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Cold atoms : metrology and standards

stationary
atom

- internal degree of freedom: high Q-resonator
- external degree of freedom: inertial reference
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Cold atoms : metrology and standards

atom interferometers
state-of-the-art intertial sensors

stationary
atom

optical field
provides
reference to
external world

inertial reference
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external mirror
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stationary
atom

incident particle
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particle detector ?



High and Ultra-high vacuum metrology
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High and Ultra-high vacuum metrology

Capacitance ~ 107 Pa ~ 10719 Pa
Manometer
_ HV UHV . XHV
Convection g §
/ Pirani

Spinning Rotor Gauge (SRG)

Hot Cathode lon Gauge (lonization)

Cold Cathode lon Gauge (lonization)

Residual Gas Analyzer (RGA - lonization)

ionization based particle detectors are robust and
exquisitely sensitive given suitable current amplification.
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High and Ultra-high vacuum metrology

What are the limitations of ionization based particle detectors?

ion collector
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Thermal motion of residual gas results in a flux of particles through
sensor grid surface area and into detector



High and Ultra-high vacuum metrology

What are the limitations of ionization based particle detectors?
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- ionization and detection efficiency depends on electric fields
inside sensor. Mechanical changes cause calibration drift...
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what is the evidence of the incident particle’s passage?

. : sensor atom
incident particle flux
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A cold atom based UHYV pressure standard ?

what is the evidence of the incident particle’s passage?

inci i nsor atom
incident particle flux sensor ato

a collision-induced state change of the sensor atom

Internal state:
- state population redistribution
- quantum decoherence (“clock shift”)

External state: momentum recoil
_ momentum recoil particle detector

both require knowing/preparing the sensor atom’s initial state
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incident particle flux density

sensor atom
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incident particle flux density

Cross section
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incident particle flux density

. nuv Cross section
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A cold atom based UHYV pressure standard ?

incident particle flux density

Cross section

collision rate

— NOoV

&
Procedure:

1) Measure the rate of collisions .
(i.e. rate of sensor atom state changes)

2) Solve for incident particle density
fY P measurement of time

(ov)

T, —

this is known



A cold atom based UHYV pressure standard ?

incident particle flux density

Cross section

collision rate

Y = Nov

Procedure: \

1) Measure the rate of collisions .
(i.e. rate of sensor atom state changes)

2) Solve for incident particle density
Y

(ov)

measurement of time

T, —

this is known

unique feature: atoms and their interaction potentials do not change
sensor never ages, and no calibration is necessary



A cold atom based UHYV pressure standard ?

incident particle flux density

Cross section

collision rate

Y = Nov

Procedure: \

1) Measure the rate of collisions .
(i.e. rate of sensor atom state changes)

Our implementation: momentum recoil particle detector
- we detect changes of the sensor atom momentum because it’s easy
to measure

- we use argon gas because we understand the elastic collision
physics between Ar and alkali atoms
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detect particles via loss of sensor atoms

”/:Y = Nov
sensor particle

loss rate

Number of atoms in
sensor ensemble

N(t) — Noe_”t |

time (s) '
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O background vapor composed
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loss rate
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detect particles via loss of sensor atoms

v =) ni(ov);

O background vapor composed
”/y — Nov of multiple species
sensor particle
loss rate

Number of atoms in
sensor ensemble

—~t
o N(t) = Noe™?
To provide long interaction
times, the sensor particles are

held in a trap
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detect particles via loss of sensor atoms

v =) ni(ov);

O background vapor composed
”/y — Nov of multiple species
sensor particle
loss rate

Number of atoms in
sensor ensemble

—yt
o N(t) = Noe™?
To provide long interaction
times, the sensor particles are

held in a trap

CAVEAT: For atoms in a trap,
not every collision results in

sensor particle loss ! — - -
’ time (s)



Proof of principle experiment

- supply line
- «—l|eak valve
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Proof of principle experiment

Y = an O-U — Y0 _|‘nAr<O-U>Ar
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Proof of principle experiment

Signal (arb.units)

Z ni(ovV); = Yo + Nar{OV) Ay
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Proof of principle experiment

E n;{ov)

