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An SPDE motivation

Ï Consider the (multiplicative noise) stochastic heat equation,

∂tZ= 1
2∂xxZ+Z ξ, where Z(t,x), x ∈X,t> 0,

where ξ is a Gaussian space time white noise. In one spatial
dimension, one can make sense of it in an integrated sense.

Ï h := log(Z) is the solution to the KPZ equation

∂th= 1
2∂xxh+ 1

2
(
∂xh

)2 +ξ.

Ï Question: What is the probability distribution of the solution?
Ï The answer depends on

1 The initial condition. In this talk we restrict to delta initial data.
2 The space X. It may be the whole line R, the torus R/Z or an interval

with Neumann/Dirichlet/other boundary conditions.



A beautiful answer when X=R
Consider the solution to the multiplicative SHE on the whole line R,

∂tZ= 1
2
∂xxZ+Z ξ, where x ∈R,t> 0,

with delta initial condition Z(0, ·)= δ0.

Theorem (Amir-Corwin-Quastel, Calabrese-Le
Doussal-Rosso, Dotsenko, Sasamoto-Spohn 2010)
For u ∈C with Re(u)> 0,

E
[
e−uZ(t,0)et/24

]
= E

[+∞∏
i=1

1
1+u exp

(
(t/2)1/3aGUE

i
)]

.

where
{
aGUE

i
}

iÊ1 are the limiting eigenvalues of the GUE scaled at the
edge (Airy point process).

Ï The RHS is explicit and can be computed numerically. One can
deduce large time limits, large deviations estimates.



Analogue when X=R+ ?

Consider now the solution Z(τ,x) to the multiplicative SHE in a
half-space,

∂tZ= 1
2
∂xxZ+Z ξ, where x ∈RÊ0, t> 0,

with delta initial condition Z(0, ·)= δ0 for some boundary condition at
x= 0 (Neumann, Dirichlet, mixed...).
What is the law of the solution? Can one find a function f and a matrix
ensemble such that

E
[
e−uZ(t,x)

]
= E

[+∞∏
i=1

f
(
u e(t/2)1/3ai

)]
?

Based on results on symmetrized last passage percolation [Baik-Rains
2001], we expect a transition depending on boundary parameters
between Tracy-Widom and Gaussian type statistics.



KPZ equation through discrete models

Moments
Consider mixed moments of E[Z(t,x1) . . .Z(t,xk)]. These are solutions of
the delta Bose gas, which can be solved by Bethe ansatz. However, the
moments grow too fast to characterize the distribution.

There are two rigorous approaches.

KPZ equation through ASEP
The height function of the asymmetric simple exclusion process (ASEP)
converges to the KPZ equation [Bertini-Giacomin 1997] under a certain
weak asymmetry scaling.

KPZ equation through discrete directed polymers
The free energy of directed polymer in Z2 at high temperature
converges to the KPZ equation [Alberts-Khanin-Quastel 2010].

Both discretizations are marginals or limits of more general measures
on partitions called (half-space) Macdonald processes.



Plan of the talk

1 Last passage percolation in a half-quadrant: the
Baik-Rains transition

2 Definition of models and results
Ï Limit theorems for Half-line ASEP
Ï Law of the KPZ equation
Ï Formulas for the inverse gamma polymer partition function in a

half-quadrant

3 Half-space Macdonald measures
Ï Definition
Ï Hall-Littlewood measures and the stochastic six vertex model
Ï Markov Dynamics and half-space Macdonald processes
Ï Computing observables



(half-space) Macdonald processes
full-space: [Borodin-Corwin 2011]
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Last Passage Percolation in a half quadrant
Let wij a family of i.i.d. exponential random variables with rate 1 when
i> j and α when i= j.

n
m

w11

w21

w22 w31

Exp(α)

Exp(1)

Half space TASEP

Consider directed paths π from the box (1,1) to (n,m) in the half
quadrant. We define the last passage percolation time H(n,m) by

H(n,m)=max
π

∑
(i,j)∈π

wij.



Baik-Rains transition
Last passage percolation can be studied within the framework of
determinantal/Pfaffian point processes.

Theorem (Baik-Rains 2001, Baik-B.-Corwin-Suidan 2016)
Ï When α> 1/2,

H(n,n)−4n
24/3n1/3 =⇒LGSE,

Ï When α= 1/2,
H(n,n)−4n

24/3n1/3 =⇒LGOE,

Ï When α< 1/2,
H(n,n)−cn

c′n1/2 =⇒N ,

Ï Far from the diagonal, we obtain a transition between
Tracy-Widom GUE and Gaussian statistics.

