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Schur polynomials

The Schur polynomials

sλ(x) =
det

(
x
λj+n−j
i

)n

i,j=1

det
(
xn−j
i

)n

i,j=1

,

where λ = (λ1 ⩾ . . . ⩾ λn ⩾ 0) is an integer partition and
x = {x1, . . . , xn} a set of variables, are symmetric polynomials.

They form a basis of the algebra of symmetric functions and satisfy the
Cauchy summation identity

∑
λ

sλ(a1, . . . , an)sλ(b1, . . . , bm) =
n∏

i=1

m∏
j=1

1

1− aibj
=: Π(a; b).

Proof: Binet-Cauchy formula



Branching rule

Schur functions satisfy a branching rule

sλ(a1, . . . , an) =
∑
µ

sλ/µ(a1)sµ(a2, . . . , an),

where for a ∈ R,
sλ/µ(a) = 1µ≺λa

|λ|−|µ|

with |λ| =
∑

i λi and we write µ ≺ λ for λ1 ⩾ µ1 ⩾ λ2 ⩾ µ2 ⩾ . . .

This allows to expand Schur functions in monomials

sλ(x) =
∑

∅≺λ[1]≺···≺λ(n)=λ

n∏
i=1

x
|λ(i)|−|λ(i−1)|
i

where ∅ ≺ λ(1) ≺ · · · ≺ λ(n) = λ is a sequence of interlaced partitions.



RSK correspondence
Let us expand in monomials each side of the Cauchy identity∑

λ

sλ(a1, . . . , an)sλ(b1, . . . , bm) =
n∏

i=1

m∏
j=1

1

1− aibj
,

The two sides can be matched using Robinson-Schensted-Knuth
correspondence, a bijection{

∅ ≺ λ(1) ≺ · · · ≺ λ(n) = λ
∅ ≺ µ(1) ≺ · · · ≺ µ(m) = λ

}
←→ W = (wi,j) ∈ Nn×m

Greene’s theorem implies that λ1 = G (n,m) where

(1, 1)

(n,m)

i

j wi,j

G (n,m) = max
paths (1,1)→(m,n)

 ∑
(i,j)∈ path

wi,j

 .
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LHS

The LHS can be expanded using the monomial expansion of Schur
polynomials. Thus, it is indexed by sequences
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sλ(a1, . . . , an)sλ(b1, . . . , bm) =
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RHS

The RHS is expanded using

1

1− aibj
=

+∞∑
w=0

(aibj)
w

so that the sum is indexed by matrices W ∈ Nn×m:
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m∏
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1

1− aibj
=
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j=1

+∞∑
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Schur measure

Assume that when wi,j ∼ Geom(aibj) are independent (we say that
w ∼ Geom(q) if P(w = k) = (1− q)qk). Then,

P (G (n,m) ⩽ r) =
1

Π(a; b)

∑
λ:λ1⩽r

sλ(a)sλ(b)

In other terms, G (n,m) has the same law as λ1 when λ is a random
partition sampled according to the Schur measure

P(λ) =
1

Π(a; b)
sλ(a)sλ(b).

Asymptotics

[Johansson, 2001] proved that after appropriate rescaling, G (n,m)
fluctuates according to the Tracy-Widom GUE distribution (governing
the fluctuations of the largest eigenvalue of large Hermitian matrices).



Aside: Pitman transform
[Pitman (1975)] showed that if Xt is a Brownian motion, and
Mt = sups∈[0,t] Xt , then the process

t 7→ 2Mt − Xt

is a Brownian motion conditioned to stay positive for all t ∈ R+.

For continuous functions f1, f2 : R+ → R define

f1 ⊗ f2(t) = inf
0⩽s⩽t

{f1(s) + f2(t)− f2(s)}

f1 ⊙ f2(t) = sup
0⩽s⩽t

{f1(s) + f2(t)− f2(s)}.

Then the Pitman transform of f = (f1, f2) is

P(2)f = (f2 ⊙ f1, f1 ⊗ f2).

Theorem (Pitman, 1975)

If B = (B1,B2) is a Brownian motion in R2, then P(2)B is a Brownian
motion contrained to stay in the Weyl chamber

W2 = {(x1, x2) ∈ R2; x1 > x2}



Aside: Pitman transform
Pitman originally proved the result by first considering Xt to be a discrete
time random walk with ±1 steps.

