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Consider the simple random walk Xt on Z, starting from 0.

P
(
Xt+1 =Xt +1

)= α

α+β , P
(
Xt+1 =Xt −1

)= β

α+β .

The CLT says that
Xt − tα−β

α+β
σ
p

t
=⇒N (0,1).

where σ= 2
√
αβ/(α+β).

Theorem ([Cramér 1938])

For α−β
α+β < x< 1,

log
(
P(Xt > xt)

)
t

−−−→
t→∞ −I(x),

where I(x)= supz∈R
(
zx−λ(z)

)
is the Legendre transform of

λ(z) := log
(
E
[
ezX1

])
,

e.g. for α=β, I(x)= 1
2 ((1+x) log(1+x)+ (1−x) log(1−x)).



Random walk in random environment

Consider simple random walk on Z in space-time i.i.d. environment:

P
(
Xt+1 = x+1

∣∣Xt = x
)=Bt,x, P

(
Xt+1 = x−1

∣∣Xt = x
)= 1−Bt,x,

where (Bt,x)t,x are i.i.d.

Notation
Ï P,E : measure/expectation on the environment.

Ï P,E : measure/expectation on random walk paths, conditionally on
the environment.

Averaging over Bt,x, then Xt is just the simple random walk. However,
two random walks X1

t ,X2
t sampled in the same environment do not

behave as two independent random walks.



General result: almost sure CLT

Theorem ([Rassoul-Agha and Seppäläinen, 2004])
Assume that P

(
0<Bt,x < 1

)> 0. Let v= 2E[Bt,x]−1 be the expected drift.
For P-almost every environment, when n→∞, we have the convergence
in distribution of processes

Xbntc−bntcv
σ
p

n
⇒Brownian motion(t),

where σ=
p

1−v2.

The results holds more generally (higer dimensions, unbounded steps,
mixing environment...)

The limit no longer depends on the environment.



General result: almost sure large deviation
principle

Theorem ([Rassoul-Agha, Seppäläinen and Yilmaz, 2013])

Assume that E[log(Bt,x)3]<∞. Then, the limit

λ(z) := lim
t→∞

1
t

log
(
E
[
ezXt

])
,

exists almost surely and

log
(
P(Xt > xt)

)
t

a.s.−−−→
t→∞ −I(x).

where I(x) is the Legendre transform of λ.

The result holds more generally.

Ï Finding an explicit formula for λ(z) or I(x) is generally not possible.

Ï RWRE I(x) ≥ SRW I(x) (by Jensen’s inequality).



Integrable model: Beta RWRE

Ï Assume that (Bt,x) follow the Beta(α,β) distribution.

P
(
Bt,x ∈ [y,y+dy]

)= yα−1(1−y)β−1 Γ(α+β)
Γ(α)Γ(β)

dy.

The fact that this model is integrable comes from the work of
[Povolotsky 2013] on Bethe ansatz solvable particle systems.

Ï To see how the random environment enters into play, we will
compute more precisely the distribution of the random variable

P(Xt > x).

0
t

Xt

x
(x, t) Bx,t

1−Bx,t



Fluctuations around the large deviation
principle

For simplicity, focus for the moment on the case α=β= 1, i.e. Bt,x are
uniform in [0,1].

Theorem ([B.-Corwin, 2015])
The large deviation principle rate function is

lim
t→∞− logP(Xt > xt)

t
= I(x)= 1−

√
1−x2.

We have the convergence in distribution as t→∞,

log
(
P

(
Xt > xt

))+ I(x)t

σ(x) · t1/3 =⇒LGUE,

where LGUE is the GUE Tracy-Widom distribution, and σ(x)3 = 2I(x)2
1−I(x) .

Cube-root LGUE fluctuations are a hallmark of the
Kardar-Parisi-Zhang (KPZ) universality class.



Extreme value theory

Ï Consider N independent simple random walks X(1)
t , . . . ,X(N)

t .

P

(
max

1ÉiÉN
X(i)

t É x
)
=P(Xt É x)N = (

1−P(Xt > x)
)N ≈ exp(NP(Xt > x))

Ï For N = ect we get a non-trivial probability when P(Xt > x) is of
order e−ct, i.e. by scaling x close to tI−1(c).

