Energy minimization in the BCS state and excitation spectrum (I)

C. Trefzger, M2 – ICFP

25th October 2012

Consider a gas of indistinguishable fermionic particles. Each particle of mass m has two possible orthogonal spin states, $|\uparrow\rangle$ and $|\downarrow\rangle$, and the number of "spin-up" particles equals the number of "spin-down" particles. The particles of opposite spins interact through an attractive potential while there is no interaction between particles of the same spin state.

1 Model Hamiltonian

Consider a one-dimensional (1d) case where the fermionic mixture is confined in a box of size L with periodic boundary conditions.

a) The zero range potential between particle 1 and particle 2 does not change the spin state and we can model it as follows:

$$V(|x_1 - x_2|) = g\delta(x_1 - x_2), \tag{1}$$

where g is the so-called coupling constant, δ is the Dirac's distribution, and the position of particle 1 and particle 2 is respectively given by x_1 and x_2 . Write explicitly the Hamiltonian in second quantization as a function of the field operators $\hat{\psi}_{\sigma}(x), \ \hat{\psi}_{\sigma}^{\dagger}(x)$ with $\sigma = \uparrow, \downarrow$.

b) Show that the kinetic energy operator of the gas in the k-space may be written as follows:

$$\hat{T} = \sum_{k} \sum_{\sigma=\uparrow,\downarrow} \epsilon_k \hat{a}_{k,\sigma}^{\dagger} \hat{a}_{k,\sigma}, \qquad (2)$$

where $\hat{a}_{k,\sigma}^{\dagger}$ is the creation operator of a fermion with spin component σ in a plane wave with wavevector k, and

$$\epsilon_k = \frac{\hbar^2 k^2}{2m},\tag{3}$$

with m being the mass of a particle.

c) In the grand canonical ensemble show that one can replace ϵ_k with

$$\xi_k = \epsilon_k - \mu, \tag{4}$$

in \hat{T} , where μ is the chemical potential.

2 Minimization of the energy

To this end, we have to calculate the expectation value of the Hamiltonian in the coherent state of pairs:

$$|\psi_{BCS}\rangle = \mathcal{N} \Pi_k (1 + \Gamma_k a_{k\uparrow}^{\dagger} a_{-k\downarrow}^{\dagger}) |0\rangle .$$
(5)

- a) Calculate the expectation value of the kinetic energy operator, including the chemical potential contribution, as a function of the parameters ξ_k and Γ_k .
- b) What is the physical meaning of the quantity

$$\rho_{\uparrow} \equiv \langle \hat{\psi}_{\uparrow}^{\dagger}(x) \hat{\psi}_{\uparrow}(x) \rangle \ ? \tag{6}$$

Using a result of the previous lecture, calculate the value of ρ_{\uparrow} as a function of the coefficients Γ_k .

c) Calculate the following quantity

$$\Delta \equiv g \langle \hat{\psi}_{\uparrow}(x) \hat{\psi}_{\downarrow}(x) \rangle, \tag{7}$$

as a function of the parameters Γ_k . Does this quantity depend on the position x?

- d) Calculate $\langle \hat{\psi}^{\dagger}_{\uparrow}(x) \hat{\psi}_{\downarrow}(x) \rangle$.
- e) Show that the expectation value of the interaction Hamiltonian is:

$$\langle \hat{V} \rangle = \frac{g}{L} \left[\left(\sum_{k} \frac{\Gamma_k}{1 + \Gamma_k^2} \right)^2 + \left(\sum_{k} \frac{\Gamma_k^2}{1 + \Gamma_k^2} \right)^2 \right].$$
(8)

- f) We shall consider for a moment the non-interacting case, g = 0. What is the choice of the parameters Γ_k minimizing the expectation value of the complete Hamiltonian ? What is then the state $|\psi_{BCS}\rangle$? Does it coincide with the exact ground state of the gas ?
- g) We now turn back to the interacting case and we shall consider an attractive interaction, such that g < 0. Express the fact that the first derivative of the expectation value of \hat{H} with respect to each Γ_k is zero. We should find the following second degree equation, which we will not try to solve:

$$\Gamma_k^2 + 2\frac{\xi_k}{\Delta}\Gamma_k - 1 = 0, \tag{9}$$

where we have set

$$\tilde{\xi}_k = \epsilon_k - \tilde{\mu} \quad \text{et} \quad \tilde{\mu} = \mu - g\rho_{\uparrow}.$$
 (10)

Give a physical interpretation of the shift in the chemical potential μ .