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Abstract. We study an oriented first passage percolation model for the
evolution of a river delta. This model is exactly solvable and occurs as the
low temperature limit of the beta random walk in random environment.
We analyze the asymptotics of an exact formula from [13] to show that, at
any fixed positive time, the width of a river delta of length L approaches a
constant times L2/3 with Tracy-Widom GUE fluctuations of order L4/9.
This result can be rephrased in terms of particle systems. We introduce
an exactly solvable particle system on the integer half line and show that
after running the system for only finite time the particle positions have
Tracy-Widom fluctuations.

Keywords: KPZ universality · First passage percolation ·
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1 Model and Results

1.1 Introduction

First passage percolation was introduced in 1965 to study a fluid spreading
through a random environment [37]. This model has motivated many tools in
modern probability, most notably Kingman’s sub-additive ergodic theorem (see
the review [5] and references therein); it has attracted attention from mathe-
maticians and physicists alike due to the simplicity of its definition, and the ease
with which fascinating conjectures can be stated.

The Kardar-Parisi-Zhang (KPZ) universality class has also become a central
object of study in recent years [27]. Originally proposed to explain the behavior
of growing interfaces in 1986 [39], it has grown to include many types of models
including random matrices, directed polymers, interacting particle systems, per-
colation models, and traffic models. Much of the success in studying these has
come from the detailed analysis of a few exactly solvable models of each type.

We study an exactly solvable model at the intersection of percolation theory
and KPZ universality: Bernoulli-exponential first passage percolation (FPP).
Here is a brief description (see Definition 1 for a more precise definition).
Bernoulli-exponential FPP models the growth of a river delta beginning at the
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origin in Z
2
≥0 and growing depending on two parameters a, b > 0. At time 0,

the river is a single up-right path beginning from the origin chosen by the rule
that whenever the river reaches a new vertex it travels north with probability
a/(a + b) and travels east with probability b/(a + b) (thick black line in Fig. 1).
The line with slope a/b can be thought of as giving the direction in which the
expected elevation of our random terrain decreases fastest.

(0, 0)

Fig. 1. A sample of the river delta (Bernoulli-exponential FPP percolation cluster)
near the origin. The thick black random walk path corresponds to the river (percolation
cluster) at time 0. The other thinner and lighter paths correspond to tributaries added
to the river delta (percolation cluster) at later times.

As time passes, the river erodes its banks creating forks. At each vertex
which the river leaves in the rightward (respectively upward) direction, it takes
an amount of time distributed as an exponential random variable with rate a
(resp. b) for the river to erode through its upward (resp. rightward) bank. Once
the river erodes one of its banks at a vertex, the flow at this vertex branches to
create a tributary (see gray paths in Fig. 1). The path of the tributary is selected
by the same rule as the path of the time 0 river, except that when the tributary
meets an existing river it joins the river and follows the existing path. The full
path of the tributary is added instantly when the river erodes its bank.

In this model the river is infinite, and the main object of study is the set of
vertices included in the river at time t, i.e. the percolation cluster. We will also
refer to the shape enclosed by the outermost tributaries at time t as the river
delta (see Fig. 2 for a large scale illustration of the river delta).

The model defined above can also be seen as the low temperature limit of
the beta random walk in random environment (RWRE) model [13], an exactly
solvable model in the KPZ universality class. Bernoulli-exponential FPP is par-
ticularly amenable to study because an exact formula for the distribution of the
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percolation cluster’s upper border (Theorem 3 below) can be extracted from an
exact formula for the beta RWRE [13]. We perform an asymptotic analysis on
this formula to prove that at any fixed time, the width of the river delta satis-
fies a law of large numbers type result with fluctuations converging weakly to
the Tracy-Widom GUE distribution (see Theorem 2). Our law of large numbers
result was predicted in [13] by taking a heuristic limit of [13, Theorem 1.19];
we present this non-rigorous computation in Sect. 1.4. We also give other inter-
pretations of this result. In Sect. 1.6 we introduce an exactly solvable particle
system and show that the position of a particle at finite time has Tracy-Widom
fluctuations.

Fig. 2. The percolation cluster for 400×400 Bernoulli-exponential FPP at time 1 with
a = b = 1. Paths occurring earlier are shaded darker, so the darkest paths occur near
t = 0 and the lightest paths occur near t = 1.

1.2 Definition of the Model

We now define the model more precisely in terms of first passage percolation
following [13].
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Definition 1 (Bernoulli-exponential first passage percolation). Let Ee

be a family of independent exponential random variables indexed by the edges e
of the lattice Z

2
≥0. Each Ee is distributed as an exponential random variable with

parameter a if e is a vertical edge, and with parameter b if e is a horizontal edge.
Let (ζi,j) be a family of independent Bernoulli random variables with parameter
b/(a + b). We define the passage time te of each edge e in the lattice Z

2
≥0 by

te =

{
ζi,jEe if e is the vertical edge (i, j) → (i, j + 1),
(1 − ζi,j)Ee if e is the horizontal edge (i, j) → (i + 1, j).

We define the point to point passage time TPP(n,m) by

TPP(n,m) = min
π:(0,0)→(n,m)

∑
e∈π

te.

where the minimum is taken over all up-right paths from (0, 0) to (n,m). We
define the percolation cluster C(t), at time t, by

C(t) =
{
(n,m) : TPP(n,m) ≤ t

}
.

At each time t, the percolation cluster C(t) is the set of points visited by a
collection of up-right random walks in the quadrant Z

2
≥0. C(t) evolves in time

as follows:

– At time 0, the percolation cluster contains all points in the path of a directed
random walk starting from (0, 0), because at any vertex (i, j) we have passage
time 0 to either (i, j + 1) or (i + 1, j) according to the independent Bernoulli
random variables ζi,j .

– At each vertex (i, j) in the percolation cluster C(t), with an upward (resp.
rightward) neighbor outside the cluster, we add a random walk starting from
(i, j) with an upward (resp. rightward) step to the percolation cluster with
exponential rate (a) (resp. b). This random walk will almost surely hit the
percolation cluster after finitely many steps, and we add to the percolation
cluster only those points that are in the path of the walk before the first
hitting point (see Fig. 1).

Define the height function Ht(n) by

Ht(n) = sup{m ∈ Z≥0|TPP(n,m) ≤ t}, (1)

so that (n,Ht(n)) is the upper border of C(t).

1.3 History of the Model and Related Results

Bernoulli-exponential FPP was first introduced in [13], which introduced an
exactly solvable model called the beta random walk in random environment
(RWRE) and studied Bernoulli-exponential FPP as a low temperature limit of
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this model (see also the physics works [49,50] further studying the Beta RWRE
and some variants). The beta RWRE was shown to be exactly solvable in [13]
by viewing it as a limit of q-Hahn TASEP, a Bethe ansatz solvable particle
system introduced in [44]. The q-Hahn TASEP was further analyzed in [20,28,
54], and was recently realized as a degeneration of the higher spin stochastic six
vertex model [2,15,25,31], so that Bernoulli-exponential FPP fits as well in the
framework of stochastic spin models.

Tracy-Widom GUE fluctuations were shown in [13] for Bernoulli-exponential
FPP (see Theorem 1) and for Beta RWRE. In the Beta RWRE these fluctuations
occur in the quenched large deviation principle satisfied by the random walk and
for the maximum of many random walkers in the same environment.

The connection to KPZ universality was strengthened in subsequent works.
In [30] it was shown that the heat kernel for the time reversed Beta RWRE
converges to the stochastic heat equation with multiplicative noise. In [9] it was
shown using a stationary version of the model that a Beta RWRE conditioned
to have atypical velocity has wandering exponent 2/3 (see also [26]), as expected
in general for directed polymers in 1+1 dimensions. The stationary structure of
Bernoulli-exponential FPP was computed in [48] (In [48] Bernoulli-exponential
FPP is referred to as the Bernoulli-exponential polymer).

The first occurrence of the Tracy-Widom distribution in the KPZ universality
class dates back to the work of Baik, Deift and Johansson on longest increas-
ing subsequences of random permutations [7] (the connection to KPZ class was
explained in e.g. [45]) and the work of Johansson on TASEP [38]. In the past
ten years, following Tracy and Widom’s work on ASEP [51–53] and Borodin and
Corwin’s Macdonald processes [16], a number of exactly solvable 1 + 1 dimen-
sional models in the KPZ universality class have been analyzed asymptotically.
Most of them can be realized as more or less direct degenerations of the higher-
spin stochastic six-vertex model. This includes particle systems such as exclusion
processes (q-TASEP [10,22,33,43] and other models [6,12,36,54]), directed poly-
mers ([17,18,21,32,40,42]), and the stochastic six-vertex model [1,3,11,19,24].

1.4 Main Result

The study of the large scale behavior of passage times TPP(n,m) was initiated in
[13]. At large times, the fluctuations of the upper border of the percolation cluster
(described by the height function Ht(n)) has GUE Tracy-Widom fluctuations
on the scale n1/3.

Theorem 1 ([13, Theorem 1.19]). Fix parameters a, b > 0. For any θ > 0 and
x ∈ R,

lim
n→∞P

(
Hτ(θ)n − κ(θ)n

ρ̃(θ)n1/3
≤ x

)
= FGUE(x), (2)
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where FGUE is the GUE Tracy-Widom distribution (see Definition 3) and κ(θ),
τ(θ), ρ̃(θ) = κ′(θ)

τ ′(θ)ρ(θ) are functions defined in [13] by

κ(θ) :=
1
θ2 − 1

(a+θ)2

1
(a+θ)2 − 1

(a+b+θ)2

,

τ(θ) :=
1

a + θ
− 1

θ
+ κ(θ)

(
1

a + θ
− 1

a + b + θ

)
=

a(a + b)
θ2(2a + b + 2θ)

,

ρ(θ) :=
[

1
θ3

− 1
(a + θ)3

+ κ(θ)
(

1
(a + b + θ)3

− 1
(a + θ)3

)]1/3

.

Note that as θ ranges from 0 to ∞, κ(θ) ranges from +∞ to a/b and τ(θ)
ranges from +∞ to 0.

Remark 1. In [13] the limit theorem is incorrectly stated as

lim
n→∞P

(
mini≤n TPP(i, κ(θ)n) − τ(θ)n

ρ(θ)n1/3
≤ x

)
= FGUE(x),

but following the proof in [13, Section 6.1], we can see that the inequality and the
sign of x should be reversed. Further, we have reinterpreted the limit theorem
in terms of height function Ht(n) instead of passage times TPP(n,m) using the
relation (1).

In this paper, we are interested in the fluctuations of Ht(n) for large n but
fixed time t. Let us scale θ in (2) above as

θ =
(

na(a + b)
2t

)1/3

,

so that
τ(θ)n = t + O(n−1/3).

