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Consider a Fermi gas of N non-interacting particles confined into a D-dimensional box of size L
with periodic boundary conditions. We assume the system to be at zero temperature (7" = 0) and
the fermions to be all in the same spin state |+). We define ¢, ..., pn to be the N single-particle
wavefunctions of lowest energy.

1 Slater determinant

Write the complete state vector of the N fermions. What is the maximal momentum pg accessible
to the fermions in 3D?7 And in 1D?

2 One-body observables

Let the operator B be an observable involving only one-body operators:

where B(i) = 1d(1)Id(2) ... B(i)...Id(N) acts only on the state of the i-th particle.

a) Calculate the expectation value (B) of the operator B as a function of ¢1,..., ¢xN.
b) We define the one-body density matrix p(1) such that for any operator B one has:
(B) = Tr1[p(1)B(1)] = Try [B(1)p(1)]. (2)
Write the explicit expression of (1) as a function of 1, ..., ¢nN.
c¢) Use the above results to evaluate the spatial density of the fermions in the gas, p(r) = po.

d) Consider the following operator
Gli) =i m)i ), 3)



acting as G on the i-th particle, while being the identity Id(j) for all j # i. In the thermody-
namic limit, calculate explicitly the single-particle correlation function

g (r.r') = (3 G), (4)

first in 1D, then in 3D.

3 Two-body observables

Let the operator B be an observable involving only two-body operators:
N
B=>> B(ij) (5)
i=1 j#i

where B(i,7) = Id(1)Id(2)...B(i)... B(j)...Id(N) acts as B only on the states of the particle i
and particle j.

a) Calculate the expectation value (B) of the observable B as a function of ¢, ..., ¢n.

b) We define the two-body density matrix p(1,2) such that for any operator B one has:
(B) = Tr12[p(1,2)B(1,2)] = Tr1[B(1,2)4(1, 2)]. (6)
Express p(1,2) as a function of pq,..., ¢n.

c) Show that the trace of p(1,2) restricted to the subspace of particle 2 gives p(1) up to a multi-
plicative factor.

d) Consider the following operator:
G(i,j)=li:r)i:r|@[j:x)(j:r]. (7)

Apply the above results to evaluate the spatial density of pairs in the gas, namely the two-body
correlation function ¢ (r,r’).

e) Express ¢g® as a function of g,

f) In the thermodynamic limit, calculate explicitly ¢®(r,r’) in 1D than in 3D. We will write the
result as follows:

9P (r,1') = [l = ¢*(xr —1')]. (8)



4 Application in 1D: Fluctuation of the number of particles
in a spatial interval of length X

Consider a 1D system and a spatial interval of length X along x as represented on Fig. 1 We are
interested in the counting statistics of the number of particles in the interval X, which is related to
the ¢®(z — 2') function calculated above.
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Figure 1: A one-dimensional system (1D) where an interval X is considered.

a) Let Nx be the operator that counts the number of particles inside the interval [0, X]. Show
that (N%) = (Nx) + [5* dx [;¥ da’g® (x — o).

b) Show that:

/(;X dx /;X dr'g®(z —2') =2 [X /oX dz g9(z) - /(;X dea g(z)(x)] ' )

For this purpose we can derive this relation (9) with respect to X.

c¢) In the limit where kzX > 1 calculate the variance AN%, given the following useful relations:

z  sin’t T 1 1
z gin’t 1 1
Adﬁf ~ SIn(2r) + 57+ O0() for z — oo, (11)

where v = 0.577 ... is Euler’s constant. Comment on the result.

d) In the regime of non-zero temperature we have an approximate result for 7' < Tp, calculated
by Efetov et Larkin (Sov. Phys. JETP 42 (1976), 390):

T sin(kpx) ))2

N 12
97 (x) ~ pg <F 2Ty sinh(rTkpz/2TF "

Find the condition on 7//Tr and on krx such that ¢(®(z) is close to its value at 7 = 0.

e) At kpX =100, calculate (Nx), AN% and AN%/(Nx).

Evaluate the upper bound of T'/Tr such that our equations are valid for this specific value of
krX.



