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ionization based particle detectors are robust and 
exquisitely sensitive given suitable current amplification.
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- ionization and detection efficiency depends on electric fields 
inside sensor.  Mechanical changes cause calibration drift...

Top view
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Our implementation: momentum recoil particle detector
- we detect changes of the sensor atom momentum because it’s easy 
to measure
- we use argon gas because we understand the elastic collision 
physics between Ar and alkali atoms

(i.e. rate of sensor atom state changes)
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TRAP-DEPTH DETERMINATION FROM RESIDUAL GAS . . . PHYSICAL REVIEW A 84, 022708 (2011)
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying n j and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σ v  Rb, j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σ v  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = − 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σ v  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σ v  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 E h a6

B
[49,65,66]. The experimental data for trap depths Utrap / kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of

022708-5

Energy Scale (mK) θ minRb,Ar θ minRb,Rb dSlope Imparted Velocity (m/s) Deflection Angle
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying n j and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σ v  Rb, j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σ v  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = − 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σ v  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σ v  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 E h a6

B
[49,65,66]. The experimental data for trap depths Utrap / kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying n j and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σ v  Rb, j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σ v  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = − 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σ v  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σ v  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 E h a6

B
[49,65,66]. The experimental data for trap depths Utrap / kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying n j and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σ v  Rb, j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σ v  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = − 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10 − 8 to 6 × 10 − 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σ v  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σ v  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 E h a6

B
[49,65,66]. The experimental data for trap depths Utrap / kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σv  Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of 〈σv〉Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate 〈σv〉Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (∼2 K) than the MT (filled
circles) where the |F = 1,mF = −1〉 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
〈σv〉Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient, 〈σv〉Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σv  Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of 〈σv〉Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate 〈σv〉Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (∼2 K) than the MT (filled
circles) where the |F = 1,mF = −1〉 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
〈σv〉Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient, 〈σv〉Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σv  Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of 〈σv〉Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate 〈σv〉Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (∼2 K) than the MT (filled
circles) where the |F = 1,mF = −1〉 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
〈σv〉Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient, 〈σv〉Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σv  Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of 〈σv〉Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate 〈σv〉Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (∼2 K) than the MT (filled
circles) where the |F = 1,mF = −1〉 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 × 10−8 to 6 × 10−8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
〈σv〉Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient, 〈σv〉Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σv  Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.

the quadrupole field and the physical size of the vacuum
cell similar to that described in [67]. The magnetic coils
here are external to the vacuum and the experimental cell
(similar to that described in [59]) is square and only 1 cm
wide. Atoms with sufficient energy could move from the
center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
gradients (as well as the effect of gravity), the QMT depth
as limited by the walls is anisotropic. The resulting range
of trap depths is indicated by the horizontal error bars on
the QMT data in Fig. 3. The data for trap depths Utrap/kB >
100 mK were obtained with a MOT operating under different
pump detunings and intensities, and the trap depth was
measured in each case using the photo-association technique
pioneered by Walker’s group [42,52]. The details of this
measurement are described below. The maximum MT depth
that could be achieved in our experiment was limited to 10 mK
set by the maximum field gradient we could produce with our
quadrupole coil pair, while the minimum trap depth we could
work with for the MOT (600 mK) was limited by the signal
to noise of our atom detection scheme. MOT depths as low
as 200 mK have been achieved using large magnetic field
gradients [57].

B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2
transition in 87Rb) by an amount ". Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h" above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h"

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h" & 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − #N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC
is defined by V (rC) = h". The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ "−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/"2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h" = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of
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FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.

the quadrupole field and the physical size of the vacuum
cell similar to that described in [67]. The magnetic coils
here are external to the vacuum and the experimental cell
(similar to that described in [59]) is square and only 1 cm
wide. Atoms with sufficient energy could move from the
center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
gradients (as well as the effect of gravity), the QMT depth
as limited by the walls is anisotropic. The resulting range
of trap depths is indicated by the horizontal error bars on
the QMT data in Fig. 3. The data for trap depths Utrap/kB >
100 mK were obtained with a MOT operating under different
pump detunings and intensities, and the trap depth was
measured in each case using the photo-association technique
pioneered by Walker’s group [42,52]. The details of this
measurement are described below. The maximum MT depth
that could be achieved in our experiment was limited to 10 mK
set by the maximum field gradient we could produce with our
quadrupole coil pair, while the minimum trap depth we could
work with for the MOT (600 mK) was limited by the signal
to noise of our atom detection scheme. MOT depths as low
as 200 mK have been achieved using large magnetic field
gradients [57].

B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2
transition in 87Rb) by an amount ". Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h" above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h"

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h" & 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − #N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC
is defined by V (rC) = h". The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ "−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/"2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h" = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of
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FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.
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center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
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B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2
transition in 87Rb) by an amount ". Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h" above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h"

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h" & 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − #N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC
is defined by V (rC) = h". The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ "−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/"2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h" = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of
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This behavior can be understood in the following way: Half of the total collision

cross section arises from classical scattering while the other half arises from

quantum diffractive collisions [?], and the natural energy scale for diffractive

collisions is

�d =
4πh̄2

Maσ
(16)

where Ma is the trapped atom mass and σ is the total collision cross section

[?]. For Ar–Rb collisions, this energy scale is 10 mK and a trap of this depth

would exhibit roughly half the loss rate of a trap of zero depth. The computed

loss rate slope at 10 mK is �σRb,Ar vAr� = 1.27 × 10
−9

cm
3
s
−1

, almost exactly

half the zero trap depth loss rate slope of 2.43× 10
−9

cm
3
s
−1

. For trap depths

below 0.01 �d, the loss rate differs from the zero trap depth rate by less than

1%. The conclusion is that by using a very shallow magnetic or optical dipole

trap, whose depth can be easily characterized and made small compared to �d,

the total loss rate will be the total collision rate. We note that the variation of

the loss rates within the range of experimentally accessible trap depths provides

a means to map out the differential cross section from the diffractive regime to

the classical small angle regime. Measurements of this sort will be the subject

of future work.