After one step of the Box-Ball-System [Croydon-Kato-Sasada-Tsujimoto
2018], the new configuration is encoded by the Pitman transform of Xt :

(PX )t = 2 max
1⩽s⩽t

{Xs} − Xt



Aside: Pitman transform

Why introducing the operations f1 ⊗ f2 and f1 ⊙ f2? It allows to
generalize.

For f = (f1, . . . , fn), let P(n)
i f be the transformation that replaces

(fi , fi+1) by (fi+1 ⊙ fi , fi ⊗ fi+1).
Then, if

(n, n − 1, . . . , 2, 1) = si1sin . . . sik

is a minimal factorization of the reverse permutation in transpositions
si = (i , i + 1), we define the Pitman transform

P(n) = P(n)
i1

. . .P(n)
ik

.

Theorem ([O’Connell-Yor 2001, Bougerol-Jeulin 2003])

If B = (B1, . . . ,Bn) is a Brownian motion in Rn, then P(n)B is a
Brownian motion conditioned to stay in

Wn = {(x1, . . . , xn) ∈ R2; x1 > · · · > xn}



Aside: discrete Pitman transform = RSK

(1, 1)

(n,m)

i

j wi,j

G (m, n) = max
paths (1,1)→(n,m)

 ∑
(i,j)∈ path

wi,j

 .

Let

Ri (m) =
m∑
j=1

wi,j

Then, using the maps

R1 ⊗ R2(m) = min
1⩽j⩽m

{R1(j − 1) + R2(m)− R2(j)}

R1 ⊙ R2(m) = max
1⩽j⩽m

{R1(j) + R2(m)− R2(j − 1)},

one can define the Pitman transform P(n)R of R = (R1, . . . ,Rn). We
then have, for all m ⩾ 1,

G (m, n) = (P(n)R)1(m).



Aside: discrete Pitman transform = RSK

More generally, the RSK correspondance{
∅ ≺ λ(1) ≺ · · · ≺ λ(n) = λ
∅ ≺ µ(1) ≺ · · · ≺ µ(m) = λ

}
←→ W = (wi,j) ∈ Nn×m

can be expressed in terms of discrete Pitman transforms:

We already know that

λ1 = λ
(n)
1 = µ

(m)
1 = G (n,m) = (P(n)R)1(m).

More generally,

(µ(j))1⩽j⩽m =
(
P(n)R(j)

)
1⩽j⩽m

and similar relation holds for the λ(i) after replacing wi,j by wj,i .



Symmetrized last passage percolation

Assume that the weight matrix is
symmetric:

wi,j = wj,i

wi,j ∼ Geom(aiaj) for i > j

wi,i ∼ Geom(cai )

G (n,m) = max
paths (1,1)→(n,m)

{ ∑
(i,j)∈ path

wi,j

}
.

[Baik-Rains 2003] proved that

P
(
G (n, n) ⩽ r

)
=

1

Π (a, c)

∑
λ:λ1⩽r

cλ1−λ2+λ3−λ4+...sλ(a)

Asymptotics

As n→∞, G (n, n) fluctuates according to the Tracy-Widom GSE or
GOE distributions (depending if c = 1 or c < 1).



Other variants
[Baik-Rains 2003] also computed P (G•(n, n) ⩽ r) in terms of Schur
functions for other symmetry types • :

The problem is however open for

Last passage percolation with walls

Imposing two symmetry axis in the diagonal direction is equivalent to
assuming that paths are constrained to remain between two walls.



Last passage percolation in a strip

Let a1, . . . , aN ∈ (0, 1), c1, c2 > 0.

(0, 0) (N, 0)(i , 0)

(n,m)

c1

c2

wi,j ∼ Geom(aiaj) for j < i < j + N

(indices modulo N)

wi,i ∼ Geom(c1ai )

wj+N,j ∼ Geom(c2aj)

We fix an initial condition G (i , 0) = G0(i) for some function G0.

G (n,m) = max
paths (i,0)→(n,m)

G0(i) +
∑

(i,j)∈ path

wi,j





Conjectural phase diagram

The richest behaviour is when N = Ln2/3. For a1 = · · · = aN = a, it is
expected that

1/c2

1/c1

(1,1)

(a,a)

G (n, n) ≈
vn + σn1/3χ

G (n, n) ≈
vn + σ′n1/2N

G (n, n) ≈
vn + σ′n1/2N

where

▶ v = v(a, c1, c2),

▶ N ∼ Gaussian

▶ χ ∼ unknown distribution
depending on c1, c2, L.

Finding χ is an open problem for any model in the same universality class.



