# Last passage percolation (in a strip)

Guillaume Barraquand

October 24, 2024

Discrete Integrable Systems, ICTS

## **Schur polynomials**

The Schur polynomials

$$s_{\lambda}(x) = rac{\det\left(x_i^{\lambda_j+n-j}
ight)_{i,j=1}^n}{\det\left(x_i^{n-j}
ight)_{i,j=1}^n},$$

where  $\lambda = (\lambda_1 \ge ... \ge \lambda_n \ge 0)$  is an integer partition and  $x = \{x_1, ..., x_n\}$  a set of variables, are symmetric polynomials.

They form a basis of the algebra of symmetric functions and satisfy the Cauchy summation identity

$$\sum_{\lambda} s_{\lambda}(a_1,\ldots,a_n) s_{\lambda}(b_1,\ldots,b_m) = \prod_{i=1}^m \prod_{j=1}^m \frac{1}{1-a_i b_j} =: \Pi(a;b).$$

Proof: Binet-Cauchy formula

#### Branching rule

Schur functions satisfy a branching rule

$$s_{\lambda}(a_1,\ldots,a_n)=\sum_{\mu}s_{\lambda/\mu}(a_1)s_{\mu}(a_2,\ldots,a_n),$$

where for  $a \in \mathbb{R}$ ,

$$s_{\lambda/\mu}(a) = \mathbb{1}_{\mu \prec \lambda} a^{|\lambda| - |\mu|}$$

with  $|\lambda| = \sum_i \lambda_i$  and we write  $\mu \prec \lambda$  for  $\lambda_1 \geqslant \mu_1 \geqslant \lambda_2 \geqslant \mu_2 \geqslant \dots$ 

This allows to expand Schur functions in monomials

$$s_{\lambda}(x) = \sum_{\emptyset \prec \lambda^{[1]} \prec \cdots \prec \lambda^{(n)} = \lambda} \prod_{i=1}^{n} x_i^{|\lambda^{(i)}| - |\lambda^{(i-1)}|}$$

where  $\emptyset \prec \lambda^{(1)} \prec \cdots \prec \lambda^{(n)} = \lambda$  is a sequence of interlaced partitions.

Let us expand in monomials each side of the Cauchy identity

$$\sum_{\lambda} s_{\lambda}(a_1,\ldots,a_n) s_{\lambda}(b_1,\ldots,b_m) = \prod_{i=1}^n \prod_{j=1}^m rac{1}{1-a_i b_j},$$

Let us expand in monomials each side of the Cauchy identity

$$\sum_{\lambda} s_{\lambda}(a_1,\ldots,a_n) s_{\lambda}(b_1,\ldots,b_m) = \prod_{i=1}^m \prod_{j=1}^m \frac{1}{1-a_i b_j},$$

#### LHS

The LHS can be expanded using the monomial expansion of Schur polynomials. Thus, it is indexed by sequences

$$\emptyset \prec \lambda^{(1)} \prec \cdots \prec \lambda^{(n)} = \lambda$$
$$\emptyset \prec \mu^{(1)} \prec \cdots \prec \mu^{(m)} = \lambda$$

and

$$\sum_{\lambda} s_{\lambda}(a_1, \dots, a_n) s_{\lambda}(b_1, \dots, b_m) = \sum_{\substack{\lambda \\ \emptyset \prec \lambda^{(1)} \prec \dots \prec \lambda^{(n)} = \lambda \\ \emptyset \prec \mu^{(1)} \prec \dots \prec \mu^{(m)} = \lambda}} \prod_{i=1}^n a_i^{|\lambda^{(i)}| - |\lambda^{(i-1)}|} \prod_{j=1}^m b_j^{|\mu^{(j)}| - |\mu^{(j-1)}|}.$$

Let us expand in monomials each side of the Cauchy identity

$$\sum_{\lambda} s_{\lambda}(a_1,\ldots,a_n) s_{\lambda}(b_1,\ldots,b_m) = \prod_{i=1}^n \prod_{j=1}^m \frac{1}{1-a_i b_j},$$