3 Conclusions

In summary, the use of trapped, laser cooled rubidium atoms to measure the

cross section for
87

Rb–
40

Ar collisions is investigated. Trap loss rates produced by

background collisions as a function of trap depth at 1 K and below 10 mK using

a magneto-optic and a quadrupole magnetic trap are studied. The retention

of atoms due to a finite trap depth (i.e. larger than the quantum diffractive

collision energy scale) is found to significantly reduce the measured loss rate

in comparison with the total collision rate. Using model interaction potentials,

the experimentally measured loss rates at various trap depths are found to be

consistent with the known long range C6 coefficient. These results highlight the

importance of minimizing the trap depth when attempting to infer the total

collision cross section from measurements of atom trap loss rates. Finally, this

analysis could be used to accurately compute heating rates in trap magnetic

traps providing a complementary approach to analytic methods [?, ?, ?, ?].
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Figure 1.12: Two scattering processes leading to the same final state for indistinguish-
able particles.

Figure 1.13: The potential entering the 1D Schrödinger equation. a) s-wave scattering
b) p-wave scattering, a centrifugal term is added to the interatomic interaction and leads
to a centrifugal barrier with height Ec.

also be understood in the particle picture. Angular momentum for very slow atoms
requires a large distance between the two atoms even at their closest point to each
other (since

−→
L = −→p × −→r ). But at large distances the interatomic potential is weak

and does not scatter. Only isotropic s-wave scattering is possible at low energies. It
can be described by a single quantity, the s-wave scattering length a. The cross section
can be written as

lim
k→0

σl=0(k) = 4πa2 (distinguishable particles) , (1.80)

where the scattering length is defined as

a = − lim
k→0

tan δ0(k)

k
. (1.81)

It can be shown that the cross sections for scattering with angular momentum go to 0
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Scattering and trap loss
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Scattering and trap loss

conservation of energy and momentum gives

Consider a trapped atom of velocity �va and mass Ma and a background
particle of velocity �vb and mass Mb. The initial relative velocity is �vr = �va −
�vb, and momentum conservation requires that the change in these velocities is
related by −Ma∆�va = Mb∆�vb and ∆�va = µ

Ma
∆�vr, where the reduced mass is

µ = MaMb
Ma+Mb

. In addition, energy conservation requires that for elastic collisions
|∆�vr|2 = 2|�vr|2(1 − cos θ), where θ is the collision angle between the initial
(�vr) and final (�vr

�) relative velocities. After the collision, the trapped atom
kinetic energy will have changed by an amount ∆E = Ma

2

�
(�va + ∆�va)2 − �v2

a

�
=

Ma
2

�
2�va · ∆�va + |∆�va|2

�
. If this change in kinetic energy exceeds the trap depth

U0, loss will occur. In the limit that the trapped particle has a negligible initial
kinetic energy (i.e. �va � ∆�va), we have that ∆E � Ma

2 |∆�va|2 and

∆E � µ2

Ma
|�vr|2(1− cos θ). (1)

Therefore, if the collision angle exceeds the minimum angle

θmin = arccos
�

1− MaU0

µ2|�vr|2

�
, (2)

then trap loss will occur. The rate at which background particles are scattered
from a single trapped atom into a solid angle dΩ is nb|�vr|(dσ/dΩ)dΩ, where nb

is the density of background particles and (dσ/dΩ) is the differential scattering
cross section. Given this, we can estimate the loss rate from a trap of depth U0

as
γloss = nbvprobσloss = nbvprob

� π

θmin(vprob)
(dσ/dΩ)dΩ. (3)

where the relative collision velocity is assumed to be determined by the most
probable velocity for the background particles, |�vr| = vprob. This loss rate is
always smaller than the estimated total collision rate, γC = nbvprobσ, since
θmin > 0. The differential cross section is related to the quantum mechanical
scattering amplitude, dσ/dΩ = |f(k, θ)|2, and depends explicitly on the collision
wave vector, k = µ|�vr|/h̄ = 2π/λdeBroglie. It is assumed that the interaction
potential is central and therefore there is no azimuthal angular dependence.
For a beam of incident scattering particles with wave vector k, the cross section
for loss inducing collisions from a trap of depth U0 is

σloss(k) =
� π

θmin(h̄k/µ)
2π sin θ|f(k, θ)|2dθ. (4)

This expression is equivalent to the total cross section measured by a molecular
beam apparatus with finite angular resolution limited to θmin [?].

To compute the loss rate induced by collisions with a background gas at
temperature T , we need to average over the Maxwell-Boltzman distribution
of incident collision wave vectors. Assuming the trapped atom is essentially
stationary, we have that �vr � �vb and we can compute the velocity averaged loss

1

elastic collisions
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of incident collision wave vectors. Assuming the trapped atom is essentially
stationary, we have that �vr � �vb and we can compute the velocity averaged loss

1
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Figure 1.12: Two scattering processes leading to the same final state for indistinguish-
able particles.