Let us introduce constants

λ =
(

a(a + b)
2t

)1/3

, d =
3a(a + b)

2bλ
, σ =

(
3a(a + b)λ

2b3

)1/3

. (3)

Then, we have the approximations

κ(θ)n =
a

b
n + dn2/3 + o(n4/9),

ρ̃(θ)n1/3 = σn4/9 + o(n4/9).

Thus, formally letting θ and n go to infinity in (2) suggests that for a fixed time
t, it is natural to scale the height function as

Ht(n) =
a

b
n + dn2/3 + σn4/9χn,

and study the asymptotics of the sequence of random variables χn.
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Our main result is the following.

Theorem 2. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞P

(
Ht(n) − a

b n − dn2/3

σn4/9
≤ x

)
= FGUE(x),

where FGUE is the GUE Tracy-Widom distribution.

Note that the heuristic argument presented above to guess the scaling expo-
nents and the expression of constants d and σ is not rigorous, since Theorem 1
holds for fixed θ. Theorem 1 could be extended without much effort to a weak
convergence uniform in θ for θ varying in a fixed compact subset of (0,+∞).
However the case of θ and n simultaneously going to infinity requires more care-
ful analysis. Indeed, for θ going to infinity very fast compared to n, Tracy-Widom
fluctuations would certainly disappear as this would correspond to considering
the height function at time τ(θ)n ≈ 0, that is a simple random walk having
Gaussian fluctuations on the n1/2 scale. We explain in the next section how we
shall prove Theorem 2.

The scaling exponents in Theorem 2 might seem unusual, although the pre-
ceding heuristic computation explains how they result from rescaling a model
which has the usual KPZ scaling exponents. A similar situation occurs for scal-
ing exponents of the height function of directed last passage percolation in thin
rectangles [8,14] and for the free energy of directed polymers [4] under the same
limit.

1.5 Outline of the Proof

Recall that given an integral kernel K : C2 → C, its Fredholm determinant is
defined as

det(1 + K)L2(C) :=
1

2πi

∞∑
n=0

1
n!

∫
Cn

det[K(xi, xj)]ni,j=1dx1...dxn.

To prove Theorem 2 we begin with the following Fredholm determinant formula
for P(Ht(n) < m), and perform a saddle point analysis.

Theorem 3. ([13, Theorem 1.18]).

P(Ht(n) < m) = det(I − Kn)L2(C0),

where C0 is a small positively oriented circle containing 0 but not −a − b, and
Kn : L2(C0) → L

2(C0) is defined by its integral kernel

Kn(u, u′) =
1

2πi

∫ 1/2+i∞

1/2−i∞

ets

s

g(u)
g(s + u)

ds

s + u − u′ , where (4)

g(u) =
(

a + u

u

)n(
a + u

a + b + u

)m 1
u

. (5)
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Remark 2. Note that [13, Theorem 1.18] actually states P(Ht(n) < m) = det(I+
Kn)L2(C0), instead of det(I − Kt,n)L2(C0) due to a sign mistake.

This result was proved in [13] by taking a zero-temperature limit of a similar
formula for the Beta RWRE obtained using the Bethe ansatz solvability of q-
Hahn TASEP and techniques from [16,22]. The integral (4) above is oscillatory
and does not converge absolutely, but we may deform the contour so that it
does. We will justify this deformation in Sect. 2.2.

Theorem 2 is proven in Sect. 2 by applying steep descent analysis to
det(1 − Kn), however the proofs of several key lemmas are deferred to later
sections. The main challenge in proving Theorem 2 comes from the fact that,
after a necessary change of variables ω = n−1/3u, the contours of the Fredholm
determinant are being pinched between poles of the kernel Kn at ω = 0 and
ω = −a−b

n1/3 as n → ∞. In order to show that the integral over the contour near
0 does not affect the asymptotics, we prove bounds for Kn near 0, and carefully
choose a family of contours Cn on which we can control the kernel. This quite
technical step is the main goal of Sect. 3. Section 4 is devoted to bounding the
Fredholm determinant expansion of det(1−Kn)L2(Cn), in order to justify the use
of dominated convergence in Sect. 2.

1.6 Other Interpretations of the Model

There are several equivalent interpretations of Bernoulli-exponential first passage
percolation. We will present the most interesting here.

A Particle System on the Integer Line. The height function of the percola-
tion cluster Ht(n) is equivalent to the height function of an interacting particle
system we call geometric jump pushTASEP, which generalizes pushTASEP (the
R = 0 limit of PushASEP introduced in [23]) by allowing jumps of length greater
than 1. This model is similar to Hall-Littlewood pushTASEP introduced in [36],
but has a slightly different particle interaction rule.

Definition 2 (Geometric jump pushTASEP). Let Geom(q) denote a geo-
metric random variable with P(Geom(q) = k) = qk(1 − q). Let 1 ≤ p1(t) <
p2(t) < ... < pi(t) < ... be the positions of ordered particles in Z≥1. At time
t = 0 the position n ∈ Z≥0 is occupied with probability b/(a + b). Each particle
has an independent exponential clock with parameter a, and when the clock cor-
responding to the particle at position pi rings, we update each particle position pj

in increasing order of j with the following procedure. (pi(t−) denotes the position
of particle i infinitesimally before time t.)

– If j < i, then pj does not change.
– pi jumps to the right so that the difference pi(t) − pi(t−) is distributed as

1 + Geom(a/(a + b))
– If j > i, then

• If the update for pj−1(t) causes pj−1(t) ≥ pj(t−), then pj(t) jumps right
so that pj(t) − pj−1(t) is distributed as 1 + Geom(a/(a + b)).
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• Otherwise pj does not change.
• All the geometric random variables in the update procedure are

independent.

Fig. 3. This figure illustrates a single update for geometric jump pushTASEP. The
clock corresponding to the leftmost particle rings, activating the particle. The first
particle jumps 2 steps pushing the next particle and activating it. This particle jumps
1 step pushing the rightmost particle and activating it. The rightmost particle jumps
3 steps, and all particles are now in their original order, so the update is complete.

Another way to state the update rule is that each particle jumps with expo-
nential rate a, and the jump distance is distributed as 1 + Geom(a/(a + b)).
When a jumping particle passes another particle, the passed particle is pushed
a distance 1 + Geom(a/(a + b)) past the jumping particle’s ending location
(see Fig. 3).

The height function Ht(n) at position n and time t is the number of unoccu-
pied sites weakly to the left of n. If we begin with the distribution of (n,Ht(n)) in
our percolation model, and rotate the first quadrant clockwise 45◦, the resulting
distribution is that of (n,Ht(n)). The horizontal segments in the upper border
of the percolation cluster correspond to the particle positions, thus

Ht(n) = pt(n) − n = sup{k : Ht(n + k) ≥ k}.

A direct translation of Theorem 2 gives:

Corollary 1. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞P

(
pt(n) − (

a+b
b

)
n − dn2/3

σn4/9
≤ x

)
= FGUE(x),

where FGUE(x) is the Tracy-Widom GUE distribution.

To the authors knowledge Corollary 1 is the first result in interacting particle
systems showing Tracy-Widom fluctuations for the position of a particle at finite
time.
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Degenerations. If we set b = 1, t′ = t/a, and a → 0, then in the new time
variable t′ each particle performs a jump with rate 1 and with probability going to
1, each jump is distance 1, and each push is distance 1. This limit is pushTASEP
on Z≥0 where every site is occupied by a particle at time 0. Recall that in
pushTASEP, the dynamics of a particle are only affected by the (finitely many)
particles to its left, so this initial data makes sense.

We can also take a continuous space degeneration. Let x be the spatial coor-
dinate of geometric jump pushTASEP, and let exp(λ) denote an exponential ran-
dom variable with rate λ. Choose a rate λ > 0, and set b = λ

n , x′ = x/n, a = n−λ
n ,

and let n → ∞. Then our particles have jump rate n−λ
n → 1, jump distance

Geom(1−λ/n)
n → exp(λ), and push distance Geom(1−λ/n)

n → exp(λ). This is a con-
tinuous space version of pushTASEP on R≥0 with random initial conditions such
that the distance between each particle position pi and its rightward neighbor
pi+1 is an independent exponential random variable of rate λ. Each particle
has an exponential clock, and when the clock corresponding to the particle at
position pi rings, an update occurs which is identical to the update for geo-
metric jump pushTASEP except that each occurrence of the random variable
1 + Geom(a/(a + b)) is replaced by the random variable exp(λ).

A Benchmark Model for Travel Times in a Square Grid City. The
first passage times of Bernoulli-exponential FPP can also be interpreted as the
minimum amount of time a walker must wait at streetlights while navigating a
city [29]. Consider a city, whose streets form a grid, and whose stoplights have
i.i.d exponential clocks. The first passage time of a point (n,m) in our model has
the same distribution as the minimum amount of time a walker in the city has
to wait at stoplights while walking n streets east and m streets north. Indeed
at each intersection the walker encounters one green stoplight with zero passage
time and one red stoplight at which they must wait for an exponential time.
Note that while the first passage time is equal to the waiting time at stoplights
along the best path, the joint distribution of waiting times of walkers along
several paths is different from the joint passage times along several paths in
Bernoulli-exponential FPP.

1.7 Further Directions

Bernoulli-exponential FPP has several features that merit further investigation.
From the perspective of percolation theory, it would be interesting to study how
long it takes for the percolation cluster to contain all vertices in a given region,
or how geodesics from the origin coalesce as two points move together.

From the perspective of KPZ universality, it is natural to ask: what is the
correlation length of the upper border of the percolation kernel, and what is the
joint law of the topmost few paths.

Under diffusive scaling limit, the set of coalescing simple directed random walks
originating from every point of Z2 converges to the Brownian web [34,35]. Hence
the set of all possible tributaries in our model converges to the Brownian web.
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One may define a more involved set of coalescing and branching random walks
which converges to a continuous object called the Brownian net ([41], [47], see
also the review [46]). Thus, it is plausible that there exist a continuous limit
of Bernoulli-Exponential FPP where tributaries follow Brownian web paths and
branch at a certain rate at special points of the Brownian web used in the construc-
tion of the Brownian net.

After seeing Tracy-Widom fluctuations for the edge statistics it is natural to
ask whether the density of vertices inside the river along a cross section is also
connected to random matrix eigenvalues and whether a statistic of this model
converges to the positions of the second, third, etc. eigenvalues of the Airy point
process.

1.8 Notation and Conventions

We will use the following notation and conventions.

– Bε(x) will denote the open ball of radius ε > 0 around the point x.
– Re[x] will denote the real part of a complex number x, and Im[x] denotes the

imaginary part.
– C and γ with any upper or lower indices will always denote an integration

contour in the complex plane. K with any upper or lower indices will always
represent an integral kernel. A lower index like γr, Cn, or Kn will usually
index a family of contours or kernels. An upper index such as γε, Cε, or Kε

will indicate that we are intersecting our contour with a ball of radius ε, or
that the integral defining the kernel is being restricted to a ball of radius ε.