#### RHS

The RHS is expanded using

$$\frac{1}{1-a_ib_j}=\sum_{w=0}^{+\infty}(a_ib_j)^w$$

so that the sum is indexed by matrices  $W \in \mathbb{N}^{n \times m}$ :

$$\prod_{i=1}^{n} \prod_{j=1}^{m} \frac{1}{1 - a_{i}b_{j}} = \prod_{i=1}^{n} \prod_{j=1}^{m} \sum_{w_{i,j}=0}^{+\infty} (a_{i}b_{j})^{w_{i,j}}$$

$$= \sum_{W = (w_{i,i}) \in \mathbb{N}^{n \times m}} \prod_{i=1}^{n} \prod_{j=1}^{m} (a_{i}b_{j})^{w_{i,j}}$$

Let us expand in monomials each side of the Cauchy identity

$$\sum_{\lambda} s_{\lambda}(a_1,\ldots,a_n) s_{\lambda}(b_1,\ldots,b_m) = \prod_{i=1}^m \prod_{i=1}^m \frac{1}{1-a_i b_j},$$

The two sides can be matched using Robinson-Schensted-Knuth correspondence, a bijection

$$\begin{cases}
\emptyset \prec \lambda^{(1)} \prec \cdots \prec \lambda^{(n)} = \lambda \\
\emptyset \prec \mu^{(1)} \prec \cdots \prec \mu^{(m)} = \lambda
\end{cases}
\longleftrightarrow
W = (w_{i,j}) \in \mathbb{N}^{n \times m}$$

Greene's theorem implies that  $\lambda_1 = G(n, m)$  where

$$(n,m)$$

$$i$$

$$(1,1)$$

$$i$$

$$G(n,m) = \max_{\text{paths } (1,1) \to (m,n)} \left\{ \sum_{(i,j) \in \text{ path}} w_{i,j} \right\}.$$

#### Schur measure

Assume that when  $w_{i,j} \sim \text{Geom}(a_i b_j)$  are independent (we say that  $w \sim \text{Geom}(q)$  if  $\mathbb{P}(w = k) = (1 - q)q^k$ ). Then,

$$\mathbb{P}(G(n,m) \leqslant r) = \frac{1}{\Pi(a;b)} \sum_{\lambda: \lambda_1 \leqslant r} s_{\lambda}(a) s_{\lambda}(b)$$

In other terms, G(n,m) has the same law as  $\lambda_1$  when  $\lambda$  is a random partition sampled according to the Schur measure

$$\mathbb{P}(\lambda) = \frac{1}{\Pi(a;b)} s_{\lambda}(a) s_{\lambda}(b).$$

#### Asymptotics

[Johansson, 2001] proved that after appropriate rescaling, G(n, m) fluctuates according to the Tracy-Widom GUE distribution (governing the fluctuations of the largest eigenvalue of large Hermitian matrices).

#### Aside: Pitman transform

[Pitman (1975)] showed that if  $X_t$  is a Brownian motion, and  $M_t = \sup_{s \in [0,t]} X_t$ , then the process

$$t\mapsto 2M_t-X_t$$

is a Brownian motion conditioned to stay positive for all  $t \in \mathbb{R}_+$ .

For continuous functions  $f_1, f_2 : \mathbb{R}_+ \to \mathbb{R}$  define

$$f_1 \otimes f_2(t) = \inf_{0 \leqslant s \leqslant t} \{ f_1(s) + f_2(t) - f_2(s) \}$$
  
$$f_1 \odot f_2(t) = \sup_{0 \leqslant s \leqslant t} \{ f_1(s) + f_2(t) - f_2(s) \}.$$

Then the Pitman transform of  $f = (f_1, f_2)$  is

$$\mathcal{P}^{(2)}f=(f_2\odot f_1,f_1\otimes f_2).$$

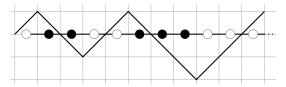
#### Theorem (Pitman, 1975)

If  $B=(B_1,B_2)$  is a Brownian motion in  $\mathbb{R}^2$ , then  $\mathcal{P}^{(2)}B$  is a Brownian motion contrained to stay in the Weyl chamber

$$\mathbb{W}_2 = \{(x_1, x_2) \in \mathbb{R}^2; x_1 > x_2\}$$

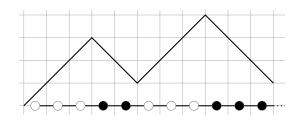
#### Aside: Pitman transform

Pitman originally proved the result by first considering  $X_t$  to be a discrete time random walk with  $\pm 1$  steps.