Ï More precisely, for N = ect the order of the maximum is tI−1(c), and
[Fisher�Tippett�Gnedenko]

max
1ÉiÉN

X(i)
t ≈ tI−1(c)+c′ log(t)+dGumbel

where dGumbel is a discrete variant of the Gumbel distribution.

The �uctuations of the extremes value of ect independent simple

random walks are O (1).



Extreme values in random environment

Corollary ([B.-Corwin, 2015])

Let X(1)
t , . . . ,X(N)

t be random walks drawn independently in the same
environment. Set N = ect. Then, for α=β= 1,

maxi=1,...,ect

{
X(i)

t

}
− t

√
1− (1−c)2

d(c) · t1/3 =⇒LGUE,

where d(c) is an explicit function.

The �uctuations of the extreme value of ect independent simple

random walks in random environment are O (t1/3).



Recurrence

We have the equality in law

P(Xt > x) (d)= P(X0 > 0|X−t =−x)=: P(t,−x)

We have the recurrence

P(t,x)=B−t,xP(t−1,x+1)+ (1−B−t,x)P(t−1,x−1).

x

time
0−t

X0

It is convenient to change variables and call Z(t,n)=P(t,x) where
x= t−2n.



Recurrence for moments

Z(t,n)=B−t,n ·Z(t−1,n)+ (1−B−t,n) ·Z(t−1,n−1).

To compute the moments E[Z(t,n)k], let

u(t,~n) := E[Z(t,n1)Z(t,n2) . . .Z(t,nk)
]
.

k= 1

u(t,n)= α

α+βu(t−1,n)+ β

α+βu(t−1,n−1)

General k
For~n= (n, . . . ,n),

u(t,~n)=
k∑

j=0

(
k
j

)
E
[
Bj(1−B)k−jZ(t−1,n)jZ(t−1,n−1)k−j

]
=

k∑
j=0

(
k
j

)
(α)j(β)k−j

(α+β)k
u
(
t−1,

(
n, . . . ,n,n−1, . . . ,n−1

))
.

where (a)k = a(a+1) . . . (a+k−1).



Non-commutative binomial expansion

The evolution of u(t,~n) can be written

u(t,~n)=L u(t−1,~n),

where L is an operator on functions Wk →C, and

Wk = {
~n ∈Zk : n1 Ê n2 Ê ·· · Ê nk

}
.

In general, L acts as shown previously for each cluster of equal
components in~n.

Lemma ([Rosengren 2000, Povolotsky 2013])
Let X,Y generate an associative algebra such that

0=XX + (α+β−1)XY − (1+α+β)YX +YY.

Then we have the following non-commutative binomial identity:(
α

α+βX + β

α+βY
)k

=
k∑

j=0

(
k
j

)
(α)j(β)k−j

(α+β)k
X jYk−j.



Bethe ansatz
Let us define τ(i) the operator acting on f (~n) by replacing ni by ni −1.
Define the operator L on functions f :Zk →C by

Lf (~n)=
k∏

i=1

(
α

α+β + β

α+βτ
(i)

)
.

It coincides with L on the interior of Wk.
Define the boundary operator (X → 1,Y → τ)

B(i,i+1) : 1+ (α+β−1)τ(i+1) − (1+α+β)τ(i) +τ(i)τ(i+1)

Corollary
Any function u :Zk →C which satisfies for all 1É iÉ k−1

B(i,i+1)u(~n)
∣∣∣
ni=ni+1

= 0,

is such that for all~n ∈Wk,

L u(~n)= Lu(~n).



Moment formula
The solution of the evolution equation can be written as a contour
integral using Bethe ansatz.

Proposition
For n1 Ê n2 Ê ·· · Ê nk Ê 1,

E
[ k∏

i=1
P(Xt > t−2ni)

]
=

1
(2iπ)k

∫
· · ·

∫ ∏
1ÉA<BÉk

zA −zB

zA −zB −1

k∏
j=1

(
α+β+zj

zj

)nj ( α+zj

α+β+zj

)t

︸ ︷︷ ︸
solution of u(t,~n)=Lu(t−1,~n)

dzj

α+β+zj

where the contour for zk are nested around zero so that the contour for zi
contains zj +1 for i< j.