Figure 1.13: The potential entering the 1D Schrödinger equation. a) s-wave scattering
b) p-wave scattering, a centrifugal term is added to the interatomic interaction and leads
to a centrifugal barrier with height Ec.

also be understood in the particle picture. Angular momentum for very slow atoms
requires a large distance between the two atoms even at their closest point to each
other (since

−→
L = −→p × −→r ). But at large distances the interatomic potential is weak

and does not scatter. Only isotropic s-wave scattering is possible at low energies. It
can be described by a single quantity, the s-wave scattering length a. The cross section
can be written as

lim
k→0

σl=0(k) = 4πa2 (distinguishable particles) , (1.80)

where the scattering length is defined as

a = − lim
k→0

tan δ0(k)

k
. (1.81)

It can be shown that the cross sections for scattering with angular momentum go to 0
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!vr

′

∆!vr

a

a

b

b
θ θ

∆!vr

center of mass frame

atom “a” is lost from trap if ∆E > U0

θ > θmin

Scattering and trap loss

conservation of energy and momentum gives

Consider a trapped atom of velocity �va and mass Ma and a background
particle of velocity �vb and mass Mb. The initial relative velocity is �vr = �va −
�vb, and momentum conservation requires that the change in these velocities is
related by −Ma∆�va = Mb∆�vb and ∆�va = µ

Ma
∆�vr, where the reduced mass is

µ = MaMb
Ma+Mb

. In addition, energy conservation requires that for elastic collisions
|∆�vr|2 = 2|�vr|2(1 − cos θ), where θ is the collision angle between the initial
(�vr) and final (�vr

�) relative velocities. After the collision, the trapped atom
kinetic energy will have changed by an amount ∆E = Ma

2

�
(�va + ∆�va)2 − �v2

a

�
=

Ma
2

�
2�va · ∆�va + |∆�va|2

�
. If this change in kinetic energy exceeds the trap depth

U0, loss will occur. In the limit that the trapped particle has a negligible initial
kinetic energy (i.e. �va � ∆�va), we have that ∆E � Ma

2 |∆�va|2 and

∆E � µ2

Ma
|�vr|2(1− cos θ). (1)

Therefore, if the collision angle exceeds the minimum angle

θmin = arccos
�

1− MaU0

µ2|�vr|2

�
, (2)

then trap loss will occur. The rate at which background particles are scattered
from a single trapped atom into a solid angle dΩ is nb|�vr|(dσ/dΩ)dΩ, where nb

is the density of background particles and (dσ/dΩ) is the differential scattering
cross section. Given this, we can estimate the loss rate from a trap of depth U0

as
γloss = nbvprobσloss = nbvprob

� π

θmin(vprob)
(dσ/dΩ)dΩ. (3)

where the relative collision velocity is assumed to be determined by the most
probable velocity for the background particles, |�vr| = vprob. This loss rate is
always smaller than the estimated total collision rate, γC = nbvprobσ, since
θmin > 0. The differential cross section is related to the quantum mechanical
scattering amplitude, dσ/dΩ = |f(k, θ)|2, and depends explicitly on the collision
wave vector, k = µ|�vr|/h̄ = 2π/λdeBroglie. It is assumed that the interaction
potential is central and therefore there is no azimuthal angular dependence.
For a beam of incident scattering particles with wave vector k, the cross section
for loss inducing collisions from a trap of depth U0 is

σloss(k) =
� π

θmin(h̄k/µ)
2π sin θ|f(k, θ)|2dθ. (4)

This expression is equivalent to the total cross section measured by a molecular
beam apparatus with finite angular resolution limited to θmin [?].

To compute the loss rate induced by collisions with a background gas at
temperature T , we need to average over the Maxwell-Boltzman distribution
of incident collision wave vectors. Assuming the trapped atom is essentially
stationary, we have that �vr � �vb and we can compute the velocity averaged loss

1
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Written in the {x̂, ŷ} basis, the RCP and LCP vectors are |RCP� = 1√
2
(x̂− iŷ) and |LCP� = 1√

2
(x̂ + iŷ).

We can therefore write x̂ and ŷ in terms of |RCP� and |LCP�: x̂ = 1√
2
(|RCP�+ |LCP�) and ŷ = 1

−
√

2i
(|RCP� − |LCP�).

We use this to write the normalized Jones vector before the polarizer in terms of |RCP� and |LCP�: |Before� = 1√
2
(x̂ + ŷ) =

1√
2
( 1√

2
(|RCP�+ |LCP�) + 1

−
√

2i
(|RCP� − |LCP�) = 1

2 (|RCP�+ i|RCP�+ |LCP� − i|LCP� = 1+i
2 |RCP�+ 1−i

2 |LCP�.

Likewise, we can write the Jones vector after the polarizer in this way also: |After� = x̂ = 1√
2
(|RCP�+ |LCP�)

So the new Jones vectors written in both the {x̂, ŷ} and |RCP� and |LCP� basis set are:

(3) |Before� .=
1√
2

�
1
1

�

{x̂,ŷ}

.=
1√
2

�
1 + i
1− i

�

{|RCP�,|LCP�}
1
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Written in the {x̂, ŷ} basis, the RCP and LCP vectors are |RCP� =
1√
2
(x̂− iŷ) and |LCP� =

1√
2
(x̂ + iŷ).

