Preparation of a Schrödinger's cat

C. Trefzger, M2 – ICFP

5th December 2012

Consider two Bose-Einstein condensates (BEC) in a double-well potential as shown in figure 1.

FIG. 1 – Double-well potential with single-particle modes α and β localized respectively in the left well and in the right well.

The system is at zero temperature such that all the atoms occupy the ground state of the double-well; we will then neglect all excited states. The base of all accessible states is then as follows :

$$|n\rangle = \frac{1}{\sqrt{n!(N-n)!}} \left(\hat{a}^{\dagger}\right)^{n} \left(\hat{b}^{\dagger}\right)^{N-n} |0\rangle, \qquad (1)$$

where n is the number of atoms in the left well and N the total number of atoms present in the system. The interactions between the atoms can be modeled by a zero-range potential $V(\mathbf{r} - \mathbf{r}') = g\delta(\mathbf{r} - \mathbf{r}').$

- 1. Write the Hamiltonian of the system in terms of the wave functions of the ground state of the double-well and in terms of the coupling constant g.
- 2. Describe the spectrum of the system in the case where no tunneling is present between left and right well (infinite barrier limit). Are there degenerate levels?
- 3. We lower the barrier between the left and the right well and therefore add a tunneling term between the two condensates. Describe the corresponding term of the Hamiltonian as a function of the tunneling amplitude J. Which transition $|n\rangle \rightarrow |n'\rangle$ are induced by this coupling?

4. Use the method of the resolvent, write the effective Hamiltonian $H_{\text{eff}}(z)$ in the subspace $\mathcal{H}_P = |n = 0\rangle \oplus |n = N\rangle$ in the limit where the separation between the levels $|n\rangle$ is large compared to the tunneling amplitude J. We will use, after having demonstrated it, the perturbative development of the displacement operator :

$$R(z) = V + V \frac{Q}{z - QH_0Q} V + V \frac{Q}{z - QH_0Q} V \frac{Q}{z - QH_0Q} V + \cdots$$
(2)

where we will keep only the dominant terms in V.

- 5. Using $H_{\text{eff}}(z)$ describe the splitting of degeneracy κ between the states $|n = 0\rangle$ and $|n = N\rangle$.
- 6. Calculate the time evolution of the system starting from the initial state $|n = 0\rangle$. What is the state of the system at $\kappa t/\hbar = \pi/4$? Give a physical interpretation.
- 7. What is the limit of validity of this effective Hamiltonian description of the system? We give the following Stirling approximation for large N:

$$N! \sim N^N e^{-N} \sqrt{2\pi N}.$$
(3)