Phase operator: Collapse and revival of the phase

C. Trefzger, M2 – ICFP

27th September 2012

1 Naive approach for large N

1. **Phase operator.** Sometimes it is useful to pretend to have a phase operator ϕ , which satisfies

$$[\hat{\phi}, \hat{n}] = i,\tag{1}$$

where \hat{n} is the operator number of particles of a bosonic mode.

(a) Calculate $a^{\dagger}a$ and show that the operators defined as follows

$$a = \sqrt{\hat{n} + 1} e^{-i\hat{\phi}} \qquad a^{\dagger} = e^{i\hat{\phi}}\sqrt{\hat{n} + 1}, \qquad (2)$$

have the expected commutation relations.

- (b) From Eq. (1), show that if $\hat{\phi}$ is hermitian \hat{n} can have a continuous non-positive spectrum.
- 2. Collapse of the phase. For large n we forget about this problem for the moment and we make use of relation (1). Let's consider the Kerr-type Hamiltonian

$$H = \frac{\hbar\chi}{2}\hat{n}^2,\tag{3}$$

and, as an initial state, we take a Glauber coherent state: $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n \frac{\alpha^n}{\sqrt{n!}}} |n\rangle$, where α is a complex number.

- (a) Calculate the standard deviation of n in such a state. Then using the Heisenberg uncertainty principle calculate the standard deviation of ϕ .
- (b) Show qualitatively that there is a collapse of the phase after a collapse time $t_{\rm cl}$ which you will estimate.

2 Rigorous approach

1. **Phase operator.** One of the most used definition of the phase operator of a monomode bosonic field is given by

$$(e^{-i\phi}) = (a^{\dagger}a + 1)^{-1/2}a.$$
 (4)

- (a) Write $(e^{-i\phi})$ in the Fock state basis $|n\rangle$.
- (b) Calculate explicitly the commutator of $(e^{-i\phi})$ with its hermitian conjugate $(e^{-i\phi})^{\dagger}$ and with the operator number $\hat{n} = a^{\dagger}a$. Is the operator $(e^{-i\phi})$ unitary?
- (c) The operator $(\hat{e^{-i\phi}})$ has eigenvectors with eigenvalues $e^{-i\phi'}$.

$$(\hat{e^{-i\phi}})|e^{-i\phi'}\rangle = e^{-i\phi'}|e^{-i\phi'}\rangle.$$
(5)

Express these eigenvectors on the Fock basis by choosing the normalization $\langle 0|e^{-i\phi'}\rangle = 1.$

(d) Demonstrate the closure relation:

$$\int_{0}^{2\pi} d\phi \, |e^{-i\phi}\rangle \langle e^{-i\phi}| = 2\pi. \tag{6}$$

As a consequence, show that the state of the system can be described by the "wavefunction" $\psi(\phi) = \langle e^{-i\phi} | \psi \rangle$. What is $\psi(\phi)$ for a Fock state $|n\rangle$?

(e) For a Glauber coherent state $|\alpha\rangle$, show that

$$\psi_{\alpha e^{i\phi_0}}(\phi) = \psi_{\alpha}(\phi + \phi_0).$$
(7)

For α real and $|\alpha| \gg 1$ find a Gaussian approximation for the coefficients of $|\alpha\rangle$ on the different Fock states. Estimate, in the continuous limit, the ϕ -width of $|\psi_{\alpha}(\phi)|^2$.

2. Collapse and revival of the phase.

(a) consider the Hamiltonian:

$$\mathcal{H} = \frac{\hbar\chi}{2}\,\hat{n}^2.\tag{8}$$

Write the Schrödinger equation for the time evolution of $\psi(\phi)$. Determine the eigenstates and the eigenenergies.

- (b) Determine qualitatively the time evolution of $\psi(\phi, t)$ starting from a coherent state $|\alpha\rangle$ with $|\alpha| \gg 1$. What is the characteristic time $t_{\rm cl}$ for the reduction of the initial wave packet (phase *collapse*)? Determine the instants $t_{\rm res}$ where the wave packet becomes identical to the initial one within a translation (phase *revival*).
- (c) With the help of the equation for $\psi(\phi, t)$ show that at $t = t_{\rm res}/2$ the system is in a state of Shrödinger cat type.

Given :

$$e^{-i\pi n^2/2} = \frac{1}{\sqrt{2}} \left[e^{-i\pi/4} + e^{i\pi(n+1/4)} \right] \,. \tag{9}$$