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APPENDIX

For the 2 lectures of Claude Cohen-Tannoudji
on “Atom-Atom Interactions 

in Ultracold Quantum Gases”
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Purpose of this Appendix
1 – Demonstrate the orthonormalization relation

( )k l m klm ll mmk kϕ ϕ δ δ δ′ ′ ′ ′ ′′= −

- The wave function
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describes, in the angular momentum representation, a particle of
mass μ, with energy E=ħ2k2/2μ, in a central potential V(r)
- The radial wave function ukl(r) is a regular solution of
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which behaves, for r→∞, as:
2()sin / ()kl lr

u r kr l kπ δ
→∞

⎡ ⎤− +⎣ ⎦�

- There are other (non regular) solutions behaving, for r→∞, as:

( )2()exp / ()exp()l
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u r i k r l i ikrπ±
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2 – Calculate the Green function of: 2 2/ ()H p V rμ= +
with outgoing and ingoing asymptotic behavior

( ) ( ) ( ) 2 2 2()
, /E H G r r r r E kδ μ± ′ ′− = − =
G G G G =

- Show that:
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where r> (r<) is the largest (smallest) of r and r’
- Introducing the Heaviside function:
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(A.8) can also be written:
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3 – Calculate the asymptotic behavior of these Green functions
and demonstrate Equation (2.39) of Lecture 2

(A.7)

(A.8)

(A.9)

(A.10)
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Wronskian Theorem
The calculations presented in this Appendix use the Wronskian
theorem (see demonstration in Ref.2 Chapter III-8)
- Consider the 1D second order differential equation:

0()()()y r F r y r′′ + =
Equation (A.4) is of this type with:
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- Let and be 2 solutions of this equation corresponding to
  2 different functions and respectively.
  The wronskian of and y is by definition:
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1 2 1 2 2 1(,) ()() ()()W y y y r y r y r y r′ ′= −

- One can show that:
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(A.11)

(A.12)

(A.13)

(A.14)
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Demonstration of (A.1)

We consider 2 different values k1 and k2 of k. According to (A.12):
2 2

1 2 1 2− = −() ()F r F r k k

1 21 2(A.14) then gives the scalar product of and k l k ly u y u= =
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1 20 0If we take because of (A.4)
If we take  very large compared to the range of we can
use the asymptotic behavior (A.5) of and 
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(A.15)

(A.16)

(A.17)

(A.18)
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- When R→∞, the first term of the right side of (A.18) vanishes as a 
distribution, because it is a rapidly oscillating function of k1+k2
(k1 and k2 being both positive k1+k2 cannot vanish)

- The second term becomes important when k1-k2 is close to zero      
(we have then δ1-δ2=0)

- Using:
1 δ
π→∞

=
sin

lim ()
R

R x x
x

we get:
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d π δ

∞
= −∫ ()() ( )k l k lu r u r r k k

- We then have, according to (A.2):
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which demonstrates (A.1).

(A.19)

(A.20)

(A.21)
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Demonstration of (A.8)

Let us apply E-H to the right side of (A.8). Using (A.10) and:
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(A.22)

(A.23)To calculate the second line of (A.23), we use:

(A.24)
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The second order derivative of the second line of (A.23) gives 3 types 
of terms: proportional to and ,  to  and 
to  
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( )2 2

2

- The terms are multiplied by 
which vanishes because  is a solution of (A.3).

   The same argument applies for the terms which are
   multiplied by 
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- The terms  proportional to cancel out( )/r r rδ ′∂ − ∂

( ) ( )

- The only terms  surviving in the second line of (A.23) are 
  those proportional to which gives for this line:
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- We recognize in the bracket of (A.25) the Wronskian of and 
We can thus use (A.14) with  since and correspond 

 to the same value of .

kl kl
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(A.25)

±
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1 2

- Equation (A.14) shows that the Wronskian is independant of when
  We can thus calculate it for very large values of  where we
 know the asymptotic behavior (A.5) and (A.6) of and 

.
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- The calculation of the Wronskian appearing in (A.25) is 
  straightforward using (A.5) and (A.6) and gives:

- Inserting (A.26) into (A.25) and then in (A.23) gives:

( ) ( ) 2

1() *, ( ) (,)(,)lm lm
lm

E H G r r r r Y Y
r

δ θ ϕ θ ϕ± ′ ′ ′ ′− = − ∑G G

(,) exp()kl kl lW u u k iδ+ = − ∓

- We can then use the closure relation for the spherical harmonics
(see Ref. 3, Complement AVI):

*(,)(,)(cos cos)( )lm lm
lm

Y Yθ ϕ θ ϕ δ θ θ δ ϕ ϕ′ ′ ′ ′= − −∑
to obtain:
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which demonstrates (A.8).
(A.29)

(A.26)

(A.27)

(A.28)
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Asymptotic behavior of G+

For r very large, only the first term of the bracket of (A.10) is non zero 
and we get:

( ) 2r lmkrr
2 1 e() *, (,)(,)()()li

lm lm kl klG r r Y Y u r u rδμ θ ϕ θ ϕ+ +′ ′ ′ ′− ∑→∞ ′
G G �

=
According to (A.6), we have
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(A.31) 

(A.32)

On the other hand, from Eq. (1.46) of lecture 1 and (A.2), we have:
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1 2 * ()
() ()exp()()()kll

kn l lm lm
lm

u r r rr i i Y n Y n n n
k r r r

ϕ δ
π

−
′ ′

′ ′ ′= − = =
′ ′∑G

G GG G G G G

Using (A.32), we can rewrite (A.31) as:
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which demonstrates Eq. (2.39) of lecture 2.


