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Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots

Cold gas in a trap ?



Quantum  Dot
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1. Disorder  (× − impurities)
2. Complex  geometry
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Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•

3. e-e interactions





Finite number N of electrons:

ααα ΨΨ EĤ =

No interactions between electrons J 
Shrodinger eqn in d dimensions

In the presence of the interactions 
between electrons J 
Shrodinger equation in dN dimensions
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Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•

3. e-e interactions for a while



Random Matrices, Random Matrices, 
Anderson LocalizationAnderson Localization
Quantum ChaosQuantum Chaos

I.Without interactions
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1. Disorder  (× − impurities)
2. Complex  geometry
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How to deal with disorder?
•Solve the Shrodinger equation exactly

•Start with plane waves, introduce the 
mean free path, and . . .

?How to take quantum 
interference into account



Dynamics

Integrable Chaotic



Integrable 
Systems

Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion

2. Circular billiard; d=2
• Radial motion can be 

separated from the  
angular one

• Angular momentum 
and energy are the 
integrals of motion



Stadium

Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated > d one-dimensional 
problems >d integrals of motion

Chaotic 
Systems

The variables can not be separated > there is only one 
integral of motion - energy

ExamplesExamples

Sinai billiard

Kepler problem 
in magnetic field 

B



Stadium

Chaotic 
Systems

The variables can not be separated > there is only one 
integral of motion - energy

ExamplesExamples

Sinai billiard

Kepler problem 
in magnetic field 

B

Yakov Sinai Johnnes KeplerLeonid Bunimovich



Integrable 
d-dimensional 
systems

d integrals of motion, d quantum numbers
d,...,,kIk 21=

Chaotic
d-dimensional 
systems

The only conserved quantity is the energy
Each eigenstate is characterized only by 
the eigenvalue of the Hamiltonian

Connection with the inverse problem:
Why original conditions can not be 
used as the integrals of motion ?Q:

A: Not stable



Classical Chaos 
h =0

•Nonlinearities
•Lyapunov exponents
•Exponential dependence on 
the original conditions

•Ergodicity

Q: What does it mean Quantum Chaos ?

Quantum description of any System Quantum description of any System 
with a finite number of the degrees with a finite number of the degrees 
of freedom is a linear problem of freedom is a linear problem ––
Shrodinger equation Shrodinger equation 



Eα - spectrum (set of eigenvalues)

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

RANDOM MATRICES

- density of states

- ensemble averaging......

( ) ( )Eα
α

ν ε δ ε≡ −∑

Gaussian ensembles (matrix 
elements are normally distributed) Wigner Semicircle

N → ∞

( )ν ε

ε



Eα - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of spacings
between the nearest neighbors

Spectral Rigidity

Level repulsion

( )

( ) 4211

00

,,=∝<<

==

ββssP
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( )sP
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1

δ
αα

α
EEs −

≡ +

1 1
1E Eα αδ
ν+≡ − =

......

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

RANDOM MATRICES Spectral 
statistics

Noncrossing
rule



Noncrossing rule (theorem)
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)                                     . . . .

Usually textbooks present a simplified version of the justification 
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. I., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989



Ensemble
orthogonal
unitary
simplectic

Dyson Ensembles

Matrix elements
real
complex

2 × 2 matrices

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

RANDOM MATRICES

β

1
2
4



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

( ) 0P s → 0 :s →Reason for                           when

11 12

12 22

ˆ
H H

H
H H∗

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

( )2 2
2 1 22 11 12E E H H H− = − +

small small small

( ) 1P s s β∝ =



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 0P s → 0 :s →Reason for                           when

11 12

12 22

ˆ
H H

H
H H∗

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

( )2 2
2 1 22 11 12E E H H H− = − +

small small small

( ) 1P s s β∝ =

2( ) 2P s s β∝ =



Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Orthogonal 
β=1

Unitary
β=2

Simplectic
β=4



N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

RANDOM MATRICES

No conservation lawsNo conservation laws DD no no 
quantum numbers except the energyquantum numbers except the energy