1 2−α−β z3 z2 z1



Proof of the Theorem

1 Rewrite the integral formula deforming contours so that all
variable are integrated along a small circle through zero. The
combinatorics of residues involved has been analyzed in the
context of Macdonald processes [Borodin-Corwin 2014].

2 Compute the sum
∞∑

k=1

zk

k!
E
[
P(Xt > xt)k

]
that is the Laplace transform E

[
ezP(Xt>x)

]
as a series of integrals

(Fredholm determinant) which is amenable to asymptotic analysis.

3 Asymptotic analysis using saddle point method (open problem for
general α,β, relatively easy for α=β= 1).



Hierarchy of Bethe ansatz eigenfunctions

The family of symmetric rational functions

Ψ~z(~n)= ∑
σ∈Sn

σ

( ∏
A>B

zA −zB −1
z1 −zB

k∏
j=1

(
α+β+zj

zj

)nj
)

are eigenfunctions of L , they form a Fourier-like basis
[Borodin-Corwin-Petrov Sasamoto 2015] and satisfy beautiful identities.
These fit in a more general context:

spin Hall-Littlewood functions
Higher spin stochastic 6-vertex model
[Borodin 2014, Borodin-Petrov 2016]

q-Hahn TASEP [Povolotsky 2013]

Beta RWRE eigenfunctions Ψ~z

Hall-Littlewood functions

ASEP, XXZ, ...

Sticky Brownian Motion eigenfunctions

Schur functions



Di�usions in space-time iid environment

Ï For fixed α,β rescaling diffusively n Beta RWRE yields n
independent Brownian motions.

Ï Question: Is there a nontrivial Brownian version of the model?

(I) Brownian motion with a random drift
Physicists [Le Doussal-Thiery 2017] write

dXt = dBt +ξ(t,x)dt

where ξ is a space-time white noise.

(II) Law of n paths in the same environment
Rescaling α=β=λε, the weights Bt,x become very close to 0 or 1. The
law of n Beta RWRE converges to a family of Brownian motions with
attractive interaction called sticky Brownian motions [Le Jan-Lemaire
2004, Howitt-Warren 2009].

The advantage of approach (II) is that it yields an integrable model.



Re�ected Brownian motion sticky at 0
Ï The heat equation

∂tu(t,x)= ∂xxu(t,x)

on R+ with a boundary condition at 0 of Dirichlet type u|x=0 = 0 or
Neumann type ∂xu|x=0 = 0 is related to Brownian motion killed at
zero or reflected at zero.

Ï [Feller 1952] investigated more general boundary conditions
involving the second derivative at zero:

∂xxu|x=0 =λ∂xu|x=0

Ï Simulation: simple random
walk Xt above zero, which
stays at zero with
probability 1−λε, rescaled
diffusively Yt := limεXtε−2 .

Ï Weak solution of

dYt =λ1Yt=0dt+1Yt>0dBt.



Brownian motions with sticky interaction

There exists many ways to define a family of Brownian motions such
that the distance between any pair of them is a sticky BM.

Ï A pair of sticky BM depends
on a parameter λ, the “rate”
at which the two particles
split when they are stuck
together.

Ï For 3 sticky BM one needs
one more parameter which
tells us how three particles
split.

Ï In general, one needs a
family of parameters θ(k, l)
which govern how k+ l
particles stuck together
split into groups of k and l.



De�nition of n-point sticky Brownian motion

The n-point motion can be defined through
Ï A scaling limit of various discrete models,
Ï A system of SDEs,
Ï A martingale problem [Howitt-Warren 2009],
Ï Characterizing the transition probabilities of paths using Dirichlet

forms [Le Jan-Raimond 2004, Le Jan-Lemaire 2004].