We can therefore write x̂ and ŷ in terms of |RCP� and |LCP�: x̂ =
1√
2
(|RCP�+ |LCP�) and ŷ =

1
−
√

2i
(|RCP� − |LCP�).

We use this to write the normalized Jones vector before the polarizer in terms of |RCP� and |LCP�: |Before� =
1√
2
(x̂ + ŷ) =

1√
2
(

1√
2
(|RCP�+ |LCP�) +

1
−
√

2i
(|RCP� − |LCP�) =

1
2 (|RCP�+ i|RCP�+ |LCP� − i|LCP� =

1+i
2 |RCP�+

1−i
2 |LCP�.

Likewise, we can write the Jones vector after the polarizer in this way also: |After� = x̂ =
1√
2
(|RCP�+ |LCP�)

So the new Jones vectors written in both the {x̂, ŷ} and |RCP� and |LCP� basis set are:

(1) |Before� .
=

1√
2

�
1

1

�

{x̂,ŷ}

.
=

1√
2

�
1 + i

1− i

�

{|RCP�,|LCP�}

(2) |After� .
=

�
1

0

�

{x̂,ŷ}

.
=

1√
2

�
1

1

�

{|RCP�,|LCP�}

Now, the easiest way to construct the Jones matrix for the polarizer is to notice that the polarizer is a projection operator

along the x̂ axis. We’ve seen this before, but let’s write this as Opol = |x̂��x̂|. This is an ”outer product” and we construct

the matrix by doing a matrix multiplication between the two Jones vectors corresponding to |x̂� and �x̂|. The only thing we

haven’t covered in class is that the second vector, �x̂|, is represented by the Jones vector transposed and complex conjugated.

That is

(3) |x̂� .
=

�
1

0

�

{x̂,ŷ}
, �x̂| .

=
�

1 0
�
{x̂,ŷ}

So that when we take the outer product, we do the matrix multiplication and get the Jones matrix for the polarizer

(4) |x̂��x̂| .
=

�
1

0

�
×

�
1 0

�
=

�
1 0

0 0

�

{x̂,ŷ}

Okay, simple enough, so let’s do the same but now using the {|RCP�, |LCP�} basis

(5) |x̂� .
=

1√
2

�
1

1

�

{|RCP�,|LCP�}
, �x̂| .

=
1√
2

�
1 1

�
{|RCP�,|LCP�}

So again we take the outer product to get the Jones matrix for the polarizer but now in the new basis:

(6) |x̂��x̂| .
=

1√
2

�
1

1

�
× 1√

2

�
1 1

�
=

1

2

�
1 1

1 1

�

{|RCP�,|LCP�}

Check that this matrix does what it should to the fields!
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Likewise, we can write the Jones vector after the polarizer in this way also: |After� = x̂ = 1√
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So the new Jones vectors written in both the {x̂, ŷ} and |RCP� and |LCP� basis set are:
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We can therefore write x̂ and ŷ in terms of |RCP� and |LCP�: x̂ = 1√
2
(|RCP�+ |LCP�) and ŷ = 1
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.=
1√
2

�
1
1

�

{|RCP�,|LCP�}

Now, the easiest way to construct the Jones matrix for the polarizer is to notice that the polarizer is a projection operator
along the x̂ axis. We’ve seen this before, but let’s write this as Opol = |x̂��x̂|. This is an ”outer product” and we construct
the matrix by doing a matrix multiplication between the two Jones vectors corresponding to |x̂� and �x̂|. The only thing we

1

0

π

(1)
�
|f(k, θ)|2

�
k

�
Å
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1√
2
( 1√

2
(|RCP�+ |LCP�) + 1

−
√

2i
(|RCP� − |LCP�) = 1

2 (|RCP�+ i|RCP�+ |LCP� − i|LCP� = 1+i
2 |RCP�+ 1−i

2 |LCP�.

Likewise, we can write the Jones vector after the polarizer in this way also: |After� = x̂ = 1√
2
(|RCP�+ |LCP�)

So the new Jones vectors written in both the {x̂, ŷ} and |RCP� and |LCP� basis set are:
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1√
2
( 1√

2
(|RCP�+ |LCP�) + 1

−
√

2i
(|RCP� − |LCP�) = 1

2 (|RCP�+ i|RCP�+ |LCP� − i|LCP� = 1+i
2 |RCP�+ 1−i

2 |LCP�.

Likewise, we can write the Jones vector after the polarizer in this way also: |After� = x̂ = 1√
2
(|RCP�+ |LCP�)

So the new Jones vectors written in both the {x̂, ŷ} and |RCP� and |LCP� basis set are:
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(1) |Before� .=
1√
2

�
1
1

�

{x̂,ŷ}
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Å

2
/radians

�

101

102

103

104

105

106

log |f(k, θ)|2

R

fC

fA

∆ = fC − fA

VRb,Rb

VRb,Rb∗

Rb+Rb∗

Rb+Rb
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.=
1√
2

�
1 + i

1− i

�

{|RCP�,|LCP�}

(3) |After� .=
�

1
0

�

{x̂,ŷ}
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Å

2
/radians

�

101

102

103

104

105

106

log |f(k, θ)|2

R

fC

fA

∆ = fC − fA

VRb,Rb

VRb,Rb∗

Rb+Rb∗

Rb+Rb
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We can therefore write x̂ and ŷ in terms of |RCP� and |LCP�: x̂ = 1√
2
(|RCP�+ |LCP�) and ŷ = 1
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1√
2
( 1√

2
(|RCP�+ |LCP�) + 1

−
√

2i
(|RCP� − |LCP�) = 1

2 (|RCP�+ i|RCP�+ |LCP� − i|LCP� = 1+i
2 |RCP�+ 1−i

2 |LCP�.

