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KPZ equation on arbitrary domains

This talk is about invariant measures for the [Kardar-Parisi-Zhang]
equation

∂th = 1
2∂xxh + 1

2

(
∂xh
)2

+ ξ, t > 0, x ∈ X.

Question: Are there invariant measures ? Can one classify them all ?
How to describe them precisely ? The answer depends on the space X.

We may consider

I The whole line X = R
I A torus X = R/Z
I An interval X = [0, L] with boundary conditions

I A half-line X = R+
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The simple case: R ou R/Z

I Assume that X = R. For a large class of initial conditions,
h(t, x) ∼ −t24 , so we do not expect that the law of h(t, x) can be
time invariant.

No invariant measures in C (R) but there exist invariant
measures in C (R)/{x 7→ c}c∈R modulo a constant.

I If h(0, x) = B
(µ)
x a Brownian motion with drift µ, then for all time

t > 0, as processes in x ,

h(t, x)− h(t, 0)
(d)
= B(µ)

x .

[Bertini-Giacomin 1997, Funaki-Quastel 2014] The law of h(t, 0) is
non-trivial

h(t, 0) =
−t
24

+ fluctuations O(t1/3).

I On the torus R/Z, the Brownian motion is the unique invariant
measure [Hairer-Mattingly 2016].
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Plan of the talk

1 How to find invariant measures on R? Using ASEP!

2 KPZ equation on a segment and its invariant measures

3 Some proof ideas (Matrix-product ansatz, harnesses, Liouville
Hamiltonian)

4 Various conjectures: Large scale limits, invariant measures of the
KPZ fixed point, invariant measures on R+.
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ASEP

ASEP (asymmetric simple exclusion process) is a continuous Markov
process on {0, 1}Z, whose transition rates depend on an asymmetry
parameter q.

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

1 q 1 1q

I For any % ∈ [0, 1], the measure Ber(%)⊗Z is invariant.

I Define a height function H(t, x) so that

H(t, x)− H(t, x − 1) =

{
1 if site x is occupied.

−1 if site x is empty.

and H(t, 0) is the number of particles which have crossed the origin.
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KPZ equation on R

Solutions of the KPZ equation

∂th = 1
2∂xxh + 1

2

(
∂xh
)2

+ ξ, t > 0, x ∈ R

are defined through the multiplicative noise stochastic heat equation

∂tZ (t, x) = 1
2∆ Z (t, x) + Z (t, x) ξ(t, x), t > 0, x ∈ R,

where ξ is a space-time Gaussian white noise. In dimension 1, a solution
Z (t, x) solves

Z (t, x) = Z0 ∗ pt(x) +

∫ t

0

ds

∫
R
dypt−s(y , x)Z (s, y)ξ(s, y),

where pt(y , x) is the standard heat kernel.

Definition

h := log(Z ) is the solution of the KPZ equation with initial data logZ0.
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Convergence ASEP → KPZ

Let Zt(x) = q
1
2H(t,x)−νt , where ν = (1−√q)2. For q = e−ε, when

ε→ 0
Zε−4t(ε

−2x) =⇒ Z (t, x),

the solution of

∂tZ (t, x) = 1
2∆Z (t, x) + Z (t, x) ξ(t, x).

ASEP height function converges to a solution of KPZ equation.
[Bertini-Giacomin 1997]

Rmk: Under Ber(%)⊗Z, the height function converges to a Brownian
motion (with drift), up to a global shift.
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KPZ equation on a segment

Consider the KPZ equation on the segment [0, L],

∂th = 1
2∂xxh + 1

2

(
∂xh
)2

+ ξ.

For the solution to be unique, one needs to impose boundary conditions.
Since h(x , t) ∼ −ct cannot be fixed, it is natural to impose a Newman
type condition

∂xh(t, 0) = A, ∂xh(t, L) = B.

Physically, ∂xh corresponds to the density in ASEP. These parameters
also have a natural interpretation when Z (t, x) = eh(t,x) is viewed as the
partition function of a directed polymer.

! h(t, x) is not differentiable...
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Boundary conditions
h = logZ yields

∂tZ (t, x) = 1
2∆Z (t, x) + Z (t, x) ξ(t, x).

On Z (t, x), boundary conditions become

∂xZ (t, 0) = AZ (t, 0), ∂xZ (t, L) = BZ (t, L).