Ï Scaling α close to 1/2 and (n,m) close to the boundary, we obtain
crossover ensemble related to RMT.

Ï Multipoint correlations (along space-like paths) can also be
characterized.
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Half-line ASEP

Let R>LÊ 0, and consider the asymmetric simple exclusion process
(ASEP) on the positive integers with open boundary condition:

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

R L R RLα

γ

One can characterize the system by the function

Nx(τ)= # {particles on the right of site x at time τ} .

Under weakly asymmetric scaling, [Corwin-Shen 2016, Parekh 2017]
(see Hao's talk) showed that Nx(t) converges to the KPZ equation on
the positive reals with Neumann boundary condition,{

∂τh= 1
2∂xxh+ 1

2
(
∂xh

)2 +ξ
∂xh(τ,x)

∣∣∣
x=0

= a ∈R.

This is equivalent to saying that h= logZ where Z solves the mSHE
with mixed Robin boundary condition Z, ∂xZ(τ,x)

∣∣∣
x=0

= a Z(τ,0).



Previous results on half-line ASEP

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

R L R RL
α

γ

Ï [Liggett 1975] classified the stationary measures when

α

R
+ γ

L
= 1.

Then ρ =α/R is the average density enforced at the boundary.
There is a transition at ρ = 1/2 between product-form Bernoulli
measure and spatially correlated stationary measures (which can
be expressed using Matrix Product Ansatz).

Ï [Tracy-Widom 2013] used coordinate Bethe ansatz to find formulas
for the transition probabilities, but these do not seem amenable for
asymptotic analysis.

Ï We analyze half-line ASEP through a half space version of the
stochastic six-vertex model. This approach was first developed in
the full-space [Borodin-Corwin-Gorin 2014, Aggarwal-Borodin 2016,
Aggarwal 2016, Borodin-Olshanski 2016])



Recall results for TASEP

When γ=L= 0 (no left jumps), the model is equivalent to last passage
percolation. Without loss of generality, we may set R= 1 and recall

Nx(t)= # {particles on the right of x at time t} .

Theorem (Baik-Rains 2001, Baik-B.-Corwin-Suidan 2016)
Ï When α> 1/2,

N0 (t)− t
4

2−4/3t1/3 ===⇒
t→∞ −LGSE.

Ï When α= 1/2,
N0 (t)− t

4

2−4/3t1/3 ===⇒
t→∞ −LGOE.

Ï When α< 1/2,
N0 (t)− tα(1−α)

σt1/2 ===⇒
t→∞ N (0,1).

LGSE/LGOE is the Tracy Widom GSE/GOE distribution (Gaussian
symplectic/orthogonal ensemble).



Laplace transform of ASEP current

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

R L R RLα

γ

We assume
1 Ligget’s condition α

R + γ
L = 1.

2 The boundary enforces a density of particles α/R= 1/2 at the origin.

Theorem (B.-Borodin-Corwin-Wheeler 2017)
Let t=L/R ∈ (0,1). For any time τ> 0 and u< 0,

E

[
1

(utN0(τ), t2)∞

]
=Pf[J+ fu ·K]`2(ZÊ0)

:= 1+
∞∑

k=1

1
k!

∑
x1,...,xk∈ZÊ0

fu(x1) . . . fu(xk)Pf
[
K(xi,xj)

]k
i,j=1

where K is a certain kernel (a variant of the Pfaffian Schur process
kernel) and

fu(x)= (utx+1;t2)∞
(utx;t2)∞

−1.



Large time asymptotics

reservoir
1 2 3 4 5 6 7 8 9 10 11 12

R L R RLα

γ

Asymptotic analysis of the Fredholm Pfaffian yields:

Theorem (B.-Borodin-Corwin-Wheeler 2017)
We assume

1 Ligget’s condition α
R + γ

L = 1.

2 The boundary enforces a density of particles α/R= 1/2 at the origin.
Then

N0
(

τ
R−L

)− τ
4

2−4/3τ1/3 ===⇒
τ→∞ −LGOE.

For other values of α, or the current away from the boundary, we expect
the same results as for TASEP (but cannot prove it yet).