Likewise, we can write the Jones vector after the polarizer in this way also: |After� = x̂ = 1√
2
(|RCP�+ |LCP�)

So the new Jones vectors written in both the {x̂, ŷ} and |RCP� and |LCP� basis set are:
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.=
1√
2

�
1 + i

1− i

�

{|RCP�,|LCP�}

(2) |After� .=
�

1
0

�

{x̂,ŷ}
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Consider a trapped atom of velocity �va and mass Ma and a background
particle of velocity �vb and mass Mb. The initial relative velocity is �vr = �va −
�vb, and momentum conservation requires that the change in these velocities is
related by −Ma∆�va = Mb∆�vb and ∆�va = µ

Ma
∆�vr, where the reduced mass is

µ = MaMb
Ma+Mb

. In addition, energy conservation requires that for elastic collisions
|∆�vr|2 = 2|�vr|2(1 − cos θ), where θ is the collision angle between the initial
(�vr) and final (�vr

�) relative velocities. After the collision, the trapped atom
kinetic energy will have changed by an amount ∆E = Ma

2

�
(�va + ∆�va)2 − �v2

a

�
=

Ma
2

�
2�va · ∆�va + |∆�va|2

�
. If this change in kinetic energy exceeds the trap depth

U0, loss will occur. In the limit that the trapped particle has a negligible initial
kinetic energy (i.e. �va � ∆�va), we have that ∆E � Ma

2 |∆�va|2 and

∆E � µ2

Ma
|�vr|2(1− cos θ). (1)

Therefore, if the collision angle exceeds the minimum angle

θmin = arccos
�

1− MaU0

µ2|�vr|2

�
, (2)

then trap loss will occur. The rate at which background particles are scattered
from a single trapped atom into a solid angle dΩ is nb|�vr|(dσ/dΩ)dΩ, where nb

is the density of background particles and (dσ/dΩ) is the differential scattering
cross section. Given this, we can estimate the loss rate from a trap of depth U0

as
γloss = nbvprobσloss = nbvprob

� π

θmin(vprob)
(dσ/dΩ)dΩ. (3)

where the relative collision velocity is assumed to be determined by the most
probable velocity for the background particles, |�vr| = vprob. This loss rate is
always smaller than the estimated total collision rate, γC = nbvprobσ, since
θmin > 0. The differential cross section is related to the quantum mechanical
scattering amplitude, dσ/dΩ = |f(k, θ)|2, and depends explicitly on the collision
wave vector, k = µ|�vr|/h̄ = 2π/λdeBroglie. It is assumed that the interaction
potential is central and therefore there is no azimuthal angular dependence.
For a beam of incident scattering particles with wave vector k, the cross section
for loss inducing collisions from a trap of depth U0 is

σloss(k) =
� π

θmin(h̄k/µ)
2π sin θ|f(k, θ)|2dθ. (4)

This expression is equivalent to the total cross section measured by a molecular
beam apparatus with finite angular resolution limited to θmin [?].

To compute the loss rate induced by collisions with a background gas at
temperature T , we need to average over the Maxwell-Boltzman distribution
of incident collision wave vectors. Assuming the trapped atom is essentially
stationary, we have that �vr � �vb and we can compute the velocity averaged loss

1
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Now, the easiest way to construct the Jones matrix for the polarizer is to notice that the polarizer is a projection operator
along the x̂ axis. We’ve seen this before, but let’s write this as Opol = |x̂��x̂|. This is an ”outer product” and we construct
the matrix by doing a matrix multiplication between the two Jones vectors corresponding to |x̂� and �x̂|. The only thing we
haven’t covered in class is that the second vector, �x̂|, is represented by the Jones vector transposed and complex conjugated.
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−
√

2i
(|RCP� − |LCP�).

We use this to write the normalized Jones vector before the polarizer in terms of |RCP� and |LCP�: |Before� = 1√
2
(x̂ + ŷ) =
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(2) |Before� .=
1√
2

�
1
1

�

{x̂,ŷ}
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FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.

the quadrupole field and the physical size of the vacuum
cell similar to that described in [67]. The magnetic coils
here are external to the vacuum and the experimental cell
(similar to that described in [59]) is square and only 1 cm
wide. Atoms with sufficient energy could move from the
center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
gradients (as well as the effect of gravity), the QMT depth
as limited by the walls is anisotropic. The resulting range
of trap depths is indicated by the horizontal error bars on
the QMT data in Fig. 3. The data for trap depths Utrap/kB >
100 mK were obtained with a MOT operating under different
pump detunings and intensities, and the trap depth was
measured in each case using the photo-association technique
pioneered by Walker’s group [42,52]. The details of this
measurement are described below. The maximum MT depth
that could be achieved in our experiment was limited to 10 mK
set by the maximum field gradient we could produce with our
quadrupole coil pair, while the minimum trap depth we could
work with for the MOT (600 mK) was limited by the signal
to noise of our atom detection scheme. MOT depths as low
as 200 mK have been achieved using large magnetic field
gradients [57].