N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β
    1

    2
    

4

T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices

Spectral Rigidity 
Level repulsion ( )1 1,2, 4P s sβ β<< ∝ =

Realizations



ATOMS

NUCLEI

Main goal is to classify the eigenstates 
in terms of the quantum numbers

For the nuclear excitations this 
program does not work 

N. Bohr, Nature 
137 (1936) 344.



ATOMS

NUCLEI

Main goal is to classify the eigenstates 
in terms of the quantum numbers

For the nuclear excitations this 
program does not work 

E.P. Wigner
(Ann.Math, v.62, 1955)

Study spectral statistics of 
a particular quantum system 
– a given nucleus 



sP(s)

Particular 
nucleus

166Er

Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s)

N. Bohr, Nature 
137 (1936) 344.



ATOMS

NUCLEI

Main goal is to classify the eigenstates 
in terms of the quantum numbers

For the nuclear excitations this 
program does not work 

E.P. Wigner
(Ann.Math, v.62, 1955)

Study spectral statistics of 
a particular quantum system 
– a given nucleus 

• Particular quantum system

• Spectral averaging (over α)

• Ensemble

• Ensemble averaging

Atomic NucleiRandom Matrices

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 
answer:

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high

Later it
became
clear that

there exist very “simple” systems 
with as many as 2 degrees of 
freedom (d=2), which demonstrate  
RMT - like spectral statistics



Stadium

Chaotic 
Systems

The variables can not be separated > there is only one 
integral of motion - energy

ExamplesExamples

Sinai billiard

Kepler problem 
in magnetic field 

B

Yakov Sinai Johnnes KeplerLeonid Bunimovich



Integrable 
d-dimensional 
systems

d integrals of motion, d quantum numbers
d,...,,kIk 21=

Chaotic
d-dimensional 
systems

The only conserved quantity is the energy
Each eigenstate is characterized only by 
the eigenvalue of the Hamiltonian

Connection with the inverse problem:
Why original conditions can not be 
used as the integrals of motion ?Q:

A: Not stable



Bohigas – Giannoni – Schmit conjecture0≠h



Bohigas – Giannoni – Schmit conjecture0≠h



Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0≠h

No quantum 
numbers except 

energy



Chaotic
classical 
analog

Two possible definitions

Wigner -
Dyson-like 
spectrum

Q: What does it mean Quantum Chaos ?



Wigner-
Dyson

?
Classical

Poisson

Quantum

?
Chaotic

Integrable



Poisson to Wigner-Dyson crossover



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

••As well as in the case of Random As well as in the case of Random 
Matrices Matrices (RM) there is a luxury (RM) there is a luxury 
of ensemble averaging.of ensemble averaging.

••The problem is much richer than The problem is much richer than 
RM theoryRM theory

••There is still a lot of universality.There is still a lot of universality.

Anderson 
localization (1956) 

At strong enough  At strong enough  
disorder all eigenstates disorder all eigenstates 
are are localizedlocalized in spacein space



Anderson Insulator Anderson Metal 

f = 3.04 GHz f = 7.33 GHz



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities ( )( ) i

i

U r u r r= −∑r r r



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities ( )( ) i

i

U r u r r= −∑r r r

White noise potentialWhite noise potential ( ) ( ) 0 imu r r cλδ λ→ → → ∞
r r

Anderson modelAnderson model –– tighttight--binding model with binding model with onsiteonsite disorderdisorder

Lifshits model Lifshits model –– tighttight--binding model with binding model with offdiagonaloffdiagonal disorderdisorder
......