Definition ([Corwin-Shen 2016])

h(t, x) solves the KPZ equation on [0, L] with boundary parameters
u ∈ R and v ∈ R if:
For all t > 0, x ∈ [0, L], h(t, x) = logZ (t, x) and

Z (t, x) =

∫ L

0

dyZ0(y)pu,vt (x , y) +

∫ t

0

ds

∫ L

0

dyp
u,v
t−s(x , y)Z (s, y)ξ(s, y),

where pu,vt (x , y) is the heat kernel on [0, L] with boundary conditions{
∂xp

u,v
t (x = 0, y) = (u − 1

2 )pu,vt (0, y),

∂xp
u,v
t (x = L, y) = (−v + 1

2 )pu,vt (L, y).
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Invariant measures on a segment

Theorem ([Corwin-Knizel 2021])

Fix u, v ∈ R such that u + v > 0 and L = 1.

1 There exist a stationary process hu,v . Its finite dimensional marginals
(hu,v (x1), . . . , hu,v (xk)) are characterized by a Laplace transform
formula

E

[
k∏

i=1

e−si (hu,v (xi )−hu,v (xi−1))

]
= Some formula.

2 When u + v = 0, hu,v is a Brownian motion with drift u = −v.

Motivations for looking at a simpler characterization:

I It’s not clear how to extend to u + v < 0.

I The symmetry in u, v is not really apparent.

I The formula for u + v = 0 does not clearly degenerates to the
Gaussian Laplace transform.
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For any continuous process Xt , let

At(X ) =

∫ t

0

e−2Xsds.

Theorem ([Bryc-Kuznetsov-Wang-Weso lowski],
[B.- Le Doussal], [Bryc-Kuznetsov] 2021)

Fix u, v ∈ R such that u + v > 0. Fix L = 1.

hu,v (x) = Wx + Xx ,
where

I W is a Brownian motion with diffusion coefficient 1/2. (From now
on, all BM have diffusion coefficient 1/2 and start from 0)

I X is a continuous process, independent from W , whose law PX is
absolutely continuous w.r.t. the law PB of the Brownian motion B.

dPX

dPB
(X ) =

1

Zu,v
(AL(X ))−u (AL(X − XL))−v

=
1

Zu,v

(∫ L

0

e−2Xsds

)−u (∫ L

0

e−2(Xs−XL)ds

)−v
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This means that for functionals F ,

EX [F (X )] =
1

Zu,v
EB

[
F (B) (AL(B))−u (AL(B − BL))−v

]
,

where B is a Brownian motion, and AL(B) =
∫ L

0
e−2Bsds.

I Exchanging u et v has the same effect as reversing space, i.e.
changing Xx into x 7→ XL−x − XL.

I We have

(AL(X ))−u (AL(X − XL))−v = e−2vXLAL(X )−u−v

Hence by Cameron-Martin theorem, X is absolutely continuous
w.r.t. a Brownian motion B(−v) with drift −v , and the
Radon-Nikodym derivative is

dPX

dPB(−v)

(X ) =
1

Z̃u,v

AL(X )−u−v .

I When u + v = 0, X is a Brownian motion.
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Several conjectures

The Radon-Nikodym derivative

(AL(X ))−u (AL(X − XL))−v

makes perfect sense and is integrable even if u + v < 0.

Conjecture ([B.- Le Doussal, 2021])

For any u, v ∈ R, there exists a unique invariant process hu,v , whose
distribution is analytic in u, v =⇒ Theorem holds for any u, v ∈ R.

Conjecture ([B.- Le Doussal, 2021])

The Theorem holds for any interval length L.

Conjecture ([B.- Le Doussal, 2021])

The limits as L→ +∞ are invariant measures for the KPZ equation on
R+ (proof in progress).
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Main steps

1 Find invariant measures for ASEP on a finite domain with boundary
conditions (reservoirs) [Derrida-Evans-Hakim-Pasquier 1993]

2 Reformulate the result to obtain formulas [Bryc-Weso lowski 2018],
in particular a Laplace transform

3 Study the KPZ equation limit [Corwin-Shen 2016] [Corwin-Knizel
2021] and prove that the limiting processes are invariant for the
KPZ equation.

4 Invert the Laplace transform
I [Bryc-Kuznetsov-Wang-Weso lowski 2021] first found another

description.
I [B.- Le Doussal 2021] found the statement just discussed (written in

a physics paper) and made several conjectures.
I Finally, [Bryc-Kuznetsov 2021] proved that for u + v > 0,

[B.- Le Doussal 2021] ⇐⇒ [Bryc-Kuznetsov-Wang-Weso lowski 2021]

and proved scaling limits conjectured in [B.- Le Doussal 2021].
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Matrix product ansatz
Consider ASEP on {0, 1}N with boundary parameters α, β, γ, δ.