After one step of the Box-Ball-System [Croydon-Kato-Sasada-Tsujimoto 2018], the new configuration is encoded by the Pitman transform of  $X_t$ :

$$(\mathcal{P}X)_t = 2 \max_{1 \le s \le t} \{X_s\} - X_t$$



#### Aside: Pitman transform

Then, if

Why introducing the operations  $f_1 \otimes f_2$  and  $f_1 \odot f_2$ ? It allows to generalize.

For  $f = (f_1, \ldots, f_n)$ , let  $\mathcal{P}_i^{(n)} f$  be the transformation that replaces  $(f_i, f_{i+1})$  by  $(f_{i+1} \odot f_i, f_i \otimes f_{i+1})$ .

$$(n, n-1, \ldots, 2, 1) = s_{i_1} s_{i_n} \ldots s_{i_k}$$

is a minimal factorization of the reverse permutation in transpositions  $s_i = (i, i + 1)$ , we define the Pitman transform

$$\mathcal{P}^{(n)} = \mathcal{P}_{i_1}^{(n)} \dots \mathcal{P}_{i_k}^{(n)}.$$

#### Theorem ([O'Connell-Yor 2001, Bougerol-Jeulin 2003])

If  $B=(B_1,\ldots,B_n)$  is a Brownian motion in  $\mathbb{R}^n$ , then  $\mathcal{P}^{(n)}B$  is a Brownian motion conditioned to stay in

$$\mathbb{W}_n = \{(x_1, \ldots, x_n) \in \mathbb{R}^2; x_1 > \cdots > x_n\}$$

#### Aside: discrete Pitman transform = RSK

$$(n,m) \quad G(m,n) = \max_{\mathsf{paths}\ (1,1) \to (n,m)} \left\{ \sum_{(i,j) \in \mathsf{path}} w_{i,j} \right\}.$$

$$\mathsf{Let} \quad R_i(m) = \sum_{j=1}^m w_{i,j}$$

$$(1,1) \quad i$$

Then, using the maps

$$R_1 \otimes R_2(m) = \min_{1 \leqslant j \leqslant m} \{ R_1(j-1) + R_2(m) - R_2(j) \}$$
  
$$R_1 \odot R_2(m) = \max_{1 \leqslant j \leqslant m} \{ R_1(j) + R_2(m) - R_2(j-1) \},$$

one can define the Pitman transform  $\mathcal{P}^{(n)}R$  of  $R=(R_1,\ldots,R_n)$ . We then have, for all  $m\geqslant 1$ ,

$$G(m,n)=(\mathcal{P}^{(n)}R)_1(m).$$

#### Aside: discrete Pitman transform = RSK

More generally, the RSK correspondance

$$\begin{cases} \emptyset \prec \lambda^{(1)} \prec \cdots \prec \lambda^{(n)} = \lambda \\ \emptyset \prec \mu^{(1)} \prec \cdots \prec \mu^{(m)} = \lambda \end{cases} \longleftrightarrow W = (w_{i,j}) \in \mathbb{N}^{n \times m}$$

can be expressed in terms of discrete Pitman transforms:

We already know that

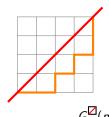
$$\lambda_1 = \lambda_1^{(n)} = \mu_1^{(m)} = G(n, m) = (\mathcal{P}^{(n)}R)_1(m).$$

More generally,

$$(\mu^{(j)})_{1\leqslant j\leqslant m}=\left(\mathcal{P}^{(n)}R(j)\right)_{1\leqslant j\leqslant m}$$

and similar relation holds for the  $\lambda^{(i)}$  after replacing  $w_{i,j}$  by  $w_{j,i}$ .