Definition ([Howitt-Warren 2009])
~X(t) ∈Rn is a n-point sticky Brownian motion if it is a continuous
square integrable martingale with covariance

〈
Xi(t),Xj(t)

〉= ∫ t

0
1Xi(s)=Xj(s)ds,

such that

max
i

{Xi(t)}−2
∫ t

0

n∑
i=1

θ(1, i)1Xi(s)=maxds

is a martingale. Consistency: Any subset of k coordinates is a k-point
sticky Brownian motion.



n-point sticky Brownian motion

For n= 50, we see that sticky Brownian motions are very different from
independent BMs.



Sticky BM viewed as random motion in
random environment

Ï Define for any s≤ t, x ∈R, Borel set A, the random “heat kernel”

Ks,t(x,A)= lim
ε→0

P(εXtε−2 ∈A|εXsε−2 = x),

where Xt is the Beta RWRE with parameters α=β=λε.
Ï This is a stochastic flow of kernel [Le Jan-Raimond 2004] in the

sense it defines a flow of random probability measures satisfying
1 (Semigroup property) Ks,tKt,u =Ks,t,
2 (Independent increments) For s< t< u, Ks,t and Kt,u are indep.

3 (Stationarity) Ks,t
(d)= Ks+u,t+u.

Ï n paths sampled using the same kernels Ks,t(x,A) are sticky
Brownian motions with splitting rates [Howitt-Warren 2009]

θ(k, l)=λ Γ(k+ l)
Γ(k)Γ(l)

.



Explicit construction of the environment

Ï Consistency of the definition of sticky Brownian motions implies

θ(k, l)= θ(k+1, l)+θ(k, l+1).

Then the sequence θ(k, l) can be encoded by a measure ν on [0,1]
such that

θ(k, l)=
∫ 1

0
xk−1(1−x)l−1ν(dx).

Ï For the stochastic flows of kernels corresponding to the sticky BM
martingale problem, one can construct explicitly the environment
using the Brownian web/net [Sun-Schertzer-Swart 2014].

Ï The measure ν encodes how paths branch on special points of the
Brownian web.

Ï The integrable choice corresponds to chosing ν uniform, i.e.
ν(dx)=λ dx.



Bethe ansatz and sticky BM

Let Φ(t,~x)= E[K−t,0(x1,R+) . . .K−t,0(xk,R+)].

Proposition ([B.-Rychnovsky 2019])
For x1 Ê ·· · Ê xk,

Φ(t,~x)=
∫
α1+iR

dw1

2iπ
· · ·

∫
αk+iR

dwk

2iπ∏
1ÉA<BÉk

wB −wA

wB −wA −wAwB

k∏
j=1

exp

(
tλ2w2

j

2
+λxjwj

)
1
wj

,

where for i< j, 0<αi < αj
1+αj

.

The function Φ(t,~x) solves{
∂tΦ(t,~x)= 1

2∆Φ(t,~x),
(∂i∂i+1 +λ(∂i −∂i+1))Φ(t,~x)|xi=xi+1 = 0.



Asymptotic results

Theorem ([B.-Rychnovsky 2019])
The large deviation principle rate function is given by

lim
t→∞

logK0,t(0,xt+R+)
t

=−λ2J(x/λ), in probability

where
J(x)=max

θ>0

{
1
2
ψ2(θ)+xψ1(θ)

}
where ψk(θ) is the polygamma function ψk(θ)= ∂k−1

θ
logΓ(θ). We have

the convergence in distribution as t→∞,

log
(
K0,t(0,xt+R+)

)
+λJ(x/λ)t

σ(x) · t1/3 =⇒LGUE,

where LGUE is the GUE Tracy-Widom distribution, and σ(x) is some
explicit function.

Proof: Follows parallel arguments as in the discrete case, except that
the asymptotic analysis is significantly more difficult here.



Various models of interacting (often repulsive) Brownian motions,
starting with [Dyson 1962], are related to random matrix theory. Here
we consider a model with attractive interaction.

Corollary ([B.-Rychnovsky 2019])

Let ~X(t) be the n-point sticky Brownian motion for θ(k, l)=λ Γ(k+l)
Γ(k)Γ(l) . Set

n= ect. Then,

maxi=1,...,N

{
Xi(t)

}
− t ·λJ−1(c/λ2)

σ(c) · t1/3 ===⇒
t→∞ LGUE,

where σ(c) is some explicit function.