reservoir reservoir
1 2 3

. . .
N

1 q 1 1qα

γ

β

δ

We describe the state of the system by τ ∈ {0, 1}N . The invariant
measure Q, determined by [Derrida-Evans-Hakim-Pasquier 1993], is such
that for all t1, . . . , tn ∈ C,

Q

 N∏
j=1

t
τj
j

 =
1

KN
wT (E + t1D)(E + t2D) . . . (E + tND) v

where
KN = wT (E + D)N v

and E ,D are infinite matrices, and w , v are vectors such that

DE − qED = D + E

wT (αE − γD) = wT

(βD − δE )v = v
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Askey-Wilson orthogonal polynomials

I Finding representations, i.e. matrices E ,D and explicit vectors u, v
satisfying the relations, is non trivial. [Uchiyama-Sasamoto-Wadati
2003] found a representation using Askey-Wilson orthogonal
polynomials.

I This allows to rewrite [Bryc-Weso lowski 2018]

Q

 N∏
j=1

t
τj
j

 =
E
[∏N

j=1(1 + tj + 2
√
tjAWtj )

]
E
[(

2 +
√

1− qAW1

)N] ,

where AWt , the Askey-Wilson process, is an auxiliary Markov
process satisfying many interesting properties, for instance:
I The transition probabilities of AWt are given by an explicit formula

involving the Askey-Wilson density (product of ratios of many
q-Pochhammer symbols).

I n 7→ Pn(AWt ; t) is a sequence of orthogonal martingale
polynomials (where Pn(x ; t) denotes Askey-Wilson polynomials
specialized appropriately). This means that t 7→ Pn(AWt ; t) is a
martingale and E[Pn(AWt ; t)Pm(AWt ; t)] = 0.
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Martingales and harnesses
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Harnesses
How did [Bryc-Weso lowski 2018] came up with this?

Definition

I A Harness Ht [Hammersley 67] is a stochastic process such that for
s < t < u,

E [Ht |σ(F6s ,F>u)] =
t − s

us
Hs +

u − t

u − s
Hu

Conditionnally on what happens before s and after u, the
expectation of Ht is the linear interpolation between Hs and Hu.

I A quadratic harness is a harness such that

E
[
H2

t |σ(F6s ,F>u)
]

= Qs,u(Hs ,Hu)

where Qs,u(x , y) is a quadratic form.

[Bryc-Weso lowski 2010] found that these conditions typically determine
Ht , and solutions can be constructed using orthogonal martingale
polynomials. The Askey-Wilson process provides a large class of
quadratic harnesses...
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Corwin-Knizel’s result

[Corwin-Knizel 2021] studied the limit of formulas from
[Bryc-Weso lowski 2018] under the KPZ equation scaling.

The auxiliary Markov process AWt has a limit with explicit transition
probabilities. In the one-point case,

E[e−shu,v (y)] = e
s2y
4 ×

∫∫ ∞
0

dt1 dt2p0(t2)p0,s(t2, t1)e
−1
4 (t1y+t2(L−y)),

where, for u, v > 0,

p0(t) =
(u + v)(u + v + 1)

8π

Γ
(
v ± i

√
t

2

)
Γ
(
u ± i

√
t

2

)
√
tΓ
(
±i
√
t
)

p0,s(t2, t1) =
1

8π

Γ
(
u − s

2 ± i
√
t1
2

)
Γ
(
u ± i

√
t2
2

)√
t1Γ (±i

√
t1)

Γ
(

s
2 ± i

√
t2
2 ± i

√
t1
2

)
Γ(s)

Remark: For u < 0 or v < 0 with u + v > 0, Laplace transform formulas
are analytic continuations.
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Liouville quantum mechanics I

I One may recognize expressions that typically arise in Liouville
quantum mechanics, or when computing exponential functionals of
the Brownian motion [Comtet, Monthus, Texier, and others in the
80’s and 90’s] [B.-Le Doussal 2020].

I The Liouville Hamiltonian, in dimension 1, is the operator

H =
−1

4

d2

dx2
+ e−2x .

It is diagonalized by the family of eigenfuctions

ψk(x) =

√
2

π

1

|Γ(ik)|
Kik(2e−x),

where Kik(z) is a Bessel function, normalized so that

Hψk =
k2

4
ψk , 〈ψk |ψk′〉 = δ(k − k ′).
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Liouville quantum mechanics II

We have a Cauchy-type identity, for s > 0

∫
R
dxe−sxψk(x)ψk′(x) =

C

8π

Γ
(

s
2 ±

ik
2 ±

ik′

2

)
Γ(s)

,

which we recognize in the fomula for p0,s(t2, t1). We get

E
[
e−shu,v (x)

]
= e

1
4 s

2y

∫
dx1

∫
dx2

∫
dk1

∫
dk2e

−2vx2−(2u−s)x1)

× ψk2(x2)ψk1(x1)

∫
dx3e

−sx3ψk1(x3)ψk2(x3)e−x
k21
2 −(L−x)

k22
2

There exist analogous formulas for the Laplace transform of
(hu,v (x1), . . . , hu,v (xd)), which allow to write hu,v (x) as the sum of a
Brownian motion and the Doob transform of a Markov process Yx having
explicit transitions.