## Symmetrized last passage percolation



Assume that the weight matrix is symmetric:

$$w_{i,j} = w_{j,i}$$
 $w_{i,j} \sim \operatorname{Geom}(a_i a_j) \text{ for } i > j$ 
 $w_{i,i} \sim \operatorname{Geom}(ca_i)$ 
 $G^{\square}(n,m) = \max_{\mathsf{paths}} \left\{ \sum_{(i,j) \in \mathsf{path}} w_{i,j} \right\}.$ 

[Baik-Rains 2003] proved that

$$\mathbb{P}\left(G^{\square}(n,n)\leqslant r\right)=\frac{1}{\sqcap^{\square}(a,c)}\sum_{\lambda:\lambda_1\leqslant r}c^{\lambda_1-\lambda_2+\lambda_3-\lambda_4+\cdots}s_{\lambda}(a)$$

#### Asymptotics

As  $n \to \infty$ ,  $G^{\square}(n,n)$  fluctuates according to the Tracy-Widom GSE or GOE distributions (depending if c=1 or c<1).

#### Other variants

[Baik-Rains 2003] also computed  $\mathbb{P}(G^{\bullet}(n, n) \leq r)$  in terms of Schur functions for other symmetry types  $\bullet$ :







The problem is however open for

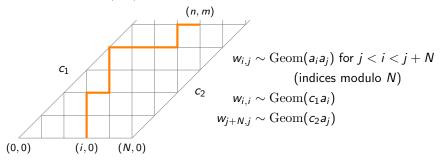


#### Last passage percolation with walls

Imposing two symmetry axis in the diagonal direction is equivalent to assuming that paths are constrained to remain between two walls.

## Last passage percolation in a strip

Let  $a_1, \ldots, a_N \in (0, 1), c_1, c_2 > 0$ .

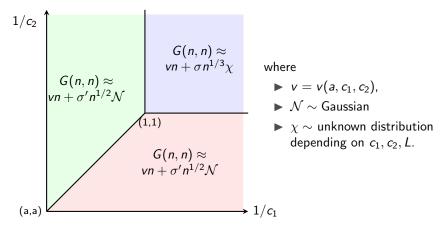


We fix an initial condition  $G(i,0) = G_0(i)$  for some function  $G_0$ .

$$G(n,m) = \max_{\mathsf{paths}\;(i,0) o (n,m)} \left\{ G_0(i) + \sum_{(i,j) \in \; \mathsf{path}} w_{i,j} \right\}$$

## Conjectural phase diagram

The richest behaviour is when  $N = Ln^{2/3}$ . For  $a_1 = \cdots = a_N = a$ , it is expected that



Finding  $\chi$  is an open problem for any model in the same universality class.

## Stationary measure

The process

$$t\mapsto (G(t+i,t))_{0\leqslant i\leqslant N}$$

does not have any stationary measure.

Let

$$G_t(i) = G(t+i,t) - G(t,t).$$

The process  $t \mapsto G_t$  is a Markov process on  $\mathbb{Z}^N$ .

#### **Problem**

Find 
$$(G_0(i))_{1 \leqslant i \leqslant N}$$
 such that for all  $t$ ,  $(G_t(i))_{1 \leqslant i \leqslant N} \stackrel{(d)}{=} (G_0(i))_{1 \leqslant i \leqslant N}$ 

- ► For models such as Asymmetric Simple Exclusion Process, the standard method is the Matrix Product Ansatz [Derrida-Evans-Hakim-Pasquier 1993].
- ▶ We will illustrate another approach [B.-Corwin-Yang 2023] based on symmetric functions, taking the example of Last Passage Percolation and Schur functions.

# Stationary measure (first definition)

Assume for simplicity that  $a_1 = \cdots = a_N = a$ .

For  $R = (R(j))_{0 \le i \le N}$ , let

$$\mathbb{P}_q^{\text{RW}}(R) = \prod_{i=1}^{N} (1-q)q^{R(j)-R(j-1)}$$

be the probability that R is a random walk with Geom(q) increments.

