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Li+Rb mixtures



~ 4.7 Debye

RbLi is a polar molecule

Long term goal: production of dense, 
ultracold ensembles of polar molecules



Additional features not available with 
atoms:!

Rich internal structure:
- rotational, vibrational

Dipolar interactions: 
- large and long range 
- angular dependence (anisotropic)

19

Figure 2.1: Schematic energy level structure of a molecule. The vibrational and ro-
tational structure is drawn in the internuclear (Morse) potential for a ground (X) and
excited (A) electronic state. Labels to the right of the potential curves are the rotational
quantum number, R.
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Dipolar interactions - how strong?

Inter-particle interactions between RbLi dimers (4.7 Debye)*
~1000x larger than mean field interaction in a BEC
~10,000x larger than magnetic dipolar interactions in Cr

* fully polarized
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• 2002, Quantum logic gates [DeMille]
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We propose a novel physical realization of a quantum computer. The qubits are electric dipole mo-
ments of ultracold diatomic molecules, oriented along or against an external electric field. Individual
molecules are held in a 1D trap array, with an electric field gradient allowing spectroscopic addressing of
each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those
already demonstrated, this design can plausibly lead to a quantum computer with *104 qubits, which
can perform !105 CNOT gates in the anticipated decoherence time of !5 s.

DOI: 10.1103/PhysRevLett.88.067901 PACS numbers: 03.67.Lx, 33.55.Be, 33.80.Ps

It was recently shown that a computer based on quan-
tum mechanical systems can perform certain calculations
with exponentially fewer steps than would be necessary on
a classical computer, and moreover that such calculations
can in principle be stabilized with efficient error correction
methods [1]. These breakthroughs have led to great inter-
est in the possibility to actually build such a quantum com-
puter (QC). However, there is still no widely agreed-upon,
clearly viable route to constructing a QC of scale large
enough to outperform existing classical computers on sig-
nificant computational tasks [2].

Motivated by this problem, we describe a new technical
approach to the design of a QC. The basic architecture is
shown in Fig. 1. The qubits consist of the electric dipole
moments (EDMs) of diatomic molecules, oriented along
or against an external electric field. Bits are coupled by
the electric dipole-dipole interaction. Individual molecules
are held in a 1D trap array, with an electric field gradient
allowing spectroscopic addressing of each site. Loading
with ultracold molecules makes it possible to use a weak
trapping potential, which should allow long decoherence
times for the system. This design bears various features in
common with other recent proposals which employ EDM
couplings [3–5]. However, our design has very favorable
technical parameters, and seems to require only reasonable
extensions of demonstrated techniques in order to build a
QC of unprecedented size.

We describe the molecular qubits as EDMs oriented
along (j0") or against (j1") an external electric field ( !Eext).
(This model reproduces the exact behavior well in a cer-
tain regime.) Lattice sites are equally spaced in the x di-
rection and each contains one molecule, prepared initially
in its ground state j0". The external field is perpendicu-
lar to the trap axis and consists of a constant bias field
plus a linear gradient: !Eext#x$ " %E0 1 x#≠E&≠x$'ẑ. The
Hamiltonian for bit a at position xa is H 0

a " H0 2 !da ?
!Ea, where H0 is the internal energy of a bit, !da is the
electric dipole moment of bit a, and !Ea " !Eext#xa$ 1
!Eint#xa$ is the total electric field at xa. The internal field
!Eint is created by the electric dipole moments of neighbor-

ing bits: !Eint#xa$ "
P

bfia
2 !db

jxa2xb j3 . For reasonable operat-
ing parameters, Eext ¿ Eint.

The scheme for gate operations is as outlined for the
EDMs of quantum dots in Ref. [3]. Transitions between
qubit states can be driven by electric resonance, either
directly in the microwave region or indirectly by an
optical stimulated Raman process. Resonant drive pulses
are tuned to frequency na " n0 1 deffEa&h, where hn0
is the difference in internal energies between states j0"
and j1" in zero field; the effective dipole moment deff "
j !dj0" 2 !dj1"j, where !dj0" #j1"$ is the EDM in state j0"#j1"$;
and h is Planck’s constant. Pulses of sufficient temporal
length to resolve the energy splitting due to Eint can be
used for CNOT gates; shorter pulses suffice for one-bit
rotations. The coupling between bits cannot be switched
off locally, and non-nearest-neighbor interactions are not
negligible. However, these effects can be effectively
eliminated [6] by a “refocusing” procedure similar to
that used to control couplings of identical form in NMR
quantum computation [7]. Note that, unlike recent pro-
posals for quantum logic gates using ultracold atoms, our
technique requires neither mechanical motion [4,8] nor
coupling to short-lived excited states [4,9].

The efficient creation of ultracold diatomic molecules
by photoassociation of laser cooled atoms was recently
demonstrated [10–13]. Electronically excited neutral
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FIG. 1. Schematic depiction of the polar molecule quantum
computer. Qubit states correspond to electric dipole moments
up or down relative to the applied E-field.
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• 2006 Exotic many body quantum mechanics [Micheli, Brennen, Zoller]
       with polar molecules in an optical lattice dressed with a microwave field, you can realize just about any
       spin lattice model :1D xyz, 2D Ising, 3D Heisenberg, Kitaev model*, etc...

• 2005, Ultracold chemistry - exotic few body QM [Krems]
        “Inelastic collisions and chemical reactions of cold molecules in external fields”

• 2004, Quo vadis, cold molecules? [Doyle, Friedrich, Krems, Masnou-Seeuws]
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        “Inelastic collisions and chemical reactions of cold molecules in external fields”

for this, you need paramagnetic, polar molecules !

• 2004, Quo vadis, cold molecules? [Doyle, Friedrich, Krems, Masnou-Seeuws]
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms

Quantum degenerate polar molecules 
from cold atoms: state of the art

2004 Proposal: Efficient conversion of ultracold Feshbach-resonance-related 
polar molecules into ultracold ground state molecules [Stwalley], 
Eur. Phys. J. D 31, 221–225 (2004)

• 2008, Ultracold dense gas of deeply bound heteronuclear 
molecules [Jin, Ye]  (KRb)
• 2010, Dipolar collisions of polar molecules
• 2012, Long-Lived Dipolar Molecules in a 3D Optical Lattice

Nature Phys. 4, 622 (2008)
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• 2010, Dipolar collisions of polar molecules
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Limitations of KRb ?

solution: other alkali mixtures are chemically stable
NaK, NaRb, NaCs, KCs, RbCs (endoergic - stable)
LiNa, LiK, LiRb, LiCs and KRb (exoergic - unstable)

solution : ultra-cold paramagnetic polar molecules made from 
alkaline-earth or rare earth + alkali atoms : SrLi, YbLi

• chemically reactive

• Zero spin

5010 Igel-Mann et al. : Ground-state properties of alkali dimers 

valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
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lower levels, where the thermal dissociation can be turned
off by ultracold temperatures [2,32]. More recently, at-
tention has also focused on “the BEC-BCS Crossover