2 Asymptotics

2.1 Setup

The steep descent method is a method for finding the asymptotics of an integral
of the form

IM =
∫

C
eMf(z)dz,

as M → ∞, where f is a holomorphic function and C is an integration contour
in the complex plane. The technique is to find a critical point z0 of f , deform
the contour C so that it passes through z0 and Re[f(z)] decays quickly as z
moves along the contour C away from z0. In this situation eMf(z0)/eMf(z) has
exponential decay in M . We use this along with specific information about our
f and C, to argue that the integral can be localized at z0, i.e. the asymptotics of∫

C∩Bε(z0)
eMf(z)dz are the same as those of IM . Then we Taylor expand f near z0

and show that sufficiently high order terms do not contribute to the asymptotics.
This converts the first term of the asymptotics of IM into a simpler integral that
we can often evaluate.

In Sect. 2.1 we will manipulate our formula for P(h(n) < m), and find a
function f1 so that the kernel Kn can be approximated by an integral of the form
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∫
λ+iR

en1/3[f1(z)−f1(ω)]dz. Approximating Kn in this way will allow us to apply
the steep descent method to both the integral defining Kn and the integrals over
C0 in the Fredholm determinant expansion.

For the remainder of the paper we fix a time t > 0, and parameters a, b > 0.
All constants arising in the analysis below depend on those parameters t, a, b,
though we will not recall this dependency explicitly for simplicity of notation.

We also fix henceforth

m =
⌊a

b
n + dn2/3 + n4/9σx

⌋
. (6)

We consider Kn and change variables setting z̃ = s + u, dz̃ = ds to obtain

K̃n(u, u′) =
1

2πi

∫ 1/2+u+i∞

1/2+u−i∞

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃.

In the following lemma, we change our contour of integration in the z̃ variable
so that it does not depend on u.

Lemma 1. For every fixed n,

K̃n(u, u′) =
1

2πi

∫
n1/3λ+iR

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃.

Proof. Choose the contour C0 to have radius 0 < r < min[1/4, λ]. This choice of
r means that we do not cross C0 when deforming the contour 1/2 + u + iR to
λ + iR. In this region K is a holomorphic function, so this deformation does not
change the integral provided that for M real,

1
2πi

∫ n1/3λ+iM

1/2+u+iM

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃ −−−−−→
M→±∞

0.

This integral converges to 0 because for all z̃ ∈ [n1/3λ − iM, 1/2 + u − iM ] ∪
[n1/3λ + iM, 1/2 + u + iM ] we have∣∣∣∣ 1

(z̃ − u)(z̃ − u′)g(z̃)

∣∣∣∣ ∼ 1
M

,

as M → ∞.

Set

h̃n(z) = −n log
(

a + z

z

)
− m log

(
a + z

a + b + z

)
, so that eh̃n(z) =

z

g(z)
.

Then

Kn(u, u′) =
1

2πi

∫
n1/3λ+iR

etz̃+h̃n(z̃)

etu+h̃n(u)

z̃

u

dz̃

(z̃ − u)(z̃ − u′)
.
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Now perform the change of variables

z = n−1/3z̃, ω = n−1/3u, ω′ = n−1/3u′.

If we view our change of variables as occuring in the Fredholm determinant
expansion, then due to the dωis, we see that scaling all variables by the same
constant does not change the Fredholm determinant det(1 −Kn)L2(C). Thus our
change of variables gives

Kn(ω, ω′) =
1

2πi

∫
λ+iR

en1/3t(z−ω)

(z − ω)(z − ω′)
ehn(z)−hn(ω) z

ω
dz

where

hn(z) = h̃n(n1/3z) = −n log
(

a + n1/3z

n1/3z

)
− m log

(
a + n1/3z

a + b + n1/3z

)
.

Remark 3. The contour for ω, ω′ becomes n−1/3C0 after the change of variables,
but Kn(ω, ω′) is holomorphic in most of the complex plane. Examining of the
poles of the integrand for Kn(ω, ω′), we see that we can deform the contour for
ω, ω′ in any way that does not cross the line λ+ iR, the pole at −(a+b)/n1/3, or
the pole at 0, without changing the Fredholm determinant det(I−Kn)L2(n−1/3C0).

Taylor expanding the logarithm in the variable n gives

hn(z) = −n1/3

(
a(a + b)

2z2
− bd

z

)
− n1/9

(−bσx

z

)
+ rn(z).

Here rn(z) = O(1) in a sense that we make precise in Lemma 3. The kernel can
be rewritten as

Kn(ω, ω′) =

1

2πi

∫
λ+iR

exp(n1/3(f1(z) − f1(w)) + n1/9(f2(z) − f2(ω)) + (rn(z) − rn(ω)))

(z − ω)(z − ω′)
z

ω
dz

where

f1(z) = tz − a(a + b)
2z2

+
bd

z
, f2(z) =

bσx

z
. (7)

We have approximated the kernel as an integral of the form
∫

en1/3[f1(z)−f1(ω)]dz.
To apply the steep-descent method, we want to understand the critical points of
the function f1. We have

f
′
1(z) = t +

a(a + b)

z3
− db

z2
, f

′′
1 (z) = − 3a(a + b)

z4
+

2bd

z3
, f

′′′
1 (z) =

12a(a + b)

z5
− 6bd

z4
. (8)
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Where a, b are the parameters associated to the model. Let the constant λ be as
defined in (3), then 0 = f ′

1(λ) = f ′′
1 (λ) = 0, and

f ′′′
1 (λ) =

3a(a + b)
λ5

= 2
(

bσ

λ2

)3

= 2
(−f ′

2(λ)
x

)3

,

is a positive real number. σ is defined in Eq. (3).
Recall the definition of the Tracy-Widom GUE distribution, which governs

the largest eigenvalue of a gaussian hermitian random matrix.

Definition 3. The Tracy-Widom distribution’s distribution function is defined
as FGUE(x) = det(1 − KAi)L2(x,∞), where KAi is the Airy kernel,

KAi(s, s′) =
1

2πi

∫ e2πi/3∞

e−2πi/3∞
dω

1
2πi

∫ eπi/3∞

e−πi/3∞
dz

ez3/3−zs

eω3/3−ωs′
1

(z − ω)
.

In the above integral the two contours do not intersect. We can think of the
inner integral following the contour (e−πi/3∞, 1] ∪ (1, eπi/3∞), and the outer
integral following the contour (e−2πi/3∞, 0]∪ (0, e2πi/3∞). Our goal through the
rest of the paper is to show that the Fredholm determinant det(I−Kn) converges
to the Tracy-Widom distribution as n → ∞.

2.2 Steep Descent Contours

Definition 4. We say that a path γ : [a, b] → C is steep descent with respect
to the function f at the point x = γ(0) if d

dtRe[f(γ(t))] > 0 when t > 0, and
d
dtRe[f(γ(t))] < 0 when t < 0.

We say that a contour C is steep descent with respect to a function f at a
point x, if the contour can be parametrized as a path satisfy the above definition.
Intuitively this statement means that as we move along the contour C away from
the point x, the function f is strictly decreasing.

In this section we will find a family of contours γr for the variable z and so
that γr is steep descent with respect to Re[f1(z)] at the point λ, and study the
behavior of Re[f1]. The contours Cn for ω are constructed in Sect. 3.

Lemma 2. The contour λ + iR is steep descent with respect to the function
Re[f1] at the point λ.

Proof. We have that

d

dy
Re[f1(λ + iy)] = −Im[f ′

1(λ + iy)] = −Im

[
t +

a(a + b)
(λ + iy)3

− bd

λ + iy

]
.

Now using the relation 2bdλ = 3a(a + b) and computing gives

d

dy
Re[f1(λ + iy)] =

−4a(a + b)y3

(λ2 + y2)3
.

This derivative is negative when y > 0 and positive when y < 0.
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Fig. 4. The level lines of the function Re[f1(z)] at value Re[f1(λ)]. In this image we
take a = b = t = 1.

Now we describe the contour lines of Re[f1(z)] seen in Fig. 4. Re[f1] is the real
part of a holomorphic function, so its level lines are constrained by its singular-
ities, and because the singularities are not too complicated, we can describe its
level lines. The contour lines of the real part of a holomorphic function intersect
only at critical points and poles and the number of contour lines that intersect
will be equal to the degree of the critical point or pole. We can see from the
Taylor expansion of f1 at λ, that there will be 3 level lines intersecting at λ with
angles π/6, π/2, and 5π/6. From the form of f1, we see that there will be 2 level
lines intersecting at 0 at angles π/4 and 3π/4, and that a pair of contour lines
will approach i∞ and −i∞ respectively with Re[z] approaching f1(λ)/t. This
shows that, up to a noncrossing continuous deformation of paths, the lines in
Fig. 4 are the contour lines Re[f1(z)] = f1(λ). We can also see that on the right
side of the figure, tz will be the largest term of Re[f1(z)], so our function will
be positive. This determines the sign of Re[f1(z)] in the other regions.

Our contour λ + iR is already steep descent, but we will deform the tails, so
that we can use dominated convergence in the next section.

Definition 5. For any r > 0, define the contour γr = (e−2πi/3∞, λ − ri) ∪ [λ −
ri, λ + ri] ∪ (λ + ri, e2πi/3∞) and γε

r = γr ∩ Bε(λ). These contours appear in
Fig. 5.

Because for any fixed n, we have ehn(z) → 1 as |z| → ∞, z
ω(z−ω)(z−ω′) has

linear decay in z, and en1/3t(z−ω) has exponential decay in z, we can deform the
vertical contour λ + iR to the contour γr. Thus

Kn(ω, ω′) =
∫

γr

en1/3t(z−ω)

(z − ω)(z − ω′)
ehn(z)−hn(ω) z

ω
dz.

The function Re[f1] is still steep descent on the contour γr with respect to the
point λ. Lemma 2 shows that Re[f1] is steep descent on the segment [λ−ri, λ+ri],
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e−2πi/3∞

e2πi/3∞

0

λ + ir

λ − ir

λ

λ + iε

λ − iε

Fig. 5. The contour γr is the infinite piecewise linear curve formed by the union of the
vertical segment and the two semi infinite rays, oriented from bottom to top. The bold
portion of this contour near λ is γε

r .

and on (e−2πi/3∞, λ − ri) ∪ (λ + ri, e2πi/3∞) we inspect f ′
1(z) and note that for

z sufficiently large, the constant term t dominates the other terms. Because our
paths are moving in a direction with negative real component the contour γr is
steep descent.

Up to this point we have been concerned with contours being steep descent
with respect to Re[f1], but the true function in our kernel is exp(n1/3t(z − ω) +
hn(z)−hn(ω)). To show that γr is steep descent with respect to this function, we
will need to control the error term n1/3tz+hn(z)−n1/3f1(z) = n1/9f2(z)+rn(z).
The following lemma gives bounds on this error term away from z = 0.

Lemma 3. For any N, ε > 0 there is a constant C depending only on ε,N such
that

|f2(ω)| ≤ C and |rn(ω)| ≤ C, (9)

for all n ≥ N, and ω ≥ |a+b|+ε
N1/3 .