Recall

$$R_1 \otimes R_2(k) = \min_{1 \leq i \leq k} \left\{ R_1(j-1) + R_2(k) - R_2(j) \right\}.$$

Consider the probability measure

$$\mathbb{P}_{a,c_1,c_2}(R_1,R_2) = \frac{1}{7}(c_1c_2)^{-R_1 \otimes R_2(N)} \times \mathbb{P}_{ac_2}^{\mathrm{RW}}(R_1) \times \mathbb{P}_{ac_1}^{\mathrm{RW}}(R_2).$$

## Theorem ([B.-Corwin-Yang 2023])

For any parameters  $a, c_1, c_2$ , the marginal law of  $R_1$  under  $\mathbb{P}_{a,c_1,c_2}$  is the unique stationary measure of the Markov process  $G_t$ .

## **Scaling limit**

In the large *N* limit, the stationary measure converge to a universal limit, the stationary measure of the *open KPZ fixed point* [B.-Le Doussal 2021]:

It is the marginal  $B_1$  of a couple  $(B_1, B_2)$  distributed as

$$\mathbb{P}_{d_1,d_2}(B_1,B_2) = \frac{1}{\mathcal{Z}} e^{(d_1+d_2)B_1 \otimes B_2(L)} \times \mathbb{P}_{-d_2}^{\operatorname{Brown}}(B_1) \times \mathbb{P}_{-d_1}^{\operatorname{Brown}}(B_2)$$

where  $\mathbb{P}_d^{\text{Brown}}(B)$  is the measure of the Brownian motion on [0, L] with drift d, and

$$B_1 \otimes B_2(t) = \min_{0 \le s \le t} \{B_1(s) + B_2(t) - B_2(s)\}.$$

This probability measure was studied by [Yor, Hariya, Matsumoto, Donati-Martin, etc.] in the early 2000.

## A variant of the Schur process

The random walks  $R_1$ ,  $R_2$  are related to a sequence of interlaced partitions signatures

$$\lambda = \lambda^{(0)} \prec \lambda^{(1)} \prec \cdots \prec \lambda^{(N)}$$

where  $\lambda^{(j)}=(\lambda_1^{(j)}\geqslant\lambda_2^{(j)})\in\mathbb{Z}^2$  by

$$R_1(j) = \lambda_1^{(j)} - \lambda_1^{(0)}, \ R_2(j) = \lambda_2^{(j)} - \lambda_2^{(0)}$$

when  $\lambda$  is distributed as

$$\mathbb{P}(\lambda) = \frac{1}{Z_{a,c_1,c_2}(N)} c_1^{\lambda_1^{(0)} - \lambda_2^{(0)}} c_2^{\lambda_1^{(N)} - \lambda_2^{(N)}} \prod_{i=1}^{N} s_{\lambda^{(i)}/\lambda^{(i-1)}}(a_i)$$

and  $s_{\lambda/\mu}$  denote skew Schur functions

$$s_{\lambda/\mu}(x) = \mathbb{1}_{\lambda_1 \geqslant \mu_1 \geqslant \lambda_2 \geqslant \mu_2} x^{\lambda_1 + \lambda_2 - \mu_1 - \mu_2}.$$

- ► The construction is similar to the free boundary Schur process [Betea-Bouttier-Nejjar-Vuletic 2017] except that the  $\lambda^{(j)}$  are no longer integer partitions.
- ▶ The measure  $\mathbb{P}$  is infinite but becomes a probability measure if we fix  $\lambda_2^{(0)} = 0$ .