= Yo + nAr<0”U>Ar

Signal (arb.units)
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= once the offset is known,
a measurement of the loss |
rate uniquely determines
the argon density
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Proof of principle experiment

E n;{ov)

= Yo + nAr<U”U>Ar

Signal (arb.units)

0.4}

Nt

N()G_’yt ,

1.0 1.5 20 25 3.0 35
time (s)

= once the offset is known,
a measurement of the loss |
rate uniquely determines
the argon density

- the slope of the line can |

: also be used to calibrate
| | | Ithe RC?A
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n 1 O CI11 (think of the residual drag of an SRG)
Ar



Proof of principle experiment

7 an ov); = Yo + Nar(0V)Ar
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shallow trap

Signal (arb.units)

A 00,

— 2. 5F o0 05 10 15 20 25 30 35
| ’ time (s)

deep trap

loss rate depends on trap depth
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Loss cross section vs. trap depth

Ar-Rb collisions

magnetic
trap

Phys. Rev.A 80,022712 (2009)
Phys. Rev.A 84,022708 (201 1)
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Ar-Rb collisions
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Loss cross section vs. trap depth

Ar-Rb collisions
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Proof of principle: RGA calibration

slope = .93(+/-0.01)

N
IN

N
N

data at
" large trap depth

7

data at

<o Vv>pap (X107 em?s™)
N
o

each point is a separate calibration comparison

low trap depth ﬁ

large trap depth < low trap depth

Independent calibration data at different trap depths provides consistency check

1.8 2.0 2.2 2.4

<ov>( %10~ em® s )

theoretically computed given the trap depth

measured loss rate slope based on RGA reading

2.6



Next steps: benchmark atom gauge
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The complications of using
loss rates from a MOT



The complications of loss rates from a MOT
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The complications of loss rates from a MOT

7 : — :
26
IUJ ..

5 5 Rb-Rb collisions excited state
3 collisions in
clz 4 the MOT -

-

2 Rb-Rb*
Jl ]

N\

> 2

B

V 4|

10° 10* 10° 10* 10° 10° 10* 10°
U(mK)



Theory of elastic scattering
and trap loss



Scattering and trap loss

stationary
cold atom

© —®

“hot” particle
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Scattering and trap loss

conservation of energy and momentum gives

2
P |:](1 — cos 6).

elastic collisions




Scattering and trap loss

conservation of energy and momentum gives

2
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atom “a”is lost from trap if AE > U
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Scattering and trap loss

conservation of energy and momentum gives

2
" |:](1 — cos 6).

atom “a”is lost from trap if AE > U
0 > Hmin

what is the distribution of scattering angles?



Quantum treatment of scattering

compute the scattering amplitude

/ 1kr
Y

1kz T
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Quantum treatment of scattering

compute the scattering amplitude

/ 1kr
Y

1kz T

Cs  Solve Sch. eqn. and match to asymptotic form

w(r)‘r—m)o — A (eikz 4 f(kje) e"f"")
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Ar-Rb collisions
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Loss cross section vs. trap depth

Ar-Rb collisions
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‘ Models and measurements of trap loss




MOT loading: model

N = Number of ;
atoms in trap N T R

e

load rate



MOT loading: model

N = Number of ;
atoms in trap N — R o /YN

S

load rate single particle loss rate
rate of loss inducing collisions



MOT loading: model

T

N=Naberof N = R —yN — 3(n)N2...

A \

load rate single particle loss rate
rate of loss inducing collisions

2-body collisions produce density
dependent loss term



MOT loading: model
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load rate single particle loss rate N(t) —
rate of loss inducing collisions

e ;




Magnetic trap loss: model

N = Number of
atoms in trap

N :X— Y\N — ﬁ(}i@\ﬂ

single particle loss rate N(t) —

rate of loss inducing collisions




Magnetic trap loss: model

N = Number of
atoms in trap

N :X— Y\N — ﬁ(}i@\ﬂ

single particle loss rate N(t) —

rate of loss inducing collisions




Signal (arb. units)
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Single particle loss rates

Y = No V (related to collision rate)

MOT
filling

Y

Signal (arb.units)
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magnetic trap loss
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Some more theoretical details