Similarly for any δ > 0, there exists Nδ and C ′ depending only on δ, such
that

|f ′
2(ω)| ≤ C ′ and |r′

n(ω)| ≤ C ′, (10)

for all n ≥ Nδ, and ω satisfying |ω| ≥ δ.

Lemma 3 is proved in Sect. 3.
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At this point we have a contour γr for the variable z, which is steep descent
with respect to Re[f1]. We want to find a suitable contour for ω. The following
lemma shows the existence of such a contour Cn, where property (c) below takes
the place of being steep descent. This lemma is fairly technical and its proof is
the main goal of Sect. 3. To see why observe that the function n1/3f1(ω) does not
approximate n1/3tω−hn(ω) well when ω is near 0. The fact that the contribution
near 0 is negligible is nontrivial because the function n1/3tω − hn(ω) has poles
at 0 and −a−b

n1/3 , and our contour Cn is being pinched between them; we will use
Lemma 4 to show that the asymptotics of det(1 −Kn)L2(Cn) are not affected by
these poles

Lemma 4. There exists a sequence of contours {Cn}n≥N such that:

(a) For all n, the contour Cn encircles 0 counterclockwise, but does not encircle
(−a − b)n−1/3.

(b) Cn intersects the point λ at angles −π/3 and −2π/3.
(c) For all ε > 0, there exists η,Nε > 0 such that for all n > Nε, ω ∈ Cn \ Cε

n

and z ∈ γr, we have

Re[n1/3t(z − ω) + hn(z) − hn(ω)] ≤ −n1/3η,

where Cε
n = Cn ∩ Bε(λ).

(d) There is a constant C such that for all ω ∈ Cn,

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)] ≤ n1/9C.

The next lemma allows us to control Re[n1/3tz + hn(z)] on the contour γr.

Lemma 5. For all ε > 0, and for sufficiently large r, there exists C,Nε > 0,
such that for all ω ∈ Cn, and z ∈ γr \ γε

r , then

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n−1/3C.

Proof. We have already shown that γr is steep descent with respect to f1(z).
By Lemma 3, |rn| ≤ C, |f2| ≤ Cn1/9 away from 0. We have

hn(z) − hn(ω) + n1/3t(z − ω) =n1/3(f1(z) − f1(ω)) + n1/9(f2(z) − f2(ω)) + (rn(z) − rn(ω))

≤ n1/3(f1(z)−f1(ω)) + n1/9C + C ≤ n1/3(f1(z) − f1(ω) + δ),

for any sufficiently small δ > 0. Because f1(z) is decreasing as we move away
from λ, we have

n1/3tz + hn(z) < n1/3tλ + hn(λ) + Cn1/9.

Thus by 3, we have that for all ε > 0 there exists C such that for z ∈ γr \ γε
r ,

Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n1/3C.

By Lemma 4(d), we have

Re[hn(λ) − hn(ω) + n1/3t(λ − ω)] ≤ n1/9C,

for ω ∈ Cn. This completes the proof
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2.3 Localizing the Integral

In this section we will use Lemmas 4 and 5 to show that the asymptotics of
det(1 − Kn)L2(Cn) do not change if we replace Cn with Cε

n = Cn ∩ Bε(λ), and
replace the contour γr defining Kn with the contour γε

r = γr ∩ Bε(0).
First we change variables setting z = λ + n−1/9z, ω = λ + n−1/9ω, and

ω′ = λ + n−1/9z.

Definition 6. Define the contours D0 = [−i∞, i∞], and Dδ
0 = D0 ∩Bδ(0). (We

will often use δ = n1/9ε.)

Our change of variables applied to the kernel Kε
n gives

K
ε
n(ω, ω′) =

1

2πi

∫
Dn1/9ε

0

1

(z − ω)(z − ω′)
(λ + n−1/9z)

(λ + n−1/9ω)
en1/3f1(λ+n−1/9z)−f1(λ+n−1/9ω)

× en1/9f2(λ+n−1/9z)−f2(λ+n−1/9ω)ern(λ+n−1/9z)−rn(λ+n−1/9ω)dz. (11)

Definition 7. The contours C−1 and Cε
−1 are defined as C−1 = (e−2πi/3∞,−1)∪

[−1, e2πi/3∞) and Cε
−1 = C−1 ∩ Bn1/9ε(−1).

By changing variables, for each m we have

∫
(Cε

n)m

det(Kε
n(ωi, ωj))

m
i,j=1dω1...dωm =

∫
(Cn1/9ε

−1 )m

det(K
ε
n(ωi, ωj))

m
i,j=1dω1...dωm.

This equality follows, because after rescaling the contour Cε
n, we can deform it to

the contour Cn1/9ε
−1 without changing its endpoints. The previous equality implies

det(1 − Kε
n)L2(Cε

ε)
= det(1 − K

ε

n)
L2(Cn1/9ε

−1 )
.

We will make this change of variables often in the following arguments. Given a
contour such as Cn or γr, we denote the contour after the change of variables by
Cn or γr. Now we are ready to localize our integrals.

Proposition 1. For any sufficiently small ε > 0,

lim
n→∞ det(1 − Kn(ω, ω′))L2(C) = lim

n→∞ det(1 − Kε
n(ω, ω′))L2(Cε

n),

where

Kε
n =

1
2πi

∫
γε

r

en1/3t(z−ω)+hn(z)−hn(ω)

(z − ω)(z − ω′)
z

w
dz.

Proof. The proof will have two steps, and will use several lemmas that are proved
in Sect. 4. In the first step we localize the integral in the z variable and show
that limn→∞ det(1 − Kn)L2(Cε) = limn→∞ det(1 − Kε

n)L2(Cε) using dominated
convergence. In order to prove this, we appeal to Lemmas 12 and 13 to show
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that the Fredholm series expansions are indeed dominated. In the second step we
localize the integral in the ω, ω′ variables by using Lemma 14 to find an upper
bound for det(1 + Kn)L2(Cn) − det(1 + Kn)L2(Cε

n). Then we appeal to Lemma 15
to show that this upper bound converges to 0 as n → ∞.

Step 1: By Lemma 5, for any ε > 0, there exists a C ′, N > 0 such that if ω ∈ Cn

and z ∈ γr \ γε
r , then for all n > N ,

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n1/3C ′.

We bound our integrand on γr \ γε
r , ω, ω′ ∈ Cε

n,∣∣∣∣∣e
hn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ ≤ C

δ2
ze−n1/3C′ pointwise−−−−−−→

n→∞ 0.

(the δ2 comes from the fact that |z − ω| ≥ δ). By Lemma 3, there exists a η > 0
such that for sufficiently large n,∣∣∣∣∣e

hn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ <

∣∣∣∣∣e
n1/3(f1(z)−f1(ω)+η)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ .
The linear term of f1(z) in (7) implies

1
2πi

∫
γr

∣∣∣∣∣e
n1/3(f1(z)−f1(ω)+η)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ dz < ∞.

In the previous inequality we should write |dz| instead of dz. We will often
omit the absolute value in the dω portion of the complex integral when the
integrand is a positive real valued function.

So for each ω, ω′, by dominated convergence

1
2πi

∫
γr\γε

r

ehn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z

ω
dz → 0 as n → ∞,

So limn→∞ Kε
n(ω, ω′) = limn→∞ Kn(ω, ω′).

Now by Lemmas 12, and 13, both Fredholm determinant expansions det(1−
Kn)L2(Cε) and det(1 − Kε

n)L2(Cε), are absolutely bounded uniformly in n. Thus
we can apply dominated convergence to get

lim
n→∞ det(1 − Kn)L2(Cε) = lim

n→∞ det(1 − Kε
n)L2(Cε). (12)

Step 2: In the expansion

det(1 − Kn)L2(Cn) =
∞∑

m=0

1
m!

∫
(Cn)m

det(Kn(ωi, ω
′
j))

n
i,j=1dω1, ..., dωm.
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The mth term can be decomposed as the sum∫
(Cε

n)m

det(Kn(ωi, ωj))n
i,j=1dω1...dωm +

∫
Cm

n \(Cε
n)m

det(Kn(ωi, ωj))n
i,j=1dω1...dωm.

Lemma 14 along with Hadamard’s bound on the determinant of a matrix in
terms of it’s row norms, implies that when ω1 ∈ Cn \ Cε

n and ω2, ..., ωm ∈ Cn,

|det(Kn(ωi, ωj))m
i,j=1| ≤ mm/2Mm−1/2L4n

4/9e−n1/3η → 0 as n → ∞. (13)

Now let R be the maximum length of the paths Cn. The rescaled paths Cn will
always have length less than n1/9R. We have∫

Cm
n \(Cε

n)m

|det(Kn(ωi, ωj))m
i,j=1|dω1...dωm

≤ m

∫
Cn\Cε

n

dω1

∫
Cm−1

n

|det(Kn(ωi, ωj))m
i,j=1|dω2...dωm

≤ m

∫
Cn\Cε

n

dω1

∫
Cm−1

n

|det(Kn(ωi, ωj))m
i,j=1|dω2...dωm

≤
∫

Cn\Cε
n

dω1

∫
Cm−1

n

mm/2M (m−1)/2L4n
4/9e−n1/3ηdω2...dωm

≤ m(n1/9R)mmm/2M (m−1)/2L4n
4/9e−n1/3η

≤ e−n1/3η(n1/9)mm1+m/2(MR)mn4/9. (14)

The first inequality follows from symmetry of the integrand in the ωi. In the
second inequality, we change variables from ωi to ωi. In the third inequality we
use the first inequality of (13). In the fourth inequality, we use the fact that the
total volume of our multiple integral is less than (n1/9R)m. In the fifth inequality
we rewrite and use Mm > M (m−1)/2.

So we have
∞∑

m=1

1
m!

∫
Cm

n \(Cε
n)m

|det(Kn(ωi, ωj))m
i,j=1|dω1...dωm

≤
∞∑

m=1

1
m!

e−n1/3η(n1/9)mm1+m/2(MR)mn4/9

= n4/9e−n1/3η
∞∑

m=1

1
m!

(MRn1/9)mm1+m/2 (15)

Applying Lemma 15 with C = MRn1/9 gives.

n4/9e−n1/3η
∞∑

m=1

1

m!
(MRn1/9)mm1+m/2 ≤ n4/9e−n1/3

16(MRn1/9)4e2(MR)2n2/9 −−−−→
n→∞ 0.
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Thus
lim

n→∞ det(1 − Kn)L2(Cn) = lim
n→∞ det(1 − Kn)L2(Cε

n). (16)

Combining (12) and (16) concludes the proof of Proposition 1.

2.4 Convergence of the Kernel

In this section we approximate hn(z)−hn(ω)+n1/3t(z −ω) by its Taylor expan-
sion near λ, and show that this does not change the asymptotics of our Fredholm
determinant.