Law of KPZ equation in half-space

Consider the KPZ equation on R+ with Neumann boundary condition,{
∂th= 1

2∂xxh+ 1
2
(
∂xh

)2 +ξ
∂xh(t,x)

∣∣∣
x=0

= a ∈R.

Using the convergence of half-line ASEP height function to the KPZ
equation [Corwin-Shen 2016, Parekh 2017] we obtain:

Theorem (B.-Borodin-Corwin-Wheeler 2017)
Assume the boundary parameter a=−1/2. For u ∈C with Re(u)> 0,

E
[
e−uZ(t,0)et/24

]
= E

[+∞∏
i=1

√
1

1+4uexp
(
(t/2)1/3aGOE

i
)]

,

where
{
aGOE

i
}∞

i=1 forms the GOE point process (i.e. the sequence of
rescaled eigenvalues of a large Gaussian real symmetric matrix).

See also recent results by [Krajenbrink-Le Doussal 2018, Gueudre-Le
Doussal 2012] in the case a=+∞.
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Inverse-gamma directed polymer
Let α1,α2, . . . and α◦ be positive parameters.

(1,1)

(n,m)

wi,j ∼Gamma−1(αi +αj)

wi,i ∼Gamma−1(α◦+αi)

The partition function of the half-quadrant inverse-gamma polymer is

Z(n,m)= ∑
π:(1,1)→(n,m)

∏
(i,j)∈π

wi,j

Ï At zero temperature, the free energy (i.e. log(Z)) converges to
passage times of half-space LPP.

Ï At high temperature, the free energy converges to the KPZ
equation [Wu 2018] with Neumann boundary condition (with
boundary parameter controlled by α◦).



Laplace transform formula of the
inverse-gamma polymer

Ï Using geometric RSK, [O'Connell-Seppäläinen-Zygouras, 2012]
related the distribution of the partition function to Whittaker
functions. A formal application of the Plancherel theorem for
Whittaker functions yields integral formulas.

Ï Using Macdonald processes, these formulas can be proved and
generalized.

Theorem ([B-Borodin-Corwin 2018])
For mÊ n and any u> 0, we have

E
[
e−uZ(m,n)

]
=

1
n!

∫ r+i∞

r−i∞
dz1

2iπ
· · ·

∫ r+i∞

r−i∞
dzn

2iπ

∏
i 6=j

1
Γ(zi −zj)

∏
1Éi<jÉn

Γ(zi +zj)
Γ(αi +αj)

n∏
i,j=1

Γ(zi −αj)

n∏
i=1

(
uαi−zi

Γ(α◦+zi)
Γ(α◦+αi)

m∏
j=n+1

Γ(αj +zi)
Γ(αj +αi)

)

where r is such that r+α◦ > 0 and r>αi for all 1É iÉ n.



Almost a Fredholm Pfa�an

If the parameters αi > 0 are sufficiently close to each other, for any
mÊ nÊ 1, u> 0,

E
[
e−uZ(m,n,τ)

]
=

n∑
k=0

1
k!

∫ r+i∞

r−i∞
dz1

2iπ
· · ·

∫ r+i∞

r−i∞
dzk

2iπ

∮
dv1

2iπ
· · ·

∮
dvk

2iπ

× ∏
1Éi<jÉk

(zi −zj)(vi −vj)Γ(vi +vj)Γ(−zi −zj)
(zj +vi)(zi +vj)Γ(vj −zi)Γ(vi −zj)

×
k∏

i=1

[
π

sin(π(vi +zi))
Gn,m(vi)

Gn,m(−zi)
Γ(2vi)
Γ(vi −zi)

uzi+vi

zi +vi

]
,

for well chosen r and a certain explicit function Gn,m(z).

Ï Using the approximation Γ(z)≈ 1/z close to z= 0, the series would
become a Fredholm Pfaffian. However, without that
approximation, the series is not summable as n goes to infinity.

Ï A formal saddle point asymptotic analysis leads to the Baik-Rains
transition as for LPP.
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Macdonald measures

Ï An integer partition λ is a sequences of integers λ1 Êλ2 Ê ·· · Ê 0.
Symmetric Macdonald polynomials Pλ,Qλ are multivariate
symmetric polynomials whose coefficients are rational functions in
two parameters q, t ∈ (0,1). They degenerate to Schur functions sλ
when q= t.

Ï Macdonald functions satisfy a Cauchy type summation identity.
For two sets of parameters a= {ai}, b= {bi},∑

λ

Pλ(a)Qλ(b)=Π(a;b)

where Π(a;b)=∏
i,j

(taibj;q)∞
(aibj;q)∞ .