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =
I   i and j are nearest 

neighbors

0 otherwise
-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition



Localization of single-electron wave-functions:

extended

localized



Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

d=2; All states are localized

d>2; Anderson transition



I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics



Disorder W

Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

( ) ( ) 0
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
−+

∇
− rrWU

m
rr
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Chaotic
classical 
analog

Two possible definitions

Wigner -
Dyson-like 
spectrum

Q: What does it mean Quantum Chaos ?

Are the two definitions equivalent?Are the two definitions equivalent?

?

Maybe not because of the localization!Maybe not because of the localization!



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy

L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Quantum particle in a random potentialQuantum particle in a random potential ((Thouless, 1972))
Energy scales



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots 
with Thouless 

conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Spectral Statistics



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

L = 2L = 4L = 8L ....

ET ∝ L-2 δ1 ∝ L-d 

without quantum corrections

ET ET ET ET

δ1  δ1  δ1  δ1

g g g g

d log g( )
d log L( )=β g( )

g = Gh/e2g = ET / δ1
Dimensionless Thouless 

conductance



β - function ( )g
Ld
gd β=

log
log

β(g)

g

3D

2D

1D-1

1
1≈cg

unstable
fixed point

Metal – insulator transition in 3D
All states are localized for d=1,2



Conductance g



Anderson transition in terms of 
pure level statistics

P(s)



Square
billiard

Sinai
billiard

Disordered 
localized

Disordered 
extended

Integrable Chaotic
All chaotic 
systems 
resemble 
each other.

All integrable
systems are 
integrable in 
their own way



Disordered 
Systems:

11 >> gET ;δ

11 << gET ;δ

Is it a generic scenario for the  
Wigner-Dyson to Poisson crossoverQ: ?

Speculations

Anderson metal; 
Wigner-Dyson spectral 
statistics

Anderson insulator; 
Poisson spectral statistics

Consider an integrable system. Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of quantum numbers. The 
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements 
of the hopping between different sites (Anderson model !?)



Consider an integrable system. Each state is 
characterized by a set of quantum  numbers.

It can be viewed as a point in the space of quantum 
numbers. The whole set of the states forms a lattice in 
this space.

A perturbation that violates the integrability provides 
matrix elements of the hopping between different sites 
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson

Does Anderson localization provide  
a generic scenario for the  Wigner-
Dyson to Poisson crossover

Q: ?



The very definition of the localization is 
not invariant – one should specify in which 
space the eigenstates are localized.

Level statistics is invariant:

Poissonian 
statistics

basis where the 
eigenfunctions are localized∃

Wigner -Dyson 
statistics ∀basis the eigenfunctions 

are extended



Ly

e

Example 1 Doped semiconductor
Low concentration 
of donors

Electrons are localized on 
donors > Poisson

Higher donor
concentration

Electronic states are 
extended>Wigner-Dyson

Example 2
Rectangular billiard

Lx

Two 
integrals 
of motion x

y
x

x L
mp

L
np ππ

== ;

Lattice in the 
momentum space
py

px

Line (surface) 
of constant 
energy Ideal billiard   – localization in the 

momentum space
> Poisson

Deformation or 
smooth random 
potential

– delocalization in the 
momentum space 
> Wigner-Dyson



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson



1D Hubbard Model on a periodic chain
( ) ∑∑∑

′
′+−

+
++

+ +++=
σσ

σσ
σ

σσ
σ

σσσσ
,,

,1,
,

,,
,

,,1,1,
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ii
i

ii
i

iiii nnVnnUcccctH

Onsite 
interaction

n. neighbors 
interaction

Hubbard 
model integrable0=V

extended 
Hubbard 

model
nonintegrable0≠V

12 sites
3 particles
Zero total spin
Total momentum π/6

U=4  V=0 U=4  V=4

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993



Finite number N of electrons:

No interactions between electrons J 
Shrodinger eqn in d dimensions

In the presence of the interactions 
between electrons J 
Shrodinger eqn in dN dimensions

Integrable system – each energy is conserved
Poissonian many-body spectrum

ααα ΨΨ EĤ =



Finite number N of electrons:

No interactions between electrons J 
Shrodinger eqn in d dimensions

In the presence of the interactions 
between electrons J 
Shrodinger eqn in dN dimensions

Integrable system – each energy is conserved
Poissonian many-body spectrum

Can interaction between the particles drive 
this system  into chaos and make it ergodicQ: ?