Proposition 2. For sufficiently small ε > 0,

lim
n→∞ det(1 − Kε

n)L2(Cε
ε)

= lim
n→∞ det(1 − K(x))L2(C−1),

where

K(x)(u, u′) =
1

2πi

∫
D′

es3/3−xs

eu3−xu

dz

(z − u)(z − u′)
,

and
D′ = (e−πi/3∞, 0) ∪ [0, eπi/3∞).

Proof. Let

K(ω, ω′) =
1

2πi

∫
D′

dz

(z − ω)(z − ω′)
ef ′′′

1 (λ)(z3−ω3)/6+f ′
2(λ)(z−ω), (17)

We have seen in Sect. 2.3 that

det(1 − Kε
n(ω, ω′))L2(Cε

ε)
= det(1 − K

ε

n(ω, ω′))
L2(Cn1/9ε

−1 )
.

The proof will have two main steps. In the first step we use dominated conver-
gence to show that

lim
n→∞ det(1 − K

ε

n(ω, ω′))
L2(Cn1/9ε

−1 )
= lim

n→∞ det(1 − K(x)(ω, ω′))
L2(Cn1/9ε

−1 )
.

In the second step we control the tail of the Fredholm determinant expansion to
show that

lim
n→∞ det(1 − K(x)(ω, ω′))

L2(Cn1/9ε
−1 )

= det(1 − K(x)(ω, ω′))L2(C−1).

In step 1 we will use Lemma 12 to establish dominated convergence.

Step 1: We have the following pointwise convengences

λ + n−1/9z

λ + n−1/9ω
→ 1,
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and for z = λ + n−1/9z̄, ω = λ + n−1/9ω,

n1/3(f1(z)− f1(ω))+n1/9(f2(z)− f2(ω))+ rn(z)− rn(ω) → 1

6
f ′′′
1 (λ)(z3 −ω3)+ f ′

2(λ)(z −ω).

(18)

Because z is purely imaginary, for each ω, ω′, the exponentiating the right hand
side of (18) gives a bounded function of z and z/ω ≤ |λ+ε|

|λ−ε| . The left hand side
of (18) can be chosen to be within δ/n1/9 of the right hand side by choosing ε
small by Taylor’s theorem, because all the functions on the left hand side are
holomorphic in Bε(λ). Thanks to the quadratic denominator 1

(z−ω)(z−ω′) , we can
apply dominated convergence to get

K
ε

n(ω, ω′)
pointwise−−−−−−→

n→∞
1

2πi

∫
iR

dz

(z − ω)(z − ω′)
ef ′′′

1 (λ)(z3−ω3)/6+f ′
2(λ)(z−ω). (19)

Because the integrand on the right hand side of (19) has quadratic decay in
z, we can deform the contour from γ0 to D′ without changing the integral, so
the right hand side is equal to K(ω, ω′) from 17. Now by Lemma 12 we can
apply dominated convergence to the expansion of the Fredholm determinant
det(1 − K

ε

n)
L2(Cn1/9ε

−1 )
, to get

lim
n→∞ det(1 − K

ε

n)
L2(Cn1/9ε

−1 )
= lim

n→∞ det(1 − K)
L2(Cn1/9ε

−1 )
.

Step 2: Now we make the change of variables s = −(f ′
2(λ)/x)z, u =

−(f ′
2(λ)/x)ω, and u′ = −(f ′

2(λ)/x)ω′. Keeping in mind that −2(f ′
2(λ)/x)3 =

f ′′′
1 (λ), we get

K(ω, ω′) = K(x)(u, u′) =
1

2πi

∫
D′

es3/3−xs

eu3/3−xu

ds

(s − u)(s − u′)
.

Recall the expansion:

det(1 − K(x))L2(Cε
−1)

=
∞∑

m=0

(−1)m

m!

∫
Cm

−1

det(K(x)(ωi, ωj))m
i,j=1dω1...dωm,

where C−1 = (e−2πi/3∞, 1] ∪ (1, e2πi/3∞), and Cm
−1 is a product of m copies of

C−1.

|det(1 − K(x))L2(C−1) − det(1 − K(x))L2(Cε
−1)

| ≤
∞∑

m=0

(−1)m

m!

∫
Cm

−1\(Cn1/9ε
−1 )m

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm,

so to conclude the proof of the proposition, we are left with showing that

∞∑
m=0

1
m!

∫
Cm

−1\(Cn1/9ε
−1 )m

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm −−−−→

n→∞ 0 (20)
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Note that∫
Cm

−1\(Cn1/9ε
−1 )m

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm ≤

m

∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm.

Set
M1 =

∫
D′

|zef ′′′
1 (λ)z3/6+f ′

2(λ)z|dz < ∞.

Then K(x)(ω, ω′) ≤ M1e
−|ω|3−x|ω|, and Hadamard’s bound gives

|det(K(x)(ωi, ωj))m
i,j=1| ≤ mm/2Mm

1

m∏
i=1

|e−ω3
i /3+xωi |.

We have∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm

≤ M1

∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

m∏
i=1

|e−ω3
i /3+xωi |dω1...dωm

≤ m1+m/2Mm
1 Mm−1

2

∫
C−1\Cn1/9ε

−1

|e−ω3
1+xω1 |dω1, (21)

where M2 =
∫

C−1
|e−ω3−xω|dω < ∞ because −ω3 lies on the negative real axis.

(21) goes to zero because n1/9ε → ∞. So∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

∣∣det(K(x)(ωi, ωj))m
i,j=1

∣∣ dω1...dωm −−−−→
n→∞ 0.

Note also that

∫
Cm

−1\(Cn1/9ε
−1 )m

∣∣det(K(x)(ωi, ωj))
m
i,j=1

∣∣ dω1...dωm ≤
∫

Cm
−1

| det(K(x)(ωi, ωj))
m
i,j=1|dω1...dωm

≤ m1+m/2M1Mm
2 .

By Stirling’s approximation

∞∑
m=0

1
m!

m1+m/2Mm
1 Mm

2 < ∞.

So by dominated convergence (20) holds which concludes the proof of Pro-
position 2.
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2.5 Reformulation of the Kernel

Now we use the standard det(1 + AB) = det(1 + BA) trick [17, Lemma 8.6]
to identify det(1 − K(x))L2(C−1) with the Tracy-Widom cumulative distribution
function.

Lemma 6. For x ∈ R,

det(1 − K(x))L2(C−1) = det(1 − KAi)L2(x,∞).

Proof. First note that because Re[z −ω] > 0 along the contours we have chosen,
we can write

1
z − ω

=
∫
R+

e−λ(z−ω)dλ.

Now let A : L2(C−1) → L2(R+), and B : L2(R+) → L2(C−1) be defined by the
kernels

A(ω, λ) = e−ω3/3+ω(x+λ), (22)

B(λ, ω′) =
∫ eπi/3∞

e−πi/3∞

dz

2πi
ez3/3−z(x+λ)

z − ω′ . (23)

We compute

AB(ω, ω′) =
∫
R+

e−ω3/3+ω(x+λ)

∫ eπi/3∞

e−πi/3∞

dz

2πi
ez3/3−z(x+λ)

z − ω′

=
1

2πi

∫ eπi/3∞

e−πi/3∞

ez3/3−zx

eω3/3−ωx

dz

(z − ω)(z − ω′)
= K(x)(ω, ω′).

Similarly,

BA(s, s′) =
1

2πi

∫ e2πi/3∞

e−2πi/3∞
dω

1

2πi

∫ eπi/3∞

e−πi/3∞
dz

ez3/3−z(x+s)

eω3/3−ω(x+s′)
1

(z − ω)
= KAi(x + s, x + s′).

Because both A and B are Hilbert-Schmidt operators, we have

det(1 − K(x))L2(C) = det(1 − AB)L2(R+) = det(1 − BA)L2(R+)

= det(1 − KAi)L2(x,∞) = FGUE(x).

3 Constructing the Contour Cn

This section is devoted to constructing the contours Cn and proving Lemma 4.
We will prove several estimates for n1/3ω + hn(ω); then we will construct the
contour Cn, and prove it satisfies the properties of Lemma 4. We begin by proving
that we can approximate n1/3ω + hn(ω) by n1/3f1(ω) away from 0.
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3.1 Estimates Away from 0: Proof of Lemma 3

Both inequalities for |f2| = bσx
ω follow from the fact that f2 and f ′

2 are bounded
on C \ Bε(0). Let y = 1/ω, and let m = n−1/9. Define the function g(y,m) =
rn(ω). First we prove (9). Note that hn(ω) is holomorphic in y and m except
when n = ∞, n1/3ω = 0,−a − b. By Taylor expanding hn(ω), we see that
rn(ω) = g(y,m) is holomorphic in y and m, except at points (y,m) such that
n1/3ω = 0,−a − b, in particular there is no longer a pole when n = ∞. Thus
for any N , g(y,m) is holomorphic with variables y and m, in the region U =
{(y,m) : n > N,ω > |a + b|/N1/3}, because in this region n1/3ω > |a + b|. The
region Uε = {(y,m) : n > N,ω ≥ |a+b|+ε

N1/3 } is compact in the variables y and m,
and because Uε ⊂ U , the function g(y,m) is holomorphic in the region Uε. Thus
g(y,m) = rn(ω) is bounded by a constant C in the region Uε.

Now we prove (10). For any δ, pick an arbitrary ε and an Nδ large enough that
|a+b|+ε

N
1/3
δ

≤ δ. Because g(y,m) = rn(ω) is holomorphic in the variables y and m

in the compact set Uε, the function ∂
∂y g(y,m) = −ω2r′

n(ω), is also holomorphic
in y,m. So |ω2r′

n(ω)| ≤ C on Uε. We rewrite as |r′
n(ω)| ≤ C/|ω|2, and this gives

|r′
n(ω)| ≤ C

|δ|2 ≤ C ′, on the set Uε ∩ (N × Bδ(0)c). But by our choice of Nδ, we
have Uε ∩ (N × Bδ(0)c) is just the set {(y,m) : n ≥ Nδ, |ω| ≥ δ}.

3.2 Estimates Near 0

The function n1/3f1(ω) only approximates −n1/3tω−hn(ω) well away from 0. In
this section we give two estimates for −n1/3tω −hn(ω): one in Lemma 7 when ω
is of order n−1/3 and one in Lemma 8 when ω is of order nδ−1/3 for δ ∈ (0, 1/3).
Together with Lemma 3 which gives an estimate when ω is of order 1, this will
give us the tools we need to control −n1/3tω−hn(ω) along Cn. First to prove the
bound in Lemma 7, we choose a path which crosses the real axis at −a, between
the poles at 0 and −a − b before rescaling h̃n to hn. We show that after the
rescaling, we can bound Re[−n−1/3ω − hn(ω)] on this path for small ω.

Lemma 7. Fix any c0 > 1 and let s = c0(a + b). For C = log
(√

s2 + a2
) −

log(s) > 0, we have

lim sup
n→∞

1
n

sup
y∈[−s,s]

Re[hn(λ) − hn(in−1/3y − n−1/3a)] < −C.