B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2
transition in 87Rb) by an amount ". Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h" above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h"

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h" & 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − #N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC
is defined by V (rC) = h". The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ "−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/"2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h" = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of
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FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.

the quadrupole field and the physical size of the vacuum
cell similar to that described in [67]. The magnetic coils
here are external to the vacuum and the experimental cell
(similar to that described in [59]) is square and only 1 cm
wide. Atoms with sufficient energy could move from the
center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
gradients (as well as the effect of gravity), the QMT depth
as limited by the walls is anisotropic. The resulting range
of trap depths is indicated by the horizontal error bars on
the QMT data in Fig. 3. The data for trap depths Utrap/kB >
100 mK were obtained with a MOT operating under different
pump detunings and intensities, and the trap depth was
measured in each case using the photo-association technique
pioneered by Walker’s group [42,52]. The details of this
measurement are described below. The maximum MT depth
that could be achieved in our experiment was limited to 10 mK
set by the maximum field gradient we could produce with our
quadrupole coil pair, while the minimum trap depth we could
work with for the MOT (600 mK) was limited by the signal
to noise of our atom detection scheme. MOT depths as low
as 200 mK have been achieved using large magnetic field
gradients [57].

B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2
transition in 87Rb) by an amount ". Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h" above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h"

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h" & 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − #N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC
is defined by V (rC) = h". The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ "−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/"2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h" = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of

022708-6

Loss cross section vs. trap depth

magnetic
trap

Ar-Rb collisions

Energy Scale (mK) θ minRb,Ar θ minRb,Rb dSlope Imparted Velocity (m/s) Deflection Angle
0.1 0.001243 0.001155 0.138227821 6.663E-07
1 0.003931 0.003651 0.437114751 6.655E-06
10 0.01243 0.01155 1.382278213 6.628E-05
100 0.03931 0.03652 4.371147514 0.0006546
1000 0.1244 0.1155 13.82278213 0.006294

(1) �σtotal v�

(2) �σloss v�

(3) N(t) = N0e
−γt

(4) L̂z =
�
i

∂

∂φ

(5) U = −�µ · �B

(6) U = −�d · �E

|n, l, m�

ψg.s. ∝ e−r/a

ψn,l,m = Rn(r)Y m
l (θ,φ)

(7) 13.6 eV ∼ �2

2mea2

(8) a = 0.529× 10−10 m

|+z,+z�, |+z,−z�, |−z,+z�, |−z,−z�

|+z,+z�

|+z,−z�

|−z,+z�

|−z,−z�

(9) |+z�1 ⊗ |−z�2 = |+z,−z�

(10) |x1, x2�

(11) E1 = − m

2�2

�
e2

4π�0

�2

(12) En =
−13.6 eV

n2

1

Energy Scale (mK) θ minRb,Ar θ minRb,Rb dSlope Imparted Velocity (m/s) Deflection Angle
0.1 0.001243 0.001155 0.138227821 6.663E-07
1 0.003931 0.003651 0.437114751 6.655E-06
10 0.01243 0.01155 1.382278213 6.628E-05
100 0.03931 0.03652 4.371147514 0.0006546
1000 0.1244 0.1155 13.82278213 0.006294

(1) �σtotal v�

(2) �σloss v�

(3) N(t) = N0e
−γt

(4) L̂z =
�
i

∂

∂φ

(5) U = −�µ · �B

(6) U = −�d · �E

|n, l, m�

ψg.s. ∝ e−r/a

ψn,l,m = Rn(r)Y m
l (θ,φ)

(7) 13.6 eV ∼ �2

2mea2

(8) a = 0.529× 10−10 m

|+z,+z�, |+z,−z�, |−z,+z�, |−z,−z�

|+z,+z�

|+z,−z�

|−z,+z�

|−z,−z�

(9) |+z�1 ⊗ |−z�2 = |+z,−z�

(10) |x1, x2�

(11) E1 = − m

2�2

�
e2

4π�0

�2

(12) En =
−13.6 eV

n2

1

in a MOT

Phys. Rev. A 80, 022712 (2009)
Phys. Rev. A 84, 022708 (2011)



J. VAN DONGEN et al. PHYSICAL REVIEW A 84, 022708 (2011)

FIG. 3. (Color online) The experimentally measured (squares
and open circles) and theoretically computed (solid circles) loss-rate
constant 〈σv〉Rb,Ar versus trap depth for trapped 87Rb atoms and
room-temperature 40Ar atoms. The line is only a guide for the eye.
The data above 100 mK (squares) were obtained with a MOT while
the data below 10 mK (open circles) were obtained with a quadrupole
magnetic trap and are reproduced from [34]. Due to the difference
in axial and radial magnetic field gradients, the MT depth limited
by the vacuum cell walls is anisotropic. The resulting range of trap
depths is indicated by the horizontal error bars on the MT data.
The MOT depth was experimentally verified using an independent
technique described in the text.

