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Consider a dilute gas of bosonic particles of mass m confined in a box of size [0, L]d

where d is the dimension of the space. We will impose periodic boundary conditions on the
wavefunction of the system. The Hamiltonian of the gas is then written as follows

H0 =

N
∑

i=1

p2
i

2m
+

1

2

∑

1≤i6=j≤N

Vint(ri − rj), (1)

where pi is the momentum operator of particle i and ri its position operator. In dimension
d = 3, the particles interact through a contact potential Vint(r1 − r2) = g δ(r1 − r2) where
g = 4π~

2a/m. Furthermore, at T = 0 we suppose for the moment that all the atoms of the
gas form a Bose-Einstein condensate (BEC).

1. Landau’s criterion for superfluidity. Consider an impurity of mass M that moves
through the atomic gas with a velocity v. The atomic gas is initially at T = 0 and
the interaction between the impurity and the atoms of the gas are supposed to be
weak.

(a) Consider an elementary process where the impurity, of mass M , and initial
velocity equal to ~v, creates an excitation in the gas of energy ~ω and momentum
~~k. Use energy conservation and momentum conservation to show that one
cannot create such an excitation if the velocity of the impurity is lower than
ω/k.

(b) Derive the excitation spectrum in the Bogoliubov approximation.

(c) Using the Bogoliubov spectrum determine the minimal velocity |~v| (Landau’s
critical velocity) at which Bogoliubov excitations can be created by the impurity
and therefore the impurity can be slowed down by the gas. This absence of
“slowing down” for small velocities is a manifestation of the superfluidity of the
gas (see e.g. A. P. Chikkatur, A. Görlitz, D. M. Stamper-Kurn, S. Inouye, S.
Gupta, and W. Ketterle, Phys. Rev. Lett. 85, 483 (2000)).
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2. Another point of view on the Landau’s criterion : Thermodynamical in-

stability

Stiring potential

We apply now a perturbing potential that breaks the translationary invariance of the
gas along the x-axis, a potential that moves at a constant velocity v = v ex, where
ex is the unit vector oriented in the x-axis :

W (t) =

N
∑

i=1

W(ri − vt). (2)

(Note that the velocity v in this context is not an operator but a vector with real
components.).

a) Write the Schrödinger equation on the state vector of the system |ψ(t)〉 in the
presence of the perturbation, in terms of the operators H0 and W (t).

b) We introduce the time-dependent unitary transformation

U(t) = eiP·vt/~, (3)

where we have introduced the total momentum operator of the gas :

P =

N
∑

i=1

pi. (4)

After this unitary transformation, the state vector of the system is

|ψ̃(t)〉 ≡ U(t)|ψ(t)〉. (5)

Show that the position operator of the particle j under the unitary transformation
transforms as follows :

U(t)rjU
†(t) = rj + vt. (6)

c) Write the Schrödinger equation satisfied by |ψ̃〉 and deduce the new Hamiltonian
H̃ .

d) From an important property of H̃, what is the aim of having done such a unitary
transformation ?

e) We now make the limit W → 0. Write the operator H̃ in this limit.

Bogoliubov and thermodynamical instability In this section we suppose that the gas
interacts weakly enough and that it is at a low enough temperature such that we
can use Bogoliubov theory to describe it. We therefore suppose that a condensate is
present in the mode of wavevector k0 = 0 of the box.

a) In second quantization write the total momentum operator along x, Px, in the
space of wavevectors therefore in terms of the operators ak and a†

k
. The operator

ak annihilates a particle in the plane wave of wavevector k.
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b) We recall the decomposition of the field Λ on the Bogoliubov modes :

Λ(r) = e−iθψ⊥(r) =
∑

k 6=0

uk(r)bk + v∗
k
(r)b†

k
, (7)

where the modes (uk, vk) belong to the family F+ seen in the theory lectures.
Express e−iθak, for k 6= 0, as a function of the operators b and b†.

c) Show that the quantity kxbkb−k is an odd function of k. Deduce that the sum over
k 6= 0 of this quantity vanishes.

d) Show that the total momentum operator of the gas along x is simply given by

Px =
∑

k 6=0

~kxb
†
k
bk. (8)

e) Show that there is thermodynamical instability for v > cs where cs is the sound
velocity, that is the speed at which sound propagates into the gas.

3. Quantum depletion Due to interactions the ground state of the system is not a
pure BEC

(a) Calculate the modes vk et uk of the Bogoliubov approach.

(b) In the Bogoliubov approximation determine the non-condensed fraction for a gas
at zero temperature T = 0. Deduce the condition of validity for the Bogoliubov
approach to be valid.

We give the following integral :

∫ ∞

0

dq q2

(

q2 + 1/2

q
√

q2 + 1
− 1

)

=
1

6
.
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