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Outline of the talk

This talk is based on a work in collaboration with Ivan Corwin.
arXiv:1503.04117

1. Introduction to random walks in space-time random
environment (RWRE).

2. An exactly solvable model : the Beta RWRE.

3. Main result: a limit theorem for the second order corrections to
the large deviation principle.

4. Some ideas behind the proof: Bethe ansatz, a non-commutative
binomial formula, and integral formulas from “Macdonald
processes”.

5. Origin: The model is a limit of the q-Hahn interacting particle
system.

6. Consequences (KPZ universality, extreme value theory,
Zero-temperature limit)



Consider the simple random walk Xt on Z, starting from 0. We note

P
(
Xt+1 =Xt +1

)= α

α+β , P
(
Xt+1 =Xt −1

)= β

α+β .

The CLT says that
Xt − tα−β

α+β
σ
p

t
=⇒N (0,1).

where σ= 2
√
αβ/(α+β).

Theorem (Cramér)

For α−β
α+β < x< 1,

log
(
P(Xt > xt)

)
t

−−−→
t→∞ −I(x),

where I(x) is the Legendre transform of

λ(z) := log
(
E
[
ezX1

])= log
(
αez +βe−z

α+β
)
.



In random environment ?

Question
What can we say for a random walk in random environment ?

In this talk, we consider simple random walks on Z in space-time i.i.d.
environment:

P(Xt+1 = x+1|Xt = x)=Bt,x, P(Xt+1 = x−1|Xt = x)= 1−Bt,x,

where (Bt,x)t,x is i.i.d., distributed according to some law with support
on [0,1].
We note P,E (resp. P,E) the measure and expectation with respect to
the random walk (resp. the environment)

Answer
All results from the previous slide still hold, even conditionally on the
environment, for almost every realization of the environment.



Quenched central limit theorem and invariance
principle

Theorem (Rassoul-Agha and Seppäläinen, 2004)
Assume that P

(
0<Bt,x < 1

)> 0. We denote

v= E[E[X1]
]= 2E[Bt,x]−1,

the expected drift. Let

Wn(t)= Xbntc−bntcv
σ
p

n
(same σ as before).

Then, for P-almost every environment, when n→∞, we have the
convergence in distribution(

Wn(t)
)
t =⇒

(
Wt

)
t (Brownian motion).

The results holds more generally for unbounded steps, in any
dimension, and even for any ballistic random walk in random
environment under additional conditions.



Quenched large deviation principle

Theorem (Rassoul-Agha, Seppäläinen and Yilmaz, 2013)
Assume that log(Bt,x) have a finite third moment. Then, the limiting
moment generating function

λ(z) := lim
t→∞

1
t

log
(
E
[
ezXt

])
,

exists a.s., and
log

(
P(Xt > xt)

)
t

a.s.−−−→
t→∞ −I(x).

where I(x) is the Legendre transform of λ.

The result holds more generally in any dimension, for any random walk
in random potential, with not-necessarily i.i.d. weights, under some
condition on the mixing properties of the environment.



An exactly solvable model

We introduce the Beta RWRE as a space-time simple RWRE such that
the transition probabilities (Bt,x) are i.i.d. distributed according to the
Beta(α,β) distribution.

P
(
B ∈ [x,x+dx]

)= xα−1(1−x)β−1 Γ(α+β)
Γ(α)Γ(β)

dx.

In particular, if α=β= 1, we recover the uniform distribution.

Notations
Ï P,E (resp. P,E) are the measure and expectation with respect to

the random walk (resp. the environment)

Ï We are interested in the random variable P(Xt > xt).

Exactly solvable means that we can exactly compute the law of
P(Xt > xt).

In principle, one can also characterize the law of E[f (Xt)] for functions
f :Z→R.



0

(x, t)

Bx,t

1−Bx,t

t

Xt

x

Remark: The trajectory of (t,Xt) defines also a RWRE in Z2.



Basic properties
Denote E and P the product expectation and measure on
{environments}× {paths}.

Ï If B∼Beta(α,β) then E[B]= α
α+β , so that the expected position of

the walker is
E [Xt]= α−β

α+β t.

Ï The second moment is

E
[
X2

t
]= (

α−β
α+β t

)2
+ 4αβ

(α+β)2
t.