Stationary measure

The process
t 7→ (G (t + i , t))0⩽i⩽N

does not have any stationary measure.

Let
Gt(i) = G (t + i , t)− G (t, t).

The process t 7→ Gt is a Markov process on ZN .

Problem

Find (G0(i))1⩽i⩽N such that for all t, (Gt(i))1⩽i⩽N

(d)
= (G0(i))1⩽i⩽N

▶ For models such as Asymmetric Simple Exclusion Process, the
standard method is the Matrix Product Ansatz
[Derrida-Evans-Hakim-Pasquier 1993].

▶ We will illustrate another approach [B.-Corwin-Yang 2023] based on
symmetric functions, taking the example of Last Passage Percolation
and Schur functions.



Stationary measure (first definition)
Assume for simplicity that a1 = · · · = aN = a.

For R = (R(j))0⩽j⩽N , let

PRW
q (R) =

N∏
j=1

(1− q)qR(j)−R(j−1)

be the probability that R is a random walk with Geom(q) increments.

Recall
R1 ⊗ R2(k) = min

1⩽j⩽k
{R1(j − 1) + R2(k)− R2(j)} .

Consider the probability measure

Pa,c1,c2(R1,R2) =
1

Z
(c1c2)

−R1⊗R2(N) × PRW
ac2 (R1)× PRW

ac1 (R2).

Theorem ([B.-Corwin-Yang 2023])

For any parameters a, c1, c2, the marginal law of R1 under Pa,c1,c2 is the
unique stationary measure of the Markov process Gt .



Scaling limit

In the large N limit, the stationary measure converge to a universal limit,
the stationary measure of the open KPZ fixed point [B.-Le Doussal
2021]:

It is the marginal B1 of a couple (B1,B2) distributed as

Pd1,d2(B1,B2) =
1

Z
e(d1+d2)B1⊗B2(L) × PBrown

−d2 (B1)× PBrown
−d1 (B2)

where PBrown
d (B) is the measure of the Brownian motion on [0, L] with

drift d , and

B1 ⊗ B2(t) = min
0⩽s⩽t

{B1(s) + B2(t)− B2(s)}.

This probability measure was studied by [Yor, Hariya, Matsumoto,
Donati-Martin, etc.] in the early 2000.



A variant of the Schur process
The random walks R1,R2 are related to a sequence of interlaced
partitions signatures

λ = λ(0) ≺ λ(1) ≺ · · · ≺ λ(N)

where λ(j) = (λ
(j)
1 ⩾ λ

(j)
2 ) ∈ Z2 by

R1(j) = λ
(j)
1 − λ

(0)
1 , R2(j) = λ

(j)
2 − λ

(0)
2

when λ is distributed as

P(λ) =
1

Za,c1,c2(N)
c
λ
(0)
1 −λ

(0)
2

1 c
λ
(N)
1 −λ

(N)
2

2

N∏
j=1

sλ(j)/λ(j−1)(ai )

and sλ/µ denote skew Schur functions

sλ/µ(x) = 1λ1⩾µ1⩾λ2⩾µ2x
λ1+λ2−µ1−µ2 .

▶ The construction is similar to the free boundary Schur process
[Betea-Bouttier-Nejjar-Vuletic 2017] except that the λ(j) are no
longer integer partitions.

▶ The measure P is infinite but becomes a probability measure if we

fix λ
(0)
2 = 0.



Markov chain (second definition)
The kernel

q(µ, λ) = (1− a)2sλ/µ(a)

can be interpreted as a random walk on Z2 killed when µ ̸≺ λ. Then, one
may define some function ht,N(λ) and a time-inhomogeneous kernel

pt(µ, λ) = q(µ, λ)
ht,N(λ)

ht−1,N(µ)

so that the process λ(0), λ(1), . . . , λ(N) has the same distribution as the
Markov chain with kernel pt and initial condition

p0(λ) = cλ1−λ2
1 h0,N(λ).

Limit N →∞ [B. 2024]

As N →∞

ht,N(λ) −→ h(λ) = (1− c1)
2(λ1 − λ2 + 1)

so that the process is a Doob transformed random walk (studied in
[O’Connell 2003] in more general context).



Formulas (third definition)
Properties of Schur functions yield explicit formulas [B. 2024]:

E
[
t2R1(N)

]
=

1

Za,c1,c2(N)

∮
dz

2iπz

∣∣∣∣∣ 1− z2

(1− zc1/t)(1− zc2t)

(
1− a

1− atz

)N
∣∣∣∣∣
2

.