the quadrupole field and the physical size of the vacuum
cell similar to that described in [67]. The magnetic coils
here are external to the vacuum and the experimental cell
(similar to that described in [59]) is square and only 1 cm
wide. Atoms with sufficient energy could move from the
center of the QMT to the cell wall where they would contact
it, thermalize, and thus be lost from the trap. Due to the
factor of two difference in axial and radial magnetic field
gradients (as well as the effect of gravity), the QMT depth
as limited by the walls is anisotropic. The resulting range
of trap depths is indicated by the horizontal error bars on
the QMT data in Fig. 3. The data for trap depths Utrap/kB >
100 mK were obtained with a MOT operating under different
pump detunings and intensities, and the trap depth was
measured in each case using the photo-association technique
pioneered by Walker’s group [42,52]. The details of this
measurement are described below. The maximum MT depth
that could be achieved in our experiment was limited to 10 mK
set by the maximum field gradient we could produce with our
quadrupole coil pair, while the minimum trap depth we could
work with for the MOT (600 mK) was limited by the signal
to noise of our atom detection scheme. MOT depths as low
as 200 mK have been achieved using large magnetic field
gradients [57].

B. MOT depth measurement from photoassociation

As a verification of our proposed technique for mea-
surements of the MOT depth, an independent trap-depth
measurement was performed using the technique described by

Hoffmann et al. [42]. In this scheme, an additional tunable
laser (referred to as a catalysis laser) is focused onto the
MOT. For our experiment the intensity was ∼2 W/cm2. Its
frequency is chosen to be close to but above (typically by a few
GHz) the atomic resonance (in this case, the 5 2S1/2 → 5 2P3/2
transition in 87Rb) by an amount ". Since atoms in the
MOT are predominantly in the upper hyperfine ground state,
the detuning reported here is measured with respect to the
F = 2 → F ′ = 3 transition. When two colliding Rb atoms
within the MOT approach each other, they can resonantly
absorb a photon from the catalysis laser field which excites
them to a dissociative molecular state with an energy of
h" above threshold [68,69]. The molecule then dissociates
in a time much less than the excited-state lifetime, and the
two atoms fly apart with equal and opposite momenta in
the center-of-mass frame, each acquiring a kinetic energy of
Ecl = h"

2 . If this kinetic energy is small compared to the trap
depth, the atoms will remain in the MOT and will be cooled
again. However, when the acquired kinetic energy approaches
the MOT depth (h" & 2Utrap), the atoms will escape with
high probability and trap loss will be observed. Since a MOT
includes both conservative and dissipative forces, the trap
depth of the MOT is defined as the kinetic energy associated
with a particle moving at the escape velocity. The aim of this
technique, therefore, is to determine the trap loss probability
dependence on the energy Ecl.

The population dynamics in the trap including the two-body
inelastic loss induced by the catalysis laser can be modeled as

dN

dt
= R − #N − (β + d · βcl)

∫
n2(r,t)d3r, (20)

where βcl is the loss-rate coefficient for photoassociative
collisions induced by the catalysis laser, and d is the duty
factor of the catalysis laser. Following the treatment given in
Ref. [42], we note that the term βcl ∝ P (Ecl)σcl, where P (Ecl)
is the trap loss probability at energy Ecl and σcl is the cross
section for the photoassociative collision. At low total pump
laser intensity, σcl = πr2

Cf , where rC (the “Condon radius”)
is the interatomic separation at which the laser is resonant
with the energy of the dissociative molecular state. Given
the interaction potential energy above threshold is V (R), rC
is defined by V (rC) = h". The factor f is the excitation
probability and is proportional to the resonant interaction
time. Since the interaction time is inversely proportional to
the slope of the potential dV/dR at rC, we can write σcl ∝
R2(dV/dR)−1|R=rC . In the case of 87Rb-87Rb∗ collisions, the
resonant dipole-dipole interaction is of the form V (R) ∼ R−3,
and so σcl ∝ "−2 [52,70]. We find, therefore, that the loss-rate
coefficient βcl ∝ P (Ecl)/"2 should theoretically remain small
for Ecl < Utrap, exhibit a sharp rise to a maximum when
Ecl = Utrap, and decrease as the detuning is increased beyond
this point. Since the MOT depth may be anisotropic and since
there are two ground states (in the case of 87Rb, separated
by 6.8 GHz) from which the Rb atoms can be excited, the
probability of loss P (Ecl) will not be a perfect step function
equal to 1 when h" = 2Utrap. Nevertheless, we still expect the
peak in the catalysis laser-induced loss rate to occur at or near
the value of the detuning corresponding to the depth of the
trap or, more precisely, the effective escape kinetic energy of
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This behavior can be understood in the following way: Half of the total collision

cross section arises from classical scattering while the other half arises from

quantum diffractive collisions [?], and the natural energy scale for diffractive

collisions is

�d =
4πh̄2

Maσ
(16)

where Ma is the trapped atom mass and σ is the total collision cross section

[?]. For Ar–Rb collisions, this energy scale is 10 mK and a trap of this depth

would exhibit roughly half the loss rate of a trap of zero depth. The computed

loss rate slope at 10 mK is �σRb,Ar vAr� = 1.27 × 10
−9

cm
3
s
−1

, almost exactly

half the zero trap depth loss rate slope of 2.43× 10
−9

cm
3
s
−1

. For trap depths

below 0.01 �d, the loss rate differs from the zero trap depth rate by less than

1%. The conclusion is that by using a very shallow magnetic or optical dipole

trap, whose depth can be easily characterized and made small compared to �d,

the total loss rate will be the total collision rate. We note that the variation of

the loss rates within the range of experimentally accessible trap depths provides

a means to map out the differential cross section from the diffractive regime to

the classical small angle regime. Measurements of this sort will be the subject

of future work.