Ï The law of the annealed random walk (under P ) is that of the
simple random walk from the first slide.

Ï Let Xt and Yt two Beta RWRE, drawn independently in the same
environment. (Hence Xt and Yt are not independent!). We have

E
[
XtYt

]= (
α−β
α+β t

)2
+ 4αβ

∑t−1
s=0 P (Xs =Ys)

(α+β)2(α+β+1)
.



For simplicity, let’s focus for the moment on the case where transition
probabilities are uniformly distributed (case α=β= 1).

Theorem (B.-Corwin)
The LDP rate function is

I(x)= 1−
√

1−x2.

We have the convergence in distribution as t→∞,

log
(
P

(
Xt > xt

))+ I(x)t

σ(x) · t1/3 =⇒LGUE,

where LGUE is the GUE Tracy-Widom distribution, and

σ(x)3 = 2I(x)2

1− I(x)
,

under the (technical) hypothesis that x> 4/5.

The theorem should extend to the general parameter case α,β and
when x covers the full range of large deviation events (i.e. x ∈ (0,1)).



Fredholm determinant

Proof ? One makes an asymptotic analysis of a Fredholm determinant
formula for the Laplace transform of the r.v. P(Xt > xt).

Theorem (B.- Corwin)
Let u ∈C\R+, and t,x with the same parity. Then for any parameters
α,β> 0 one has

E
[
euP(Xt>x)

]
= det(I+KRW

u )L2(C0)

where C0 is a small positively oriented circle containing 0 but not −α−β
nor −1, and KRW

u : L2(C0)→ L2(C0) is defined by its integral kernel

KRW
u (w,w′)= 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(πs)
(−u)s

g(w)
g(w+s)

ds
s+w−w′

where

g(w)=
(
Γ(w)

Γ(α+w)

)(t−x)/2 (
Γ(α+β+w)
Γ(α+w)

)(t+x)/2
Γ(w).



If C is a contour in the complex plane,

det(I+K)L2(C) := 1+
∞∑

n=1

1
n!

(
1

2iπ

)n ∫
C

. . .
∫

C
det

[
K(wi,wj)

]n

i,j=1
dw1 . . .dwn.

It is convenient to use Fredholm determinants because if X is
distributed according to the GUE Tracy-Widom distribution,

P(X É x)= det(I−KAi)L2(Γ),

where

KAi(w,w′)= 1
2iπ

∫
Ξ

dz
ez3/3−zx

ew3/3−wx

1
z−w

1
z−w′ ,

where Γ and Ξ are infinite contours in
the complex plane that do not intersect.

∞eiπ/3

∞e−iπ/3

∞ei2π/3

∞e−i2π/3

ΞΓ



The Beta polymer

The Beta polymer is a measure on right/upright paths from the gray
line to (t,n).

t

n Z(t,n)

(0,1)



The Beta polymer

Measure of a path π:

Qt,n(π)=
∏

e∈πwe

Z(t,n)
,

where

we =
{

Bij if e is the horizontal edge (i−1, j)→ (i, j),
1−Bi,j if e is the diagonal edge (i−1, j−1)→ (i, j).

and Z(t,n) is the partition function .

Recurrence formula

Z(t,n)=Bt,n ·Z(t−1,n)+ (1−Bt,n) ·Z(t−1,n−1).

(This Beta polymer is a particular kind of “random average process”.)



Relation with Beta RWRE

Ï Consider the polymer path
from (t,n) to the half line.

Ï Deform the path to make
upright steps.

Ï One gets a Beta RWRE and

Z(t,n)=P(Xt Ê t−2n+2).

(equality in law for t,n
fixed.)

t

n Z(t,n)

(0,1)

0 t

Xt

x



Evolution equation

Z(t+1,n)=Bt+1,n ·Z(t,n)+ (1−Bt+1,n) ·Z(t,n−1).

We want to compute the moments E[Z(t,n)k], in order to take the
Laplace transform. Let

u(t,~n) := E[Z(t,n1)Z(t,n2) . . .Z(t,nk)].

Evolution equation
For~n= (n, . . . ,n),

u(t+1,~n)=
k∑

j=0

(
k
j

)
E
[
(1−B)jBk−jZ(t,ni −1)jZ(t,ni)k−j

]
=

k∑
j=0

(
k
j

)
(β)j(α)k−j

(α+β)k
u
(
t, (n, . . . ,n,n−1, . . . ,n−1)

)
.

where
(a)k = a(a+1) . . . (a+k−1).