More generally, for 0 = x0 < · · · < xk = N, there is a simple formula for

E

[
k∏

i=1

t
2(R1(xi )−R1(xi−1))
i

]
In particular, one can deduce that starting from the stationary initial
condition,

E[G (n, n)] = n × v(a, c1, c2,N)

where

v(a, c1, c2,N) =
Za,c1,c2(N + 1)− Za,c1,c2(N)

Za,c1,c2(N)

with

Za,c1,c2(N) =

∮
dz

2iπz

∣∣∣∣∣ 1− z2

(1− zc1)(1− zc2)

(
1− a

1− az

)N
∣∣∣∣∣
2

.



Two ideas in the proof:

1 Decompose the dynamics with elementary moves.

2 View LPP as a marginal of Markovian dynamics in a larger state
space.



More general two-layer Schur process

λ =
(
λ(0), λ(1), . . . , λ(N)

)

λ(0)

λ(1)

λ(2)

λ(3)

λ(N)

Vertices on the path are decorated by signatures λ = (λ1 ⩾ λ2) ∈ Z2.
We define a probability measure on λ by taking the product of
Boltzmann weights

wt


µ

λ
a

 = sλ/µ(a), wt


λ

µ
a

 = sµ/λ(a)

P (λ) =
1

Za,c1,c2(N)
c
λ
(0)
1 −λ

(0)
2

1 c
λ
(N)
1 −λ

(N)
2

2

∏
edges e

wt (e)

When c1c2 < 1, this is a well-defined probability measure.



Dynamics on the two-layer Schur process

λ =
(
λ(0), λ(1), . . . , λ(N)

)

λ(0)

λ(1)

λ(2)

λ(3)

λ(N)

We construct dynamics on λ such that when the path evolves by the
elementary moves

7−→ 7−→ 7−→

1 The two-layer Schur process is mapped to a two layer Schur process;

2 the λ1 marginal of the dynamics corresponds to the recurrence of
geometric LPP.



Step 1: dynamics preserving two-layer Schur
processes
Schur functions satisfy (this is not the usual Cauchy identity)∑

λ1⩾...⩾λn∈Zn

sλ/µ(a)sλ/ν(b) =
∑

κ1⩾...⩾κn∈Zn

sµ/κ(b)sν/κ(a),

which can be interpreted as

∑
λ1⩾...⩾λn∈Zn

wt


µ

λ
a

ν

b

 =
∑

κ1⩾...⩾κn∈Zn

wt


κ

µ
b

ν
a

 .

For the dynamics

κ ν

µ
7−→

κ ν

µ λ

choose the transition kernel [Borodin-Ferrari 2008, Diaconis-Fill 1980],

P(λ|µ, ν, κ) =

wt


µ

λ
a

ν

b


∑

κ wt


κ

µ
b

ν
a

 .



Step 2: Marginal distribution

Under the transition kernel P(λ|µ, ν, κ), it is easy to see that if we
average over λ2,

λ1 = max{µ1, ν1}+Geom(ab),

exactly as the recurrence

G (n,m) = max{G (n − 1,m),G (n,m − 1)}+Geom(ab).

satisfied by last passage percolation times.

=⇒ the λ1 marginal of the two-layer Schur process is stationary for
geometric LPP.



Generalizations

The method works as long as we have families of functions satisfying∑
λ∈X

fλ/µ(a)gλ/ν(b) =
∑
κ∈X

gµ/κ(b)fν/κ(a)

and ∑
λ∈X

fµ/λ(a)cλ =
∑
λ∈X

gλ/µ(a)cλ.

There are many examples of fλ/µ, gλ/ν satisfying the conditions:

▶ class-one gln(R)-Whittaker functions [B.-Corwin-Yang 2023]
⇝ log-gamma polymer, KPZ equation

▶ Hall-Littlewood polynomials [Bufetov-Matveev 2018]
⇝ stochastic six-vertex model, ASEP [In progress...]

▶ Partition functions of vertex models satisfying a Yang-Baxter
equation (+ a boundary YBE)
⇝ many solvable models in integrable probability.



Conclusion

Summary

The two-layer Schur processes allows to describe the stationary measure
of LPP in a strip in terms of reweighted random walks/Markov
chains/formulas.

Key idea: view LPP as a marginal of a more general Markov process
whose stationary measure is a Gibbs measure.

Outlook

▶ The method applies to other families of symmetric functions

▶ Beyond the stationary measure?

Thank you for your attention!


