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OUTLINE

• atoms: waves and particles

• the Bose law

• when the Bose gas becomes degenerate

• how to reach Bose-Einstein condensation

• atomic interactions and Gross-Pitaevskii equation
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ATOMS: WAVES AND PARTICLES

Analogy with optics:

Object optics atomic physics

field E(r, t),B(r, t) φ(r, t)

equation of motion
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c2
∂2
t
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B = 0 ih̄∂tφ = −
h̄2

2m
∆φ

particle photon atom

energy h̄ω
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mv2

momentum h̄k p = mv

wavelength λ =
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k
=

h

h̄k
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h
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dispersion relation ω = ck ω =
h̄k2

2m
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Values in an ordinary gas:

• equipartition of energy:

1

2
m〈v2

x〉 =
1

2
kBT

• sodium atoms at 300 K:

∆vx = 300 m/s

λ = 5 × 10−11 m

With Sisyphus cooling:

λ ∼ 1 µm.
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ATOMIC MODES IN A BOX

Energy levels of an atom in a box:

• periodic boundary conditions:

φ(x+ L, y, z) = φ(x, y + L, z) = φ(x, y, z + L)

= φ(x, y, z).

• quantisation of wavevectors:

φ(x, y, z) ∝ ei(kxx+kyy+kzz)

kα =
2π

L
qα

• quantisation of energy:

εk =
h2

2mL2

(

q2
x + q2

y + q2
z

)
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THE BOSE LAW

Indistinguishable particles in quantum theory are:

• bosons:
Pσ|ψ〉B = |ψ〉B

• or fermions:
Pσ|ψ〉F = ε(σ)|ψ〉F .

Configuration defined by a set of occupation numbers {nα}

Example: two spin 1/2 particles of opposite spin:

|ψ〉B ∝ |+〉 ⊗ |−〉 + |−〉 ⊗ |+〉

|ψ〉F ∝ |+〉 ⊗ |−〉 − |−〉 ⊗ |+〉

|+〉 ⊗ |−〉 meaningless
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Thermodynamics of the ideal Bose gas:

Proba({nα}) =
1

Ξ
e−β

∑

α(εα−µ)nα

where β = 1/(kBT ) and µ is the chemical potential.

Bose law for the occupation number:

〈nα〉 =
1

eβ(εα−µ) − 1
so that

−∞ < µ < ε0.
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Lower limit for µ is non-degenerate regime:

〈n~k〉 ' ρλ3e−βh̄2k2/2m

in a large box, where

λ =

√

2πh̄2

mkBT

is the thermal de Broglie wavelength.

The coherence length of the gas is ∼ λ.
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WHEN THE BOSE GAS BECOMES DEGENERATE

ρλ3 � 1

Saturation of excited state population:

N ′ ≡
∑

α 6=0

〈nα〉 <
∑

α6=0

1

eβ(εα−ε0) − 1
≡ N ′

max

For a large cubic box

L � λ, i.e. kBT �
h2

2mL2
,

N ′
max =

∑

~k 6=~0

1

eβh̄
2k2/2m − 1

' 2.612
L3

λ3
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If N > N ′
max . . .

. . . there are at leastN−N ′
max atoms in the ground mode

of the box.

A condensate forms if:

ρλ3 > 2.612 . . . Einstein, 1925

Totally counter-intuitive for Boltzmann statistics.

In a harmonic potential:

N ′
max ' 1.202

(

kBT

h̄ω̄

)3

where ω̄ is the geometric mean of the trap frequencies.
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Even in a trap one has for N = N ′
max:

ρ(~0 )λ3 ' 2.612

Below Tc: condensate fraction

N0

N
'
N −N ′

max

N
' 1 −

(

T

Tc

)3/2

box

' 1 −

(

T

Tc

)3

harmonic trap

Realistic examples:

T/Tc = 1/2 everyday

T/Tc = 1/4 the good days
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BEC in position space: kBT = 20h̄ω N = 500 to 32000

0 10 20
r [a0]

10
−4

10
−2

10
0

10
2

10
4

ρ(
r)

 [a
0−

3 ]

11



Results of JILA:
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HOW TO REACH BOSE-EINSTEIN CONDENSATION

The problem of solidification:

• For air with pressure 1 atm:

Tc ' 0.4K

but then one expects a solid phase.

• He4 does not solidify. Experiences superfluid transition
at ∼ 2K

but is a liquid, not a gas (condensate fraction < 0.1).

• Only polarized hydrogen is gaseous at 1 atm, 0 K.
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Low density route: use of metastability

• 2-body elastic collisions ensure thermalisation:

γelas ∝ ρ

• 3-body collisions form molecules:

γinel ∝ ρ2

but are much slower at low density!

• the obtained condensate is metastable.

• Price to pay: ultralow temperatures

Tc ∼ 40nK to 1µK.
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How to cool ?

• laser cooling alone not yet succeeded:

λ ∼ λopt =
2π

kL

and bad effects of light when ρλ3
opt ∼ 1.

• forced evaporative cooling: remove atoms in high energy
tails, let gas rethermalize, and so on

• efficient if γelas

γloss
> 100.
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EFFECT OF ATOMIC INTERACTIONS

• Not ideal
Bose gas!

• Coherence
length!!
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How to characterize the interaction potential?

by its r dependence:
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by its scattering length:

−
h̄2

m
∆φ(r) = 0

φ(r) = C0 + C1/r

∝ 1 −
a

r

Typical values

a = 50 nm (87
Rb) a = −1.5 nm (7Li)

but a can be tuned.
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THE GROSS-PITAEVSKII EQUATION

ih̄∂tφ(~r, t) =

[

−
h̄2

2m
∆ + U(~r ) + gN0|φ(~r, t)|2 − µ

]

φ(~r, t)

Comes from mean field for model interaction potential

V (~r ) = gδ(~r )∂r(r ·)

with coupling constant g =
4πh̄2

m
a.

Explains almost everything, including superfluidity.
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