Non-commutative binomial
The Evolution equation says

u(t+1,~n)=L u(t,~n),

where L is an operator on functions Wk →C, and

Wk = {
~n ∈Zk : n1 Ê n2 Ê ·· · Ê nk

}
.

In general, L acts as in the evolution equation for each cluster of equal
components in~n.

Lemma (Povolotsky, 2013)
Let X,Y generate an associative algebra such that

(1+α+β)YX =XX + (α+β−1)XY +YY.

Then we have the following non-commutative binomial identity:(
β

α+βX + α

α+βY
)k

=
k∑

j=0

(
k
j

)
(β)j(α)k−j

(α+β)k
X jYk−j.



Bethe ansatz

One defines a simpler operator L on functions f : Zk →C by

Lf (~n)=
k∑

i=1

(
α

α+β f (~ni
−)+ β

α+β f (~n)
)

where ~ni
− is obtained from~n by decreasing the ith coordinate by 1.

Then, it is enough to solve{
∀~n ∈Zk, u(t+1,~n)= Lu(t,~n) (free evolution)
∀~n ∈ ∂Wk, Bu(t,~n)= 0 (boundary condition)



Moment formula

The solution of (free evolution + boundary equation) can be written as a
contour integral, adapting previous works on Macdonald processes.

Proposition
For n1 Ê n2 Ê ·· · Ê nk Ê 1,

E
[
Z(t,n1) · · ·Z(t,nk)

]
=

1
(2iπ)k

∫
. . .

∫ ∏
1ÉA<BÉk

zA −zB

zA −zB −1︸ ︷︷ ︸
boundary condition

k∏
j=1

(
α+β+zj

zj

)nj ( α+zj

α+β+zj

)t

︸ ︷︷ ︸
solution of u(t+1)=Lu(t)

dzj

α+β+zj︸ ︷︷ ︸
initial condition

where the contour for zk is a small circle around the origin, and the
contour for zj contains the contour for zj+1 +1 for all j= 1, . . . ,k−1, as
well as the origin, but all contours exclude −α−β.



Fredholm determinant
One now has an exact formula for E[Z(t,n)k], and equivalently for
E
[
P(Xt > xt)k

]
. The moments do determine the distribution (!), and one

can form the Laplace transform. One obtains Fredholm determinantal
formulas from moment formulas via Macdonald processes theory.

Theorem (B.- Corwin)
Let u ∈C\R+, and t,x with the same parity. Then for any parameters
α,β> 0 one has

E
[
euP(Xt>x)

]
= det(I+KRW

u )L2(C0)

where C0 is a small positively oriented circle containing 0 but not −α−β
nor −1, and KRW

u : L2(C0)→ L2(C0) is defined by its integral kernel

KRW
u (w,w′)= 1

2iπ

∫ 1/2+i∞

1/2−i∞
π

sin(πs)
(−u)s

g(w)
g(w+s)

ds
s+w−w′

where

g(w)=
(
Γ(w)

Γ(α+w)

)(t−x)/2 (
Γ(α+β+w)
Γ(α+w)

)(t+x)/2
Γ(w).



How we discovered the model
q-Hahn TASEP (Povolotsky 2013, Corwin 2014)

Prob. ϕ(2|3)

gap= 3xn(t) xn−1(t)xn+1(t)

At each integer time t, particles jump by +j when they have a free
space m, with probability

ϕ(j|m) := qjα (qβ;q)j(qα;q)m−j

(qα+β;q)m

[
m
j

]
q

.

This probability distribution is a q-analogue of the Beta-Binomial
distribution.

Proposition (B.-Corwin)
Starting from initial condition ∀nÊ 1,xn(0)=−n, we have as q goes to 1,(

qxn(t)
)
t,n

⇒
(
Z(t,n)

)
t,n

.



Extreme value theory

Fact
The order of the maximum of N i.i.d. random variables is the quantile
or order 1−1/N.

Relation LDP / extreme values
Second order corrections to the LDP have an interpretation in terms of
second order fluctuations of the maximum of i.i.d. drawings.