ααα ΨΨ EĤ =

Random Matrics statistics of nuclear spectra



Fermi Liquid and DisorderFermi Liquid and Disorder
Zero Dimensional Fermi LiquidZero Dimensional Fermi Liquid

II.With interactions



Fermi LiquidFermi Liquid

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

Fermi
Liquid

What does it mean?What does it mean?



2. Substantial renormalizations. For example, in a Fermi gas

It means thatIt means that
1. Excitations are similar to the excitations in a Fermi-gas:

a) the same quantum numbers – momentum, spin ½ , charge e
b) decay rate is small as compared with the excitation energy

BgTcn μχγμ ,, =∂∂

Fermi statistics
Low temperatures
Not too strong interactions
Translation invariance

Fermi
Liquid

are all equal to the one-particle density of states.
These quantities are different in a Fermi liquid



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Signatures of the Fermi  - Liquid state  ?!

…The increase of the resistance caused by the interaction between
the electrons is proportional to T2 and at low temperatures exceeds 
the usual resistance, which is proportional to T5.

… the sum of the moments of the interaction electrons can change 
by an integer number of the periods of the reciprocal lattice. 
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by 
the thermal oscillations of the lattice.



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Umklapp electron – electron scattering dominates the 
charge transport (?!) 

Signatures of the Fermi  - Liquid state  ?!

( ) ( )pi
ZpG

n
r

r

ξε
ε

−
=,

( )pn r

p
Fp

Fermi liquid = 0<Z<1 (?!)

2. Jump in the momentum distribution 
function at T=0.

2a. Pole in the one-particle Green function



Landau Fermi  - Liquid theory

( )

( ){ }

( ) ( )

( ) ( ) ( )pnpppf

pnEp

pnE

pn

p

′≡′

≡

rrrr

rr

r

r

r

δδξ

δδξ

,

Momentum

Momentum distribution

Total energy

Quasiparticle energy

Landau f-function

Q: ?Can Fermi – liquid survive without the momenta

Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorder



1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the

elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorderQ: ?



1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the

elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

( )pn r

p
Fp

l
h~

Nevertheless even in the presence of the disorderNevertheless even in the presence of the disorder
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

2. Neither resistivity nor its temperature dependence is determined by the umklapp 
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a 
function of the energy, ε. The residue , Z, makes no sense.

Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorderQ: ?



Quantum  Dot
e

×

×
×

×

1. Disorder  (×impurities)
2. Complex  geometry }

e
e

e

e

×

×

Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•

3. e-e interactions

chaotic
one-particle
motion



Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
1

1

>>≡
δ

TEg



|α,σ>TwoTwo--Body Body 
InteractionsInteractions

∑∑
′

′
+

′
++ ==

σσ
δγβα

σδσγσβσααβγδ
α

σασααε
,

,,,
,,,,int,,0

ˆˆ aaaaMHaaH

Set of one particle states. σ
and α label correspondingly 
spin and orbit.

αβγδ

αε

M

εα -one-particle orbital energies Mαβγδ -interaction matrix elements

Nuclear
Physics

αβγδ

αε

M
Quantum

Dots

are taken from the shell model

are assumed to be random 

RANDOM; Wigner-Dyson statistics 

? ? ? ? ? ? ? ?