3 Conclusions

In summary, the use of trapped, laser cooled rubidium atoms to measure the

cross section for
87

Rb–
40

Ar collisions is investigated. Trap loss rates produced by

background collisions as a function of trap depth at 1 K and below 10 mK using

a magneto-optic and a quadrupole magnetic trap are studied. The retention

of atoms due to a finite trap depth (i.e. larger than the quantum diffractive

collision energy scale) is found to significantly reduce the measured loss rate

in comparison with the total collision rate. Using model interaction potentials,

the experimentally measured loss rates at various trap depths are found to be

consistent with the known long range C6 coefficient. These results highlight the

importance of minimizing the trap depth when attempting to infer the total

collision cross section from measurements of atom trap loss rates. Finally, this

analysis could be used to accurately compute heating rates in trap magnetic

traps providing a complementary approach to analytic methods [?, ?, ?, ?].
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Ar-Rb collisions

Energy Scale (mK) θ minRb,Ar θ minRb,Rb dSlope Imparted Velocity (m/s) Deflection Angle
0.1 0.001243 0.001155 0.138227821 6.663E-07
1 0.003931 0.003651 0.437114751 6.655E-06
10 0.01243 0.01155 1.382278213 6.628E-05
100 0.03931 0.03652 4.371147514 0.0006546
1000 0.1244 0.1155 13.82278213 0.006294
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Magnetic trap loss: model
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FIG. 1. (Color online) (a) Normalized 87Rb MOT atom number
as a function of time fit to Eq. (18). (b) Normalized 87Rb atom number
in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).

dependent losses are negligible and Eqs. (18) and (19) are valid
approximations. The loss rate ! is extracted from a numerical
fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
! varies linearly with a slope of  σv  Rb,j , and this dependence
is shown in Fig. 2.

The range of argon gas density explored in Fig. 2 corre-
sponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.
The argon pressure was measured using a residual gas analyzer

FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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in a quadrupole magnetic trap as a function of time fit to the decay
law given in Eq. (19).
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fit of the data to these models. We have implicitly assumed
here that the mean free path for collisions between the particles
ejected from the trap and those that remain trapped is much
larger than the trapped ensemble dimensions so that there are
no secondary losses induced by these collisions. For large,
dense ensembles this assumption may not be valid [64].

To circumvent the need to fully characterize the background
gas composition, we isolate the loss of trapped particles due
only to collisions with a specific species j by varying nj and
measuring the loss rate, !. Argon gas was introduced into the
vacuum envelope through a leak valve attached to a pumping
manifold as described in [34]. The loss rates of rubidium atoms
from the MOT as a function of background argon pressure,
under a variety of different trapping conditions (different
“pump” intensities and detunings) were measured. The loss
rates of atoms from a quadrupole magnetic trap (QMT) with a
calculated depth of 3.14(0.84) mK were also measured at the
same background argon pressures. As expected from Eq. (1),
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is shown in Fig. 2.
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FIG. 2. (Color online) Total loss rate of trapped 87Rb versus room-
temperature argon gas density. The results are fit to a line and the slope
provides the value of the velocity averaged collision rate  σv  Rb,Ar.
The MOT (open squares) exhibits the smallest loss cross section due
to a much larger effective trap depth (  2 K) than the MT (filled
circles) where the |F = 1,mF = ⌧ 1 state was confined with a trap
depth of 3 mK. The vertical error bars, most of which are smaller than
the symbols, represent the statistical uncertainty in the loss rate based
on fits similar to those shown in Fig. 1. The range of argon gas density
here corresponds to a pressure range from 1.8 � 10⌧ 8 to 6 � 10⌧ 8 torr.

(RGA), which is generally subject to calibration drift over time
and to calibration error that may introduce a systematic error
to the measurement. To quantify and correct for systematic
errors in the argon pressure (density) readings of the RGA,
we measured the loss rate from a 3.14 (0.84)-mK-deep
QMT for each of the different argon pressures used in these
measurements. The actual density of argon at the position of
the trap was then found by dividing this measured loss rate
by the calculated loss-rate coefficient for this QMT. The Ar
density as determined by the loss rate in the QMT differed
from the density as measured by the RGA by at most 25%.
This bootstrapping method coupled with collecting the data
for different MOT trapping conditions at the same background
argon pressure ensured that the relative uncertainty in the
measured loss-rate coefficients was low.

The relationship between the collision loss-rate coefficient
 σv  Rb,Ar and the trap depth for elastic collisions between 40Ar
and trapped 87Rb has previously been computed by us [34].
Figure 3 shows a plot of the predicted and experimentally
determined trap depth as a function of the collision loss-
rate coefficient,  σv  Rb,Ar. This figure constitutes the central
result of this paper. As is intuitively clear, the deeper the
trap, the lower the loss-rate coefficient. The trap depth can
be experimentally determined by measuring the loss-rate
coefficient and reading off the corresponding trap-depth
value.

The theoretical prediction (solid line) was calculated using
a Lennard Jones potential between the two species with a
long-range van der Waals coefficient of C6 = 280.0 Eh a6

B
[49,65,66]. The experimental data for trap depths Utrap/kB <
10 mK taken from [34] were obtained with a QMT. The
trap depth of the QMT is obtained from the gradient of
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Some more theoretical details