## Markov chain (second definition)

The kernel

$$q(\mu,\lambda) = (1-a)^2 s_{\lambda/\mu}(a)$$

can be interpreted as a random walk on  $\mathbb{Z}^2$  killed when  $\mu \not\prec \lambda$ . Then, one may define some function  $h_{t,N}(\lambda)$  and a time-inhomogeneous kernel

$$\mathsf{p}_t(\mu,\lambda) = \mathsf{q}(\mu,\lambda) rac{h_{t,N}(\lambda)}{h_{t-1,N}(\mu)}$$

so that the process  $\lambda^{(0)}, \lambda^{(1)}, \dots, \lambda^{(N)}$  has the same distribution as the Markov chain with kernel  $p_t$  and initial condition

$$p_0(\lambda) = c_1^{\lambda_1 - \lambda_2} h_{0,N}(\lambda).$$

#### Limit $N \to \infty$ [B. 2024]

As  $N \to \infty$ 

$$h_{t,N}(\lambda) \to h(\lambda) = (1 - c_1)^2 (\lambda_1 - \lambda_2 + 1)$$

so that the process is a Doob transformed random walk (studied in O'Connell 2003] in more general context).

## Formulas (third definition)

Properties of Schur functions yield explicit formulas [B. 2024]:

$$\mathbb{E}\left[t^{2R_1(N)}\right] = \frac{1}{Z_{s,c_1,c_2}(N)} \oint \frac{dz}{2\mathbf{i}\pi z} \left| \frac{1-z^2}{(1-zc_1/t)(1-zc_2t)} \left(\frac{1-a}{1-atz}\right)^N \right|^2.$$

More generally, for  $0 = x_0 < \cdots < x_k = N$ , there is a simple formula for

$$\mathbb{E}\left[\prod_{i=1}^k t_i^{2(R_1(x_i)-R_1(x_{i-1}))}\right]$$

In particular, one can deduce that starting from the stationary initial condition,

$$\mathbb{E}[G(n,n)] = n \times v(a, c_1, c_2, N)$$

where

$$v(a, c_1, c_2, N) = \frac{Z_{a,c_1,c_2}(N+1) - Z_{a,c_1,c_2}(N)}{Z_{a,c_1,c_2}(N)}$$

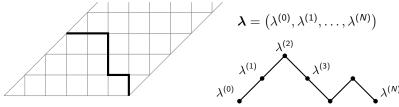
with

$$Z_{a,c_1,c_2}(N) = \oint \frac{dz}{2i\pi z} \left| \frac{1-z^2}{(1-zc_1)(1-zc_2)} \left( \frac{1-a}{1-az} \right)^N \right|^2.$$

## Two ideas in the proof:

- 1 Decompose the dynamics with elementary moves.
- 2 View LPP as a marginal of Markovian dynamics in a larger state space.

## More general two-layer Schur process



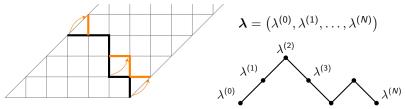
Vertices on the path are decorated by signatures  $\lambda=(\lambda_1\geqslant\lambda_2)\in\mathbb{Z}^2$ . We define a probability measure on  $\lambda$  by taking the product of Boltzmann weights

$$\operatorname{wt}\left(egin{array}{c} \lambda \ \mu \end{array}
ight) = s_{\lambda/\mu}(a), \quad \operatorname{wt}\left(egin{array}{c} \mu \ \lambda \end{array}
ight) = s_{\mu/\lambda}(a)$$

$$\mathbb{P}\left(\lambda\right) = \frac{1}{Z_{a,c_1,c_2}(N)} c_1^{\lambda_1^{(0)} - \lambda_2^{(0)}} c_2^{\lambda_1^{(N)} - \lambda_2^{(N)}} \prod_{\substack{\text{edges } e}} \operatorname{wt}\left(e\right)$$

When  $c_1c_2 < 1$ , this is a well-defined probability measure.

## Dynamics on the two-layer Schur process



We construct dynamics on  $\lambda$  such that when the path evolves by the elementary moves



- 1 The two-layer Schur process is mapped to a two layer Schur process;
- 2) the  $\lambda_1$  marginal of the dynamics corresponds to the recurrence of geometric LPP.