Kardar-Parisi-Zhang equation

The KPZ equation

∂th= 1
2
∂xxh+ 1

2
(∂xh)2 +ξ (ξ is a space-time white noise)

is a paradigmatic model for stochastic growth of interfaces. We say that
h solves the KPZ equation when Z= eh solves the heat equation with
multiplicative noise

∂tZ(t,x)= 1
2
∂xxZ(t,x)+Z(t,x)ξ(t,x).

Proposition ([B.-Rychnovsky 2019])
Under the scalings

T =λ2t, Xi =λ2t+λxi,

The moments of K0,t converge to those of Z(t,x):

E

[
k∏

i=1
λetλ2/2+λxiK0,T(0,Xi +R+)

]
−−−−→
λ→∞

E

[
k∏

i=1
Z(t,xi)

]
.



Physics: Motion of particles in turbulent
�ows
Ï [Kolmogorov 1941]’s theory of turbulence predicted how to scale

the velocity field of a turbulent flow according to parameters of the
fluid.

Ï There has been evidence in physics that this scaling behaviour is
violated in some cases. One of the simplest models which
theoretically explains such anomalous scaling is [Kraichnan 1968]
an advection-diffusion equation{

∂tq= 1
2∂xxq+v(t,x)∂xq+ f (t,x),

q(t= 0,x)= q0(x)

where v(t,x) is a random velocity field that can be modeled by a
Gaussian field with short range correlations and f (t,x) is a source
term that we take equal zero.

Ï Under some hypotheses on v and f ≡ 0, q(t,x) corresponds to the
expectation of E[q0(Xt)] where Xt is a Brownian particle in the
velocity field v, i.e. {

dXt = dBt +v(t,x)dt.
X0 = x.



Moments of Kraichnan's equation

In one dimension, assuming that the velocity field is Gaussian with
covariance

E [v(t,x)v(s,y)]= δ(t−s)R(x−y),

a formal computation [Bernard-Gawedski-Kupiainen 1998] shows that
the mixed moments of q(t,x), i.e.

ΦR(t,~x)= E[q(t,x1) . . .q(t,xk)]

solve the PDE

∂tΦ
R(t,~x)=

(
∆+∑

i 6=j
R(xi −xj)∂xj∂xi

)
ΦR(t,~x).

When R(x−y)→ 1
λ
δ(x−y), the velocity field becomes a Gaussian

space-time white noise and the PDE becomes

∂tΦ
R(t,~x)=

(
∆+ 1

2λ

∑
i 6=j
δ(xi −xj)∂xj∂xi

)
ΦR(t,~x).



Sticky BM are di�usions with a white noise
drift
One can then show that ΦR solves{

∂tΦ
R(t,~x)= 1

2∆Φ
R(t,~x),

(∂i∂i+1 +λ(∂i −∂i+1))ΦR(t,~x)|xi=xi+1 = 0,

that is the same system as the moments of stochastic flows.
This suggests to identify

ζ(t,x)=
∫

dyK−t,0(−x,dy)ζ0(y)dy

with the solution q(t,x) of the stochastic PDE

∂tq(t,x)= 1
2
∂xxq(t,x)+ 1p

λ
ξ(t,x)∂xq(t,x).

Using formally Kolmogorov backwards equation, this makes sense of
the a priori ill-posed diffusion with white noise drift

dXt = dBt + 1p
λ
ξ(t,x)dt.

which can now be interpreted as the random diffusion corresponding to
the stochastic flow.



Outlook

Summary
1 Random walks/diffusions in random environment has the same

typical behaviour as without random environment, but the random
environment drastically changes extreme value scalings/statistics
to KPZ type.

2 Families of Brownian particles with attractive interaction also
display RMT statistics.

3 Connections with turbulent flows and exactly solvable SPDE.

Open questions
Ï What about the fluctuations of extremes of other

branching/coalescing structures?

Ï 1D Random walk in space-time random environment can be seen
as 2D random walks in fixed random environment, i.e. Sinai’s
walk. Can one show TW type asymptotics for 2D ballistic Sinaï’s
random walk? Can one show convergence to the KPZ equation?



Thank you