Corollary (B.-Corwin)

Let X(1)
t , . . . ,X(N)

t be random walks drawn independently in the same
environment. Set N = ect. Then, for α=β= 1,

maxi=1,...,ect

{
X(i)

t

}
− t

√
1− (1−c)2

d(c) · t1/3 =⇒LGUE,

where d(c) is an explicit function (proved under assumption c> 2/5).



Comparison to correlated Gaussians
By the quenched CLT,

X(i)
tp
t
=⇒N (0,1).

The covariance structure is asymptotically known:

E

[
X(i)

tp
t

X(j)
tp
t

]
∼ 1
α
p
πt

.

Proposition
Let (G1, . . . ,GN) be a centred Gaussian vector such that E[G2

i ]= 1 and

E[GiGj]=
√

c
π log(N) .

maxi=1,...,N

{
Gi

}
−√

2log(N)+
√

2c
π(√

π log(N)
c

)−1/2 =⇒N (0,1).



Zero-temperature model
The parameter α+β plays the role of the temperature. For parameters
a,b> 0, we set α= εa and β= εb. As the temperature goes to zero,

−ε log(P(Xt > xt))=⇒ passage time.

Bernoulli-Exponential first passage percolation
For parameters a,b> 0, we define a percolation model on Z2+

Ee ∼
{

E (a) if e is vertical,
E (b) if e is horizontal,

ξi,j a family of Bernoulli r.v. with parameter b/(a+b). The passage time
of an edge is

te =
{
ξi,jEe if e is the vertical edge (i, j)→ (i, j+1),
(1−ξi,j)Ee if e is the horizontal edge (i, j)→ (i+1, j).

te corresponds to the limit of −ε log(P) as ε→ 0, where P is a transition
probability, i.e. either B either 1−B for B∼Beta(aε,bε).



Bernoulli-Exponential directed FPP

n

m

Dn,m

(0,0)

We define the first passage-time T(n,m)
from (0,0) to the half-line Dn,m by

T(n,m)= min
π:(0,0)→Dn,m

∑
e∈π

te



Limit Theorem

Theorem (B.-Corwin)
For any κ> a/b and parameters a,b> 0,

T(n,κn)−τ(κ)n
ρ(κ)n1/3 =⇒LGUE,

where ρ(κ) and τ(κ) are explicit functions of κ.

Proof.
The Fredholm determinant formula for the Beta RWRE degenerates in
the scaling limit, and one gets a formula

P
(
T(n,m)É r

)= det
(
I−KFPP)

.

A saddle point analysis yields the limit theorem.



Dynamical construction

Alternative description
Ï At time 0, only one random

walk trajectory (in black).

Ï One adds to the percolation
cluster portions of
branching-coalescing
random walks at
exponential rate, at each
branching point.





Relation to RMT ?

When b→∞, one recovers a previously known FPP model, which is
itself a limit of a polymer model studied by O’Connell and Ortmann.

Proposition (Draief-Mairesse-O’Connell +
O’Connell-Ortmann)
When b→∞, T(n,m) is distributed as the smallest eigenvalue of the
Laguerre ensemble, i.e. with density proportional to

∏
i<j

(λi −λj)2
n∏

i=1
λm−1

i e−λidλi.

Question
Is there such a random matrix interpretation in the general
two-parameter case ?



KPZ universality

One expects that for any α,β> 0,

log
(
P

(
Xt > xt

))+ I(x)t

σ(x) · t1/3 =⇒LGUE.

Critical point analysis of the Fredholm determinant formula yields
expressions for I(x) and σ(x), but the proof is technical (not complete).

Universality ?

log
(
P

(
Xt > xt

))
is the analogue of the free energy for directed polymers.

The limit above give free energy fluctuations.
Universal behaviour for RWRE ? Under which hypotheses ?



Outlook

We have seen
Ï A first exactly solvable model of space-time RWRE.

Ï Second order corrections to the LDP converge to LGUE.

Ï Limit theorem for the max of N = ect trajectories.

Ï Results propagate to the zero temperature model.

Questions
Ï KPZ universality for RWRE and random average process, to which

extent ?

Ï Integrability : determinantal structure ? Analogue of
Schur/Macdonald processes ? Link with RMT ?

Ï Tracy-Widom distribution and extreme value theory...



Merci !
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