
changes of variables and multiplication by Zd , to the stochastic PDE (61) associated with the
integrable model of stochastic flows (considered in section 3.2).

A.2. Bose gas with interaction g0δ(xi − xj) + g1δ(xi − xj)∂xi∂xj

The mixed moments E[Z(x1, t) . . .Z(xk, t)] of the solution Z(x, t) of the equation (63) solve the
equation

∂tu =
∑

i

∂2
xi

u +
∑
i �= j

δ(xi − x j)(g1∂xi + g0)(g1∂x j + g0)u. (70)

According to appendix A.1, the above equation (70) should reduce to (24) after appropri-
ate changes of variables and renormalization. In this section, we show that we may as well
solve (70) directly by Bethe ansatz. A similar operator was considered in [19] in the context
of quantum integrable model for interacting bosons, and it was noticed that such operators
should be Bethe ansatz diagonalizable (in [19], the partial derivatives and delta functions are
exchanged, this would correspond to look at forward transition probabilities for our diffusion
models, instead of backward transition probabilities).

The operator applied to u on the rhs of (70) preserves the symmetry with respect to per-
muting variables. As we are interested in this paper in solutions that are symmetric (the mixed
moments are definitely symmetric with respect to permuting variables xi’s) we can restrict our
considerations to the set of symmetric functions. Hence we only need to determine the solution
u on the sector x1 � · · · � xk. The boundary condition when xi = xi+1 is

(∂xi − ∂xi+1 + g2
1∂xi∂xi+1 + g2

0 + g0g1(∂xi + ∂xi+1 ))u = 0. (71)

For certain initial data, we may search for solutions of the form

u(�x, t) =
∫

r1+iR

dz1

2iπ
. . .

∫
rk+iR

dzk

2iπ

k∏
i=1

g(zi)e
f (zi)xi+ f (zi)

2t
∏
A<B

zA − zB

zA − zB − 1
, (72)

on the sector x1 � · · · � xk, where the variable zi is integrated along the vertical line ri + iR
where for i > j, ri > rj + 1, and the function g is related to the initial data for u.

In order for the boundary condition (71) to be satisfied, the function f (z) must be such that

f (z1) − f (z2) + g2
1 f (z1) f (z2) + g2

0 + g0g1( f (z1) + f (z2)) (73)

evaluated at z1 = z2 + 1 vanishes. In that case, the left-hand side of (71) can be written as a
contour integral where there is no more pole at zi = zi+1 + 1, so that the contours for zi+1 can
be deformed to be the same as the contour for zi (that is ri + iR), and the integral vanishes
because the integrand is antisymmetric with respect to exchanging zi, zi+1.

We found two family of solutions of (73), which we show are in fact the same:

f (z) =
−g2

0(z + γ)
1 + g0g1(z + γ)

, (74)

and

f (z) =
1 − g0g1(z + δ)

g2
1(z + δ)

, (75)
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which are identical upon the relation

δ − γ =
1

g0g1
. (76)

In general, eigenfunctions of (70) can be written (in the sector x1 � · · · � xk) as

Ψz(�x) =
∑
σ∈Sn

σ

(∏
A<B

zA − zB − 1
zA − zB

∏
i

e f (zi)xi

)
, (77)

where the notation σ(·) means that for any function F, σ (F(�z)) = F(zσ(1), . . . , zσ(k)). We expect
that these functions Ψ�z are limits of so-called spin-Hall–Littlewood functions, introduced in
[39] (see also [40]), which are rational deformations of the Hall–Littlewood symmetric func-
tions. Likewise, the functions Ψ�z are rational deformations of the Bethe ansatz eigenfunctions
of the Lieb–Liniger model (the rational transformation is given by (74), (75) and is similar
with rational transformations considered in [19]).

In order to discuss the initial data, it is convenient to use the change of variable f (z) = w,
or equivalently we can look directly for a solution of the following form form: for x1 � x2 �
· · · � xk,

u(x1, . . . , xn, t) =
∫
α1+iR

dw1

2iπ
. . .

∫
αk+iR

dwk

2iπ

k∏
i=1

g0

g0 + g1wi
ewixi+w2

i t

×
∏
a<b

wb − wa

wb − wa − (g0 + g1wa)(g0 + g1wb)
(78)

where the contours are vertical lines such that −g0/g1 < α1 � · · · � αk (the αi are suffi-
ciently spaced so that the poles for the variable wb in the product over a < b all lie on the left
of αb + iR). The formula (78) solves (70) (71) for the initial condition

u(�x, 0) =
k∏

i=1

g0

g1
e−g0xi/g1θ(xi), where xi �= 0 for all 1 � i � k, (79)

and θ(x) = 𝟙x>0. Indeed, at t = 0, if xk < 0 then we may shift horizontally the contour for wk

to +∞, and the integrand uniformly converges to zero because of the factor ewk xk . Hence we
may assume that x1 � · · · � xk � 0. Now we may shift the contour for w1 to −∞. If x1 > 0,
the integral will be zero for the same reason as previously, but we have crossed a pole during
the contour deformation at w1 = −g0/g1. The associated residue is readily computed and it
equals g0/g1eg0x1/g1 . One may then proceed to the same contour deformation with all variables
successively and obtain the claimed formula. If some 1 � i � k is such that xk = xk−1 = · · · =
xi = 0, the integral can be computed but (79) does not hold.

Going back to (72), the function g(z) is determined from (78) using the Jacobian

dzg(z) = dw
g0

g0 + g1w
. (80)

Remark A.1. Now that we have found f (z) and g(z) we may apply e.g. [36, proposition 6.2.7]
(72) so as to write the solution as a sum of integrals of determinants. These integrals of deter-
minants may be further assembled to form Fredholm determinants convenient for asymptotic
analysis. We will not discuss this further, since we have observed in appendix A.1 that the
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model corresponding to (70) or (63) can be reduced to the model studied in [5] for which
determinantal formulas have been already proved.
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