# Step 1: dynamics preserving two-layer Schur processes

Schur functions satisfy (this is not the usual Cauchy identity)

$$\sum_{\lambda_1\geqslant \ldots \geqslant \lambda_n \in \mathbb{Z}^n} \mathsf{s}_{\lambda/\mu}(\mathsf{a}) \mathsf{s}_{\lambda/\nu}(\mathsf{b}) = \sum_{\kappa_1\geqslant \ldots \geqslant \kappa_n \in \mathbb{Z}^n} \mathsf{s}_{\mu/\kappa}(\mathsf{b}) \mathsf{s}_{\nu/\kappa}(\mathsf{a}),$$

which can be interpreted as

$$\sum_{\lambda_1 \geqslant \dots \geqslant \lambda_n \in \mathbb{Z}^n} \operatorname{wt} \left( \underbrace{\begin{matrix} \mathbf{a} \\ \mu \end{matrix}}^{\lambda} \underbrace{\begin{matrix} \mathbf{b} \\ \nu \end{matrix}} \right) = \sum_{\kappa_1 \geqslant \dots \geqslant \kappa_n \in \mathbb{Z}^n} \operatorname{wt} \left( \underbrace{\begin{matrix} \mu \\ \mathbf{b} \end{matrix}}_{\kappa} \underbrace{\begin{matrix} \mathbf{a} \end{matrix}}^{\nu} \right).$$

For the dynamics

$$\mu \square \mapsto \mu \square$$

choose the transition kernel [Borodin-Ferrari 2008, Diaconis-Fill 1980],

$$P(\lambda|\mu,\nu,\kappa) = \frac{\operatorname{wt}\left(\underbrace{\begin{matrix} \mathbf{a} \\ \mu \end{matrix}}^{\lambda} \underbrace{\begin{matrix} \mathbf{b} \\ \nu \end{matrix}}\right)}{\sum_{\kappa} \operatorname{wt}\left(\underbrace{\begin{matrix} \mu \\ \begin{matrix} \mathbf{b} \\ \kappa \end{matrix}}^{\mu} \underbrace{\begin{matrix} \mathbf{a} \\ \nu \end{matrix}}\right)}.$$

## **Step 2: Marginal distribution**

Under the transition kernel  $P(\lambda|\mu,\nu,\kappa)$ , it is easy to see that if we average over  $\lambda_2$ ,

$$\lambda_1 = \max\{\mu_1, \nu_1\} + \operatorname{Geom}(ab),$$

exactly as the recurrence

$$G(n, m) = \max\{G(n-1, m), G(n, m-1)\} + \text{Geom}(ab).$$

satisfied by last passage percolation times.

 $\implies$  the  $\lambda_1$  marginal of the two-layer Schur process is stationary for geometric LPP.

#### **Generalizations**

The method works as long as we have families of functions satisfying

$$\sum_{\lambda\in\mathbb{X}}f_{\lambda/\mu}(a)g_{\lambda/\nu}(b)=\sum_{\kappa\in\mathbb{X}}g_{\mu/\kappa}(b)f_{\nu/\kappa}(a)$$

and

$$\sum_{\lambda \in \mathbb{X}} f_{\mu/\lambda}(a) c_{\lambda} = \sum_{\lambda \in \mathbb{X}} g_{\lambda/\mu}(a) c_{\lambda}.$$

There are many examples of  $f_{\lambda/\mu}, g_{\lambda/\nu}$  satisfying the conditions:

- ▶ class-one  $\mathfrak{gl}_n(\mathbb{R})$ -Whittaker functions [B.-Corwin-Yang 2023]  $\rightsquigarrow$  log-gamma polymer, KPZ equation
- ► Hall-Littlewood polynomials [Bufetov-Matveev 2018] → stochastic six-vertex model, ASEP [In progress...]
- ▶ Partition functions of vertex models satisfying a Yang-Baxter equation (+ a boundary YBE)
   → many solvable models in integrable probability.

#### Conclusion

#### Summary

The two-layer Schur processes allows to describe the stationary measure of LPP in a strip in terms of reweighted random walks/Markov chains/formulas.

Key idea: view LPP as a marginal of a more general Markov process whose stationary measure is a Gibbs measure.

#### Outlook

- ▶ The method applies to other families of symmetric functions
- ▶ Beyond the stationary measure?

## Thank you for your attention!