Ï This leads to the definition of Macdonald measures
[Borodin-Corwin 2011] which generalizes the Schur measure
[Okounkov 2001]. These are measures on partitions such that

Pq,t(λ)= 1
Π(a;b)

Pλ(a)Qλ(b).



Half-space Macdonald measures

Ï Macdonald functions also satisfy a Littlewood type summation
identity ∑

λ′even
bel
λ Pλ(a)=Φ(a)

where Φ(a)=∏
i<j

(taiaj;q)∞
(aiaj;q)∞ and λ′ even means λ1 =λ2,λ3 =λ4...

Ï More generally, we define

Eλ(b)= ∑
µ′even

bel
µ Qλ/µ(b),

so that ∑
λ

Eλ(b)Pλ(a)=Π(a;b)Φ(a).

Ï We define the half-space Macdonald measure by

Pq,t(λ)= 1
Π(a,b)Φ(a)

Pλ(a)Eλ(b).

Half-space Macdonald measures degenerate when q= t to Pfaffian
Schur measures [Borodin-Rains 2005].
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Six vertex model in a half-quadrant

Let a1,a2, · · · ∈ (0,1) and t ∈ (0,1) be some parameters.

P
( )

= 1,

P
( )

= δ= 1−axay

1− taxay
,

P
( )

= 1−δ,

P
( )

= tδ,

P
( )

= 1− tδ,

P
( )

= 1.

We use the boundary weights [Kuperberg 2000, Wheeler-Zinn-Justin
2016]

P

( )
=P

( )
= 1, P

( )
=P

( )
= 0.

For small δ, paths are discretizations of the trajectories of particles
in half-line ASEP.



Stochastic six vertex model in a half space
and Hall-Littlewood functions

1
1

2
2

3
3

4
4

5
5

6
6

7
7 Ï Let h(x,y) be the number of

outgoing vertical arrows
from the vertices on the left
of (x,y).

Ï Let `(λ)=λ′
1 be the number

of nonzero components in a
partition λ following the
half-space Hall-Littlewood
measure (i.e. Macdonald
measure when q= 0).

Theorem (B.-Borodin-Corwin-Wheeler 2017)

h(n,m) (d)= λ′
1,

where
P(λ)∝Pλ(a1, . . . ,an)Eλ(an+1, . . . ,am).

Similar results exist for full-space models [Borodin 2016,
Borodin-Bufetov-Wheeler 2016, Bufetov-Matveev 2017].
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(full-space) Macdonald processes

;

;
λ(4,4)

λ(4,3)
λ(5,3)

Consider a path γ as on the left

Ï vertex v 7→λv a random
partition,

Ï edge e 7→ ρe a (set of)
variable(s).
(More generally a
specialization of the symmetric
functions).

The Macdonald process (generalizing the Schur process
[Okounkov-Reshetikhin 2003]) is a probability measure on the sequence
of partitions Λ := (

λv)
v∈γ such that

P(Λ)∝ ∏
e∈γ

weight(e),

where

weight
(
µ λ
ρ

)
=Qλ/µ(ρ) and weight

(
µ

λ
ρ

)
=Pλ/µ(ρ).



Half-space Macdonald process

; ;

λ◦
λ(4,3)

λ(5,3)

Consider a path γ as on the left

Ï vertex v 7→λv a random partition,

Ï edge e 7→ ρe a (set of) variable(s).

Ï Denote ρ◦ and λ◦ the
specialization and the partition on
the diagonal.

The half-space Macdonald process is a probability measure on the
sequence of partitions Λ := (

λv)
v∈γ such that

P(Λ)∝ Eλ◦ (ρ◦)
∏
e∈γ

weight(e),

where the weight of off-diagonal edges are chosen as in the Macdonald
process.
For any v ∈ γ, the law of λv is a half-space Macdonald measure.



Dynamics

; ;

Ï Make the path grow by unit boxes in the bulk and half-boxes along
the diagonal.

Ï We define Markov dynamics on sequences of partitions Λ mapping
a half-space Macdonald process to another half-space Macdonald
process along a new path.

Ï For well chose-dynamics, λ(n,m)
1 ≈ logZ(n,m), where Z(n,m) is the

inverse-gamma partition function and λ is distributed according to
the q-Whittaker process with q→ 1.

P(λ)∝Pλ(qα1 , . . . ,qαn ) Eλ(qα◦ ,qαn+1 , . . . ,qαm ).
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Computing observables of Macdonald
measures?

Assume that we have an operator Dn acting on functions of n variables
a1, . . . ,an, diagonalized by Macdonald polynomials Pλ(a), with
eigenvalue dλ. By acting on both sides of the Cauchy-Littlewood
identity ∑

λ

Pλ(a) Eλ(b)=Π(a;b)Φ(a),

and dividing by Π(a;b)Φ(a), we obtain

Eq,t[dλ]= DnΠ(a;b)Φ(a)
Π(a;b)Φ(a)

.

Families of such operators exist (Macdonald difference operators,
Noumi’s q-integral operator) and the resulting observables characterize
the law of λ [Borodin-Corwin 2011, Borodin-Corwin-Gorin-Shakirov 2012,
B.-Borodin-Corwin 2018].



A variant of Noumi's q-integral operator
We define an operator Mz

n on symmetric functions of n variables by

Mz
nf (x1, . . . ,xn)=

∫ −ε+i∞

−ε−i∞
ds1

2iπ
· · ·

∫ −ε+i∞

−ε−i∞
dsn

2iπ
(−z)s1+···+sn

∏
i<j

qsjxi −qsixj

xi −xj

×∏
i,j

(txi/xj)∞
(qxi/xj)∞

(qsj+1xi/xj)∞
(tqsjxi/xj)∞

n∏
i=1
Γ(−si)Γ(1+si) f (q−s1x1, . . . ,q−snxn),

for ε> 0 is small enough. We have the eigenrelation

Mz
nPλ(x1, . . . ,xn)=

n∏
i=1

(q−λi tiz)∞
(q−λi ti−1z)∞

Pλ(x).

This comes from

Ï The Pieri rule for Macdonald polynomials PλQ(r) which yields an
operator written as a linear combination of q-shifts.

Ï Rewriting sums as Mellin-Barnes type integrals (to avoid dealing
with issues of divergence of moments).

Applying Mz
n to Π(x;b)Φ(x) yields the Laplace transform formulas for

the inverse gamma polymer partition function.



Re�ned Cauchy identity

Recall that for usual Macdonald measures,

Pq,t(λ)= 1
Π(a;b)

Pλ(a1, . . . ,an) Qλ(b1, . . . ,bm),

Proposition ([Warnaar 2008])
For u ∈C,

1
Π(a,b)

∑
λ

∏
i

(
1−uqλi tn−i

)
Pλ(a) Qλ(b)=

det
[

1
1−aibj

−u
1

1− taibj

]
det

[
1

1−aibj

] .

It implies that

Eq,t

[
n∏

i=1

(
1−uqλi tn−i

)]
does not depend on q! Comparing the q= 0 and q= t cases yields
identities relating functionals of Schur (q= t) and Hall-Littlewood
(q= 0) random partitions.



Re�ned Littlewood identity

For half-space Macdonald measures,

Pq,t(λ)= 1
Φ(a)

Pλ(a1, . . . ,an) bel
λ 1λ′even,

Proposition ([Rains 2015], [Betea-Wheeler-Zinn-Justin 2015])
For u ∈C,

1
Φ(a)

∑
λ′ even

∏
i even

(
1−uqλi tn−i

)
bel
λ Pλ(a1, . . . ,an)=

Pf
[ ai −aj

1−aiaj
−u

ai −aj

1− taiaj

]
Pf

[ ai −aj

1−aiaj

] .

It implies that

Eq,t

[ ∏
i even

(
1−uqλi tn−i

)]
does not depend on q! Comparing the q= 0 and q= t cases yields
identities relating functionals of (half-space) Schur and Hall-Littlewood
random partitions.



Conclusion

Ï Large-scale statistics of the KPZ equation in a half-space and
several models in its universality class (ASEP, directed polymers,
stochastic six vertex models) can be studied via half-space
Macdonald processes almost as well as their full-space
counterparts.

Ï Through half-line ASEP, one obtains a beautiful formula
characterizing the law of the KPZ equation on R+, but the result is
restricted to the height at 0 and a specific boundary corresponding
to the critical case in the Baik-Rains transition.

Ï Through the inverse gamma polymer in a half-quadrant, one
obtains exact formulas, without restrictions on parameter ranges.
However, analyzing these asymptotically remains a challenge.



Thank you