This is the description proved for u + v > 0 in
[Bryc-Kuznetsov-Wang-Weso lowski 2021]
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Feynman-Kac
Using Feynman-Kac formula, the fundamental solution of ∂tu = −Hu
can be written as∫

dkψk(x ′)e−t
k2

4 ψk(x) = pt(x , x
′)EB

[
e−

∫ t
0
e−2B(s)ds

]
,

where the expectation is w.r.t. a Brownian bridge such that B(0) = x et
B(t) = x ′. After interpreting a bit the formulas, we obtain

hu,v (x) = Wx + Yx − Y0

where

I W is a Brownian motion.

I Y is independent from W , and its law PY is absolutely continuous
w.r.t. to that of a Brownian B with free starting point. The
Radon-Nikodym derivative is

1

Zu,v
e−2uY0−2vYLe−AL(Y ),

where AL(Y ) =
∫ L

0
e−2Ysds.
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Final step

Write Xs = Ys − Y0 and integrate over the starting point Y0 using the
identity ∫ ∞

0

dz zu+v−1e−zA = A−u−vΓ(u + v)

(think of A being the exponential Brownian functional)

The law of Xs = Ys − Y0 is absolutely continuous w.r.t. that of a
Brownian B with B(0) = 0. The Radon-Nikodym derivative is

dPX

dPB
(X ) =

1

Z̃u,v

(AL(X ))−u (AL(X − XL))−v

où AL(X ) =
∫ L

0
e−2Xsds.
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The process X was first studied by [Hariya-Yor, 2004] in the paper
Limiting distributions associated with moments of exponential
Brownian functionals, motivated by the Matsumoto-Yor identity.

Monsieur Jourdain...

“Our reference to Monsieur Jourdain (a character of Molière
(1622–1673) [17]) in the title alludes to this point; Monsieur Jourdain
discovers that he is practicing prose without being aware of it;
analogously the following theorem shows that a number of authors have
been dealing with harnesses:”

Harnesses, Lévy bridges and Monsieur Jourdain, R. Mansuy, M. Yor,
2005.
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Universality

It is expected that all models in the KPZ class converge at large scale to
a universal Markov process called KPZ fixed point.

Its definition depends on which space we consider: R, R/Z, R+, [0, L],
but it has been defined only on R [Matetski-Quastel-Remenik 2016]

Assuming the existence of this universal process and the convergence of
KPZ class models towards it, invariant measures of any KPZ class model
must converge to invariant measure of the corresponding KPZ fixed
point. Hence we expect that

h̃(x̃) :=
1√
L
hu,v (Lx̃)

converge to universal processes.
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The following convergences were non-rigorously derived in [B.-Le
Doussal, 2021] and proved in [Bryc-Kuznetsov 2021].

v

u

0

0

h̃(x̃)− u
√
Lx̃

⇓
standard Brownian motion

h̃(x̃) + v
√
Lx̃

⇓
standard Brownian motion

h̃(x̃)

⇓
Brownian +

Brownian excursion

Brownian +

Brownian meander

We recover the same result as for TASEP [Derrida-Enaud-Lebovitz
2004] and ASEP [Bryc-Wang 2018].



27/28

We may also take the L→ +∞ limit to obtain invariant processes on
R+, and then take the large scale limit to the KPZ fixed point on R+.

Conjecture

Invariant measures for ASEP on N – the existence of a two-parameter
family is proved in [Liggett, 1975]– converge to

ṽ
drift

parameter

ũ
boundary parameter

0

0
Standard Brownian

motion with drift ũ

Wy +max
{
B

(ṽ)
y ,P(B(ṽ))y − Eũ−ṽ

}

Wy +max {By ,P(B)y − Eũ}

where P(B) is the Pitman transform of a Brownian and Eũ and Eũ−ṽ are
independent exponential random variables.
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Conclusion

Invariant measures for KPZ equation on a segment are given by
re-weightings of the Brownian measure by exponential functionals,
studied by many authors, in particular Hariya and Yor.

Perspectives

I An important open problem: Uniqueness/classification, ergodic
limit theorems.

I A mystery: Direct understanding of the relation between Liouville
field theory and KPZ? What about higher dimensions?



Thank you