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Quantum Mechanics



Matrix ElementsMatrix Elements
∑

′

′
+

′
+=

σσ
δγβα

σδσγσβσααβγδ

,
,,,

,,,,int
ˆ aaaaMH

Matrix 
Elements αβγδM

Diagonal Diagonal - α,β,γ,δ are equal pairwise
α=γ and β=δ or α=δ and β=γ or α=β and γ=δ

Offdiagonal Offdiagonal - otherwise

It turns 
out that
in the limit

• Diagonal matrix elements are much bigger
than the offdiagonal ones

• Diagonal matrix elements in a particular 
sample  do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>

∞→g



Ψα (x) is a random 
function that 
rapidly oscillates

as long as
T-invariance 
is preserved

|ψα (x)|2           

Toy model:Toy model: Short range e-e interactions

( ) ( )rrU rr δ
ν
λ

= λ is  dimensionless coupling constant 
ν is  the electron density of states

( ) ( ) ( ) ( )rrrrrdM rrrrr
δγβααβγδ ψψψψ

ν
λ

∗∗= ∫
( )rrαψ

one-particle
eigenfunctions

x

ψα

electron
wavelength

0≥

ψα (x)2           0≥



In the limit • Diagonal matrix elements are much bigger than 
the offdiagonal ones

• Diagonal matrix elements in a particular sample  
do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>∞→g

( ) ( )22
rrrdM rrr

βααβαβ ψψ
ν
λ

∫=

( )
volume

12 ⇒rrαψ
1λδαβαβ =M

More general:More general: finite range interaction potential  U
r 
r ( )

  
Mαβαβ =

λ
ν

ψ α
r 
r 1( )∫

2
ψ β

r 
r 2( )

2
U

r 
r 1 −

r 
r 2( )dr 

r 1d
r 
r 2

The same 
conclusion



All correlation functions are  invariant under  
arbitrary  orthogonal transformation:

( ) ( ) ( )∑∫=
ν

ν
ν
μμ ψψ 111 ,~ rrrOrdr rrrrr

( ) ( ) ( )rrrrOrrOrd ′−=′∫
rrrrrrr δδ μη

η
ν

ν
μ ,, 111

Universal (Random Matrix) limit - Random 
Matrix symmetry of the correlation functions:



There are only three operators, which are quadratic in 
the fermion operators      ,      , and invariant under RM
transformations:

a+

1 1 2 2

1 2

, ,
,

, , ,
, ,

, ,

n̂ a a

Ŝ a a

K̂ a a

α σ α σ
α σ

α σ σ σ α σ
α σ σ

α α
α

σ

+

+

+ + +
↑ ↓

=

=

=

∑

∑

∑

r

a

total number of particles

total spin

????



2 2
int c BCS

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.λ += + + +

Charge conservation
(gauge invariance) -no ˆ ˆK K+ ˆ ˆK K+

or

Invariance under 
rotations in spin space

- no ˆ S 2ˆ S 

Therefore, in a very general case

Only three coupling constants describe all of 
the effects of e-e interactions

only

only



In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

2 2

int

int c BCS

ˆ ˆH n H

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.

α α
α

ε

λ +

= +

= + + +

∑

I.L. Kurland, I.L.Aleiner & B.A., 2000
See also
P.W.Brouwer, Y.Oreg & B.I.Halperin, 1999
H.Baranger & L.I.Glazman, 1999
H-Y Kee, I.L.Aleiner & B.A., 1998



For a short range interaction with a coupling constant λ

In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

Ec =
λδ1

2
J = −2λδ1 λBCS = λδ1 2 − β( )

where       is the one-particle mean level spacingδ1

2 2

int

int c BCS

ˆ ˆH n H

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.

α α
α

ε

λ +

= +

= + + +

∑



2 2
int c BCS

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.λ += + + +

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

Only one-particle part of 
the Hamiltonian,       ,
contains randomness

ˆ H 0



2 2
int c BCS

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.λ += + + +

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

determines the charging energy 
(Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
pairing

Ec

J

λBCS



2 2
int c BCS

ˆˆ ˆ ˆˆ ˆH eVn E n JS K K.λ += + + +

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liquid behavior  follows from the fact that 
different wave functions are almost uncorrelated