Proof. Let y ∈ [−s, s] and expand eRe[hn(λ)−hn(iy−an−1/3)] to get(
y√

y2 + a2

)n(
y√

y2 + b2

)m(
n1/3λ

n1/3λ + a

)n(
a + b + n1/3λ

n1/3λ + a

)m

.
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The third factor is always less than 1. For sufficiently large n, the second
factor times the fourth factor is less than 1, because |y| ≤ |s| while n1/3λ → ∞.
We can bound the first factor by∣∣∣∣∣ y√

y2 + a2

∣∣∣∣∣
n

≤
(

s√
s2 + a2

)n

= e−nC ,

with C = log
(√

(s2 + a2)
)

− log(s).

Next we will prove the estimate for ω of order nδ−1/3. In this proof we will
consider ω of the form ω = −n−1/3a+ inδ−1/3c(a+b), choose c sufficiently large,
then let n → ∞. The largest term in the expansion of −n−1/3ω − hn(ω) will be
of order n1−2δ

c2 . We introduce the following definition to let us ignore the terms
which are negligible compared to n1−2δ

c2 uniformly in δ.

Definition 8. Let A and B be functions depending on n and c, we say A ∼δ B
or A is δ-equivalent to B, if for sufficiently large c and n,

|A − B| ≤ n2/3−2δ

c2
M1 +

n1−3δ

c3
M2 +

n4/9−δ

c
M3.

for some constants M1,M2,M3 independent of c and n.

Now we prove the estimate.

Lemma 8. For all δ ∈ (0, 1/3), setting ω = −n−1/3a + inδ−1/3c(a + b), gives

Re[n1/3tω + hn(ω)] ∼δ Re[n1/3f1(ω)] ∼δ M
n1−2δ

c2
,

where ∼δ is defined in Definition 8.

The proof of this Lemma 8 comes from Taylor expanding hn and keeping
track of the order of different terms with respect to n and c.

Proof. Recall that

hn(ω) = −n log
(
1 +

a

n1/3ω

)
+ m log

(
1 +

b

a + n1/3ω

)
. (24)

For |n1/3ω| > a and |a + n1/3ω| > b, we can Taylor expand in n1/3ω to get

hn(ω) = −n
∞∑

k=1

(−1)k+1

k

( a

n1/3ω

)k

+ m
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

.

Let ω = −n−1/3a + inδ−1/3c(a + b) for δ ∈ (0, 1/3), so |n1/3ω|, |a + n1/3ω| >
nδc(a + b) > c(a + b), for a constant c to be determined later. If c > 2, we have

∞∑
k=1

∣∣∣∣
(

a

n1/3ω

)∣∣∣∣
k

≤
∞∑

k=1

(
b

nδc(a + b)

)k

≤ a

nδc(a + b)

∞∑
k=0

(
1

2

)k

≤ 2a

nδc(a + b)
=

n−δ

c
M,

(25)
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and

∞∑
k=1

∣∣∣∣
(

b

a + n1/3ω

)∣∣∣∣
k

≤
∞∑

k=1

(
a

nδc(a + b)

)k

≤ a

nδc(a + b)

∞∑
k=0

(
1

2

)k

=
2a

nδc(a + b)
=

n−δ

c
M.

(26)

In what follows, we will use (25) or (26) when we say that an infinite sum is
δ-equivalent to its first term.

We examine the first term in (24).

−n

∞∑
k=1

(−1)k+1

k

(
a

n1/3ω

)k

= −
(

a

n1/3ω

)
+

1

2

(
a

n1/3ω

)2

− n

∞∑
k=3

(−1)k+1

k

(
a

n1/3ω

)k

,

∼δ −
(

a

n1/3ω

)
+

1

2

(
a

n1/3ω

)2

.

where the δ−equivalence follows because
∣∣∣n∑∞

k=3
(−1)k+1

k

(
a

n1/3ω

)k
∣∣∣ ≤ n1−3δ

c3 M

for some M by (25).
Recall that

m

∞∑
k=1

(
b

a + n1/3ω

)k

=
[(a

b

)
n + dn2/3 + σxn4/9

] ∞∑
k=1

(
b

a + n1/3ω

)k

.

We decompose this series as three sums. First the
(

a
b

)
n term gives

a

b
n

∞∑
k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

=

n
(a

b

)( b

a + n1/3ω

)
− n

2

(a

b

)( b

a + n1/3ω

)2

+
a

b
n

∞∑
k=3

(−1)k+1

k

(
b

a + n1/3ω

)k

∼δ n
(a

b

)( b

a + n1/3ω

)
− n

2

(
b

a + n1/3ω

)2

,

because
∣∣∣∣−a

b n
∑∞

k=1
(−1)k+1

k

(
b

a+n1/3ω

)k
∣∣∣∣ ≤ Mn1−3δ/c3 for some M . The second

term is

dn
2/3

∞∑
k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

= dn
2/3

(
b

a + n1/3ω

)
− dn

2/3
∞∑

k=2

(−1)k+1

k

(
b

a + n1/3ω

)k

∼δ dn
2/3

(
b

a + n1/3ω

)

because
∣∣∣∣dn2/3

∑∞
k=2

(−1)k+1

k

(
b

a+n1/3ω

)k
∣∣∣∣ ≤ Mn2/3−2δ/c2 for some M . The

third term is

n4/9σx
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

∼δ 0,
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because the full sum
∣∣∣∣n4/9σx

∑∞
k=1

(−1)k+1

k

(
b

a+n1/3ω

)k
∣∣∣∣ ≤ Mn4/9−δ

c for some M .

Now we have shown

− n log
(
1 +

a

n1/3ω

)
∼δ −n2/3 a

ω
+ n1/3 a2

2ω2
, (27)

m log
(

1 +
b

a + n1/3ω

)
∼δ

n
(a

b

)( b

a + n1/3ω

)
− n

( a

2b

)( b

a + n1/3ω

)2

+ dn2/3

(
b

a + n1/3ω

)
. (28)

Adding (27) and (28) together yields

hn(ω) ∼δ −n2/3 a

ω
+ n1/3 a2

2ω2
+ n

(a

b

)( b

a + n1/3ω

)

−n
( a

2b

)( b

a + n1/3ω

)2

+ dn2/3

(
b

a + n1/3ω

)
. (29)

Adding the first and third terms from (29) gives the following cancellation.

−n2/3 a

ω
+ n

(a

b

)( b

a + n1/3ω

)
=

−n2/3 a

ω
+ n2/3 a

ω

[
1 − a

n1/3ω
+

∞∑
k=2

(−1)k
( a

n1/3ω

)k
]

∼δ −n1/3 a2

ω2
,

thus

hn(ω) ∼δ −n1/3

(
a2

2ω2

)
− n

( a

2b

)( b

a + n1/3ω

)2

+ dn2/3

(
b

a + n1/3ω

)
.

When we expand b
a+n1/3ω

= b
n1/3ω

+
(

b
n1/3ω

)∑∞
k=1

( −a
n1/3ω

)k
, we see that because

n1/3ω ∼δ nδic(a + b), the sum is of order 1/c times the first term. So we can
take only the first terms in our expansion, just as when we Taylor expand. This
approximation leads the n2/3 terms to cancel giving

hn(ω) ∼δ −n1/3

(
a2 + ab

2ω2

)
+ dn1/3

(
b

ω

)
∼δ n1/3 (f1(ω) − tω) .

This implies that Re[n1/3tω + hn(ω)] ∼δ Re[n1/3f1(ω)]. Completing the first
δ-equivalence in the statement of Lemma 8.

Now observe that in

Re[n1/3f1(ω)] = Re

[
n1/3

(
tω − a(a + b)

2ω2
+

bd

ω

)]
,
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we can bound the first term |Re[n1/3tω]| ≤ nδM . We can bound the third
term by Re

[
n1/3 bd

ω

] ≤ M n2/3−δ

c . For the second term, we have
∣∣∣a(a+b)

2ω2

∣∣∣ ∼δ(
a(a+b)

2

)(
n1−2δ

c

)
. Thus

Re[n1/3f1(ω)] ∼δ

(
a(a + b)

2

)(
n1−2δ

c

)
.

This gives the second δ-equivalence in the statement of Lemma 8, and completes
the proof.

3.3 Construction of the Contour Cn

To construct the contour Cn we will start with lines departing from λ at angles
e±2πi/3, and with a vertical line −n1/3a + iR. We will cut both these infinite
contours off at specific values q and p respectively which allow us to use our
estimates from the previous section on these contours. We will then connect
these contours using the level set {z : Re[−f1(z)] = −f1(λ)−ε}. The rest of this
section is devoted to finding the values p and q, showing that our explanation
above actually produces a contour, and controlling the derivative of f1 on the
vertical segment near 0.

We note

f1(λ) = 3t2/3

(
a(a + b)

2

)1/3

> 0, (30)

and let

p =

√
1
3

(
a(a + b)

2t

)2/3

> 0. (31)

By simple algebra, we see that Re[−f1(±iy)] < Re[−f1(λ)] < 0, when y < p,
with equality at y = p.

Lemma 9. d
dyRe[−f1(n−1/3a + iy)] is positive for y ∈ [n−1/3|a + b|, p], and

negative for y ∈ [−n−1/3|a + b|,−p].

Proof. We compute

d

dy
Re[f1(n−1/3a + iy)] = − Im(Re[f1(n−1/3a + iy)]) (32)

= − y3a(a + b)
|n−1/3a + iy|6 +

a2(a + b)n−2/3y

|n−1/3a + iy|6 +
3a2(a + b)bn−1/3y

2bλ|n−1/3a + iy|4 . (33)

Note that for y ∈ [n−1/3|a+b|, p]∪[−n−1/3|a+b|,−p], we have |n−1/3a+iy| ∼ |y|,
so the first term of (33) is of order y−3 and the third term of (33) is of order
y−3n−1/3. So for large enough n, the third term of (33) is very small compared
to the first term. For y = ±n−1/3|a+ b|, we have |n−1a(a+ b)4| = |y3a(a+ b)| >
|a(a + b)n−2/3ay| = |a2(a + b)2n−1/3|, and the derivative of y3a(a + b) is larger
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than the derivative of a(a+b)n−2/3ay for y ∈ [n−1/3|a+b|, p]∪[−n−1/3|a+b|,−p],
so the first term of (33) has larger norm than the second term for y ∈ [n−1/3|a+
b|, p] ∪ [−n−1/3|a + b|,−p]. Thus the sign d

dyRe[−f1(n−1/3a + iy)] is determined
by the first term of (33) in these intervals.

Now we can define the contour Cn. We will give the definition, and then
justify that it gives a well defined contour.

Definition 9. Let q > 0 be a fixed real number such that for 0 < y ≤ q,
d
dyRe[−f1(λ ± ye±2πi/3)] < 0. Let

s = max
{
Re[−f1(λ + qe−2πi/3)],Re[−f1(λ + qe2πi/3)],

Re[−f1(n−1/3(a − i|a + b|))],Re[−f1(n−1/3(a + i|a + b|))]
}

. (34)

Let α be the contourline α = {ω : Re[−f1(ω)] = s}, and define the set

Sn = {λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ α ∪ [−an−1/3 − ip,−an−1/3 + ip].

For sufficiently large n, define the path Cn to begin where α intersects {λ +
ye−2πi/3 : 0 ≤ y ≤ q}, follow the path {λ + ye−2πi/3 : 0 ≤ y ≤ q} toward
y = 0, then follow the path {λ + ye2πi/3 : 0 ≤ y ≤ q} until it intersects α.
Cn then follows α in either direction (pick one arbitrarily) until it intersects
[−an−1/3 − ip,−an−1/3 + ip] in the upper half plane. Cn then follows the path
[−an−1/3 − ip,−an−1/3 + ip] toward −an−1/3 − ip until it intersects α in the
negative half plane. Then Cn follows α in either direction (pick one arbitrarily)
until it reaches its starting point where it intersects {λ + ye−2πi/3 : 0 ≤ y ≤ q}.
See Fig. 6

We see that the q in Definition 9 exists by applying Taylor’s theorem along with
the fact that f ′′′

1 (λ) > 0, and the f ′
1(λ) = f ′′

1 (λ) = 0.

Lemma 10. The sets {λ + ye2πi/3 : 0 ≤ y ≤ q} and {λ + ye−2πi/3 : 0 ≤ y ≤ q}
both intersect α at exactly one point. Lemmas 11 and 10 will show that Cn is a
well defined contour.

This follows from the definition of q and s.

Lemma 11. There exists N > 0 such that for all n > N , the sets [n−1/3 +
in−1/3|a+b|, n−1/3a+p] and [−an−1/3−n−1/3|a+b|,−an−1/3−p] both intersect
α exactly once.

Proof. This is true because

Re[−f1(−n−1/3(a ± i|a + b|))] < Re[−f1(λ)]. (35)

by the contour lines in Fig. 4. This in addition to Lemma 9, and (30) implies the
lemma.
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3.4 Properties of the Contour Cn : Proof of Lemma 4

Most of the work is used to prove part (c). The idea of this proof is to patch
together the different estimates from the beginning of Sect. 3. Away from 0 we
use Lemma 3 and the fact that the contour is steep descent near λ. Very near 0
on the scale n−1/3 we use Lemma 7. Moderately near 0 we use Lemma 8, and
our control of the derivative of f1 on the vertical strip of Cn near 0. This last
argument allows us to get bounds uniform in δ ∈ (0, 1/3) when ω is on the scale
n1/3−δ.

Proof (Proof of Lemma 4). (a) and (b) follow from the definition of Cn. By a
slight modification of the proof of Lemma 4, we see that for z ∈ γr,

Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ n1/9C, (36)

so to show (c) it suffices to show that for ω ∈ Cn \ Cε
n, we have

Re[hn(λ) − hn(ω) + n1/3t(λ − ω)] ≤ −n−1/3η. (37)

Fig. 6. Cn is the thick, colored piecewise smooth curve, the contour lines {z :
Re[−f1(z)] = f1(λ)} are the thin black curves. On the right side of the image we
see Cn as a thick blue curve sandwiched between the contour lines. On the left we
zoom in near 0 and see Cn pass the real axis as a dotted line to the left of zero. The
contour lines meet at the point 0 on the left and λ on the right. We will now describe
what section of the proof of Lemma 4 bounds hn(z)−hn(ω)+nt1/3(z −ω) on different
portions of Cn. The diagonal segments of Cn near λ are bounded in (ii). The curved
segments in the right image, and the solid dark blue vertical segments at the top and
bottom of the left image are bounded in (i). The dark red dashed segment that crosses
the real axis in the left image is distance O(n−1/3) from 0 and is bounded in (iii). The
green dotted segments in the left image are distance O(nδ−1/3) from 0 for δ ∈ (0, 1)
and are bounded in (iv).
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Below we split the contour into 4 pieces and bound each separately. See Fig. 6.

(i) By Lemma 9 and the construction of Cn, we have Re[−f1(ω)] ≤ s <
Re[−f1(λ)] for ω ∈ Cn \ ({λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ [n−1/3(−a − i|a +
b|), n−1/3(−a + i|a + b|)]). So we can apply Lemma 3 and the fact that f2 is
bounded outside a neighborhood of 0 to show that for any c1 < 0, we have
Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η for ω ∈ Cn \ ({λ + ye±2πi/3 :
0 ≤ y ≤ q} ∪ [−n−1/3a − ic1|a + b|,−n−1/3a + ic1|a + b|]).

(ii) By the definition of q, The contour {λ + ye±2πi/3 : 0 ≤ y ≤ q} is steep
descent with respect to the function f1 at the point λ, so we can apply
Lemma 3 and the fact that f2 is bounded outside a neighborhood of 0 to
show Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η for ω ∈ {λ + ye±2πi/3 :
0 ≤ y ≤ q} \ Bε(λ).

(iii) By Lemma 7, for any c0, we have Re[hn(z)−hn(λ)+n1/3t(z−λ)] ≤ −n−1/3η
for all ω ∈ [n−1/3(−a − ic0|a + b|), n−1/3(−a − ic0|a + b|)].

(iv) Now we bound the Re[hn(z)−hn(λ)+n1/3t(z −λ)] on the last piece of our
contour [n−1/3(−a − ic0|a + b|),−n−1/3a + ic1|a + b|] ∪ [−n−1/3a − ic1|a +
b|, n−1/3(−a − ic0|a + b|)]. We will do this by fixing a constant c > c1,
and bounding the function on ω = n−1/3a + inδ−1/3c(a + b) for all pairs
n > N, δ ∈ (0, 1/3) such that n1/3 ≤ c1/c.
By Lemma 8, we have that when ω = n−1/3a + inδ−1/3c(a + b), there exist
constants M1,M2,M3, such that

Re[n1/3tω + hn(ω) − n1/3f1(ω)] ≤ n2/3−2δ

c2
M1 +

n1−3δ

c3
M2 +

n4/9−δ

c
M3,

and

f1(ω) ∼δ M
n1−2δ

c2
.

First we consider the case when δ ∈ (0, 1/3 − ε). In this case, for any r > 0
we can choose c and Nr large enough that for all n > Nr,

n2/3−2δ

c2 M1 + n1−3δ

c3 M2 + n4/9−δ

c M3

Re[n1/3f1(ω)]
< r/2,

uniformly for all δ ∈ (0, 1/3 − ε). In this case we also have that, by Lemma 3,

|Re[n1/3tz + hn(z)]| ≤ n1/3f1(λ) + n1/9f2(λ) + C.

By potentially increasing Nr, we have that for all n > Nr

|Re[n1/3tz + hn(z)]|
Re[n1/3f1(ω)]

≤ r/2.

By Lemma 9 and (35), for all pairs n, δ such that nδ−1/3 < c/c1, there is an
η > 0 such that

Re[−f1(ω)] ≤ Re[−f1(λ)] − 2η < −2η.
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setting r = 1/2 gives

Re[n1/3t(z − ω) + hn(z) − hn(ω)] ≤ Re[−n1/3f1(ω)] +
1

2
Re[n−1/3f1(ω)] < −ηn1/3.

Now we prove the case δ ∈ (1/3 − ε, 1/3). Note that in the expression

Re[n1/3tω + hn(ω) − n1/3f1(ω)] ≤ n2/3−2δ

c2
M1 +

n1−3δ

c3
M2 +

n4/9−δ

c
M3,

when n is sufficiently large, we can bound the right hand side by (M1 +
M2)n3ε ≤ (r/2)n1/3 for any r > 0. We also have

|Re[n1/3tλ − hn(λ) − n1/3f1(λ)]| ≤ n1/9f1(λ) + C ≤ (r/2)n1/3.

The first inequality comes from Lemma 3, and the second holds for large
enough n. By Lemma 9 and (35), for all pairs n, δ such that nδ−1/3 < c/c1,
there is an η > 0 such that

Re[−f1(ω)] ≤ Re[−f1(λ)] − 2η < −2η.

Setting r = η gives

Re[n1/3t(λ−ω)+hn(λ)−hn(ω)] ≤ n1/3Re[f1(λ)− f1(ω)]+n1/3η ≤ −ηn1/3.

The c1 in part (i) can be chosen as small as desired, the c in part (iv) has
already been chosen, and the c0 in part (iv) can be chosen as large as desired.
Choose c1 < c < c0 to complete the proof of (c).

Given inequalities (36) and (37), part (d) follows if we can show

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)],

for ω ∈ Cε
n. Indeed this follows from Lemma 3 and the fact that the contour

{λ + ye±2πi/3 : 0 ≤ y ≤ q} is steep descent with respect to the function Re[−f1]
at the point λ.

4 Dominated Convergence

In this section we carefully prove that the series expansion for det(1−Kn)L2(Cε
n)

gives an absolutely convergent series of integrals bounded uniformly in n. This
allows us to use dominated convergence when we localize the integral in Propo-
sition 1, and again when we approximate the kernel by its Taylor expansion in
Proposition 2. First we zoom in on a ball of radius epsilon and show that we can
absolutely bound det(1 − Kε

n)L2(Cε
n) uniformly in n.

Lemma 12. For any sufficiently small ε > 0, and sufficiently large r, there
exists a function F (ω, ω′), such that for all ω, ω′ ∈ Cn1/9ε

−1 , z ∈ Dn1/9ε
0 , n > N

the integrand of K
ε

n(ω, ω′) in Eq. (11) is absolutely bounded by F (ω, ω′, z), and

∞∑
m=0

∫
(Cn1/9ε

−1 )m

∣∣∣∣∣∣det

(∫
Dn1/9ε

0

F (ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dω1...dωm < ∞. (38)
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Proof. For ω, ω′ ∈ Cε
−1, and z ∈ Dε

0, we have

∣∣∣∣ λ + n−1/9z

λ + n−1/9ω

∣∣∣∣ ≤
∣∣∣∣λ + ε

λ − ε

∣∣∣∣ ,
and by Taylor approximation, we have the additional bounds

n1/3(f1(λ + n−1/9z) − f1(λ + n−1/9ω)) ≤ (f ′′′
1 (λ) + δ1)(z3 − ω3), (39)

n1/9(f2(λ + n−1/9z) − f2(λ + n−1/9(ω))) ≤ (f ′
2(λ) + δ2)(z − ω), (40)

rn(λ + n−1/9z) − rn(λ + n−1/9ω) ≤ Cn−1/9(z − ω) ≤ Cε ≤ δ3. (41)

Note that in these bounds we can make δ1, δ2, δ3 as small as desired by choosing
ε small. Equations (39) and (40) follow from the fact that f1, and f2 are holo-
morphic in the compact set Bε(λ). And Eq. (41) follows from Lemma 3. Note
that along D0, z is purely imaginary, so (39), (40), and (41) show that the full
exponential in the integrand in (11) is bounded above by

e2δ3e−(f ′′′
1 (λ)−δ1)ω

3−(f ′
2(λ)−δ2)ω. (42)

We choose ε small enough that δ1 < f ′′′
1 (λ), so that (42) has exponential decay

as ω goes to ∞ in directions e±2πi/3. Set

F (ω, ω′, z) =
∣∣∣∣
(

λ + ε

λ − ε

)
e2δ3e−(f ′′′

1 (λ)−δ1)ω
3−(f ′

2(λ)−δ2)
1

(z + 1)(z + 1)

∣∣∣∣ .
By the sentence preceeding (42) F absolutely bounds the integrand of K

ε

n. Now
set L1 = |λ+ε|

|λ−ε|e
2δ3

∫
D0

1
(z+1)(z+1)dz so that 2e2δ3

∫
D0

1
(z−ω)(z−ω′)dz ≤ L1. Then

∫
Dε

0

F (ω, ω′, z) ≤ L1

∣∣∣e−(f ′′′
1 (λ)−δ1)ω

3−(f ′
2(λ)−δ2)

∣∣∣ , (43)

By Hadamard’s bound∣∣∣∣∣∣det

(∫
Dn1/9

0 ε

F (ωi, ω
′
j , z)dz

)m

i,j=1

∣∣∣∣∣∣ ≤ mm/2Lm
1

m∏
i=1

∣∣∣e−(f ′′′
1 (λ)−δ)ω3−(f ′

2(λ)−δ)ω
∣∣∣ .

Now because δ1 < f ′′′
1 (λ), we can set

S =
∫

Cn1/9ε
−1

∣∣∣e−(f ′′′
1 (λ)−δ)ω3−(f ′

2(λ)−δ)ω
∣∣∣ dω < ∞.

Then we have the bound,

∫
(Cn1/9ε

−1 )m

∣∣∣∣∣∣det

(∫
Dn1/9ε

0

F (ωi, ω
′
j , z)dz

)m

i,j=1

∣∣∣∣∣∣ dω1...dωm ≤ mm/2(SL1)m.
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So by Stirling’s approximation

∞∑
m=0

∫
(Cn1/9ε

−1 )m

∣∣∣∣∣∣det

(∫
Dn1/9ε

0

F (ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dω1...dωm < ∞.

The next lemma completes our dominated convergence argument, by con-
trolling the contribution to det(I − Kn)L2(Cε

n) of z ∈ γr \ γε
r .

Lemma 13. For any sufficiently small ε > 0, and sufficiently large r, there is
a function G(ω, ω′, z), and a natural number N , such that for all ω, ω′ ∈ Cε

n and
z ∈ γr, n > N , the integrand of Kn(ω, ω′) is absolutely bounded by G(ω, ω′, z),
and

∞∑
m=0

1
m!

∫
(C

ε
)m

∣∣∣∣∣∣det

(∫
γr

G(ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dωi...dωj < ∞, (44)

where γr and C
ε

n are the rescaled contours of γr and Cε
n respectively.

Proof. Let G = F for z ∈ γε
r . We decompose the integral along γr in three parts:

the integral along γε
r , the integral along (e−2πi/3∞,−r) ∪ (r, e2πi/3∞) and the

integral along [−r,−ε] ∪ [ε, r]. For z ∈ γr \ γε
r we have the following bounds

|en1/3t(z−ω)+hn(z)−hn(ω)| ≤ |en1/3(f1(z)−f1(ω))+n1/9C2+C3 |
≤ |en1/3(f1(z)−f1(ω)+δ)|
≤ |en1/3(f1(z)−f1(λ)+δ)||en1/3(f1(λ)−f1(ω))|. (45)

Where the first inequality follows from Lemma 3. If we choose δ < η/2, and
recall that if z ∈ γr\γε

r , then f1(z)−f1(λ) < −η, so f1(z)−f1(λ)+δ < −η/2 < 0.
So if we wish we can bound (45) by either of the following expressions

|en1/3(f1(λ)−f1(ω))| (46)

|en1/9(−tz+tλ)||en1/3(f1(λ)−f1(ω))| (47)

The bound (47) follows from the fact that we can choose r large enough so that
|f1(z) + tz| ≤ δ outside Br(0). Then because the exponent in the first factor of
(45) is negative, for large enough n we can remove the constant δ in return for
reducing n1/3 to n1/9.

Now for z ∈ [−r,−ε] ∪ [ε, r], we have

∣∣∣ z
ω

∣∣∣ ≤
∣∣∣∣r + λ

λ − ε

∣∣∣∣ ,
∣∣∣∣ 1
(z − ω)(z − ω′)

∣∣∣∣ ≤ 1.

So for z ∈ [−r,−ε] ∪ [ε, r], we set

G(ω, ω′, z) =
∣∣∣∣r + λ

λ − ε

∣∣∣∣
∣∣∣∣ 1
(z − ω)(z − ω′)

∣∣∣∣
∣∣∣en1/3(f1(λ)−f1(ω))

∣∣∣ .
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Using the above bounds and (46) we see that the integrand of Kn is absolutely
bounded by G in this region. Set L2 =

∫
iR

r+λ
λ−ε

1
(z+1)(z+1)dz so that the integral of

G on the rescaled contour of [−r,−ε]∪ [ε, r] is bounded by L2|en1/3(f1(λ)−f1(ω))|.
For z ∈ (e−2πi/3∞,−r) ∪ (r, e2πi/3∞), we have∣∣∣∣ 1

(z − ω)(z − ω′)

∣∣∣∣ ≤ 1.

So for z ∈ (e−2πi/3∞,−r) ∪ (r, e2πi/3∞), we set

G(ω, ω′, z) =
∣∣∣ z
ω

∣∣∣ ∣∣∣et(λ−z)
∣∣∣ ∣∣∣e(−f ′′′

1 (λ)+δ)ω
∣∣∣ .

Thus by (47), we can see that the integrand of Kn is absolutely bounded by G

in this region. Now let L3 =
∫
(e−2πi/3∞,−r]∪[r,e2πi/3∞)

∣∣∣λ+z
λ−ε

∣∣∣ |et(λ−z)|dz. For all

n, the integral of G over the rescaled contour (e−2πi/3∞,−r] ∪ [r, e2πi/3∞) is
bounded above by L3|e(−f ′′′

1 (λ)+δ)ω3 |.
Let γr be the rescaled contour γr in the variable z∫

γr

Gdz ≤ (L1 + L2 + L3)e(−f ′′′
1 (λ)+δ)ω3 ≤ Le(−f ′′′

1 (λ)+δ)ω3
, (48)

where the constant L comes from (43). Thus we have bounded
∫

γr
Gdz by a

constant times a term which has exponential decay as ω → e±2πi/3∞. The same
argument as in Lemma 12 shows that

∞∑
m=0

1
m!

∫
(Cε)m

∣∣∣∣∣∣det

(∫
γε

r

G(ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dωi...dωj < ∞.

Lemma 14. Let ω1 ∈ Cn \Cε
n and ω2, .., ωm ∈ Cn. There exist positive constants

M,L4, η > 0 so that for sufficiently large n, we have

|Kn(ωi, ωj)| ≤ M

and
|Kn(ω1, ωi)| ≤ L4n

4/9e−n1/3η,

for all i, j.

Proof. By Lemma 4, for any ε > 0, there exists a N,C > 0, such that if v ∈
Cn \ Cε

n, and z ∈ γr, then for all sufficiently large n, we have

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n1/3η.

For z ∈ γr and ω, ω′ ∈ Cn \ Cε
n, n > N we have the following bounds:

1
(z − ω)(z − ω′)

≤
(

2
ε

)2

,
1
ω

≤ n1/3

a
,
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and

|en1/3t(z−ω)+hn(z)−hn(ω)| ≤ |en1/3(f1(z)−f1(ω)+δ)| (49)

≤ |en1/3(f1(z)−f1(λ)||en1/3(f1(λ)−f1(ω)+δ)| (50)

where (49) follows from (3) and the fact that f2 is bounded away from 0. Note
that for z ∈ γr, |f1(z)−f1(λ)| ≤ 0, and for ω, ω′ ∈ Cn\Cε

n, f1(λ)−f1(ω)+δ < −η,
so (50) is bounded above by

|e(f1(z)−f1(λ)||e−n1/3η|.

Thus if we set L4 = 22

aε2

∫
γr

|z||ef1(z)−f1(λ)|dz < ∞, we get

|Kn(ω, ω′)| ≤ L4n
1/3e−n1/3η.

So if we change the variable of integration to dz = n1/9dz gives.

|Kn(ω, ω′)| ≤ L4n
4/9e−n1/3η for ω, ω′ ∈ Cn \ Cε

n (51)

Let ω1 ∈ Cn \ Cε
n and ω2, .., ωm ∈ Cn, then for i 
= 1,

|Kn(ω1, ωi)| ≤ L4n
4/9e−n1/3η,

|Kn(ωi, ωj)| ≤ max[Le(−f ′′′
1 (λ)+δ)ω3

, L4n
4/9e−n1/3η] ≤ M. (52)

The first equality follows from (48) and the second inequality holds for large n,
when we set M = max[L4, L] because −f ′′′

1 (λ) + δ < 0.

The last thing we need to complete the proof of Theorem 2 is to bound (15)
from Proposition (2.3). We do so in the following lemma.

Lemma 15. For any C > 1, we have

∞∑
m=1

1
m!

Cmm1+m/2 ≤ 16C4e2C2
.

Proof. We have
m1+m/2

m!
≤ m2m/2

(�m/2�)! ,

so that
∞∑

m=1

1
m!

Cmm1+m/2 ≤
∞∑

m=1

m

(�m/2�)! (2C2)m/2

≤
∞∑

k=1

2k(2C2)k

k!
+

∞∑
k=1

(2k + 1)(2C2)k+1

k!

≤ 16C4e2C2
.
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54. Vető, B.: Tracy-Widom limit of q-Hahn TASEP. Electron. J. Probab. 20 (2015)


	Tracy-Widom Asymptotics for a River Delta Model
	1 Model and Results
	1.1 Introduction
	1.2 Definition of the Model
	1.3 History of the Model and Related Results
	1.4 Main Result
	1.5 Outline of the Proof
	1.6 Other Interpretations of the Model
	1.7 Further Directions
	1.8 Notation and Conventions

	2 Asymptotics
	2.1 Setup
	2.2 Steep Descent Contours
	2.3 Localizing the Integral
	2.4 Convergence of the Kernel
	2.5 Reformulation of the Kernel

	3 Constructing the Contour Cn
	3.1 Estimates Away from 0: Proof of Lemma 3
	3.2 Estimates Near 0
	3.3 Construction of the Contour Cn
	3.4 Properties of the Contour Cn: Proof of Lemma 4

	4 Dominated Convergence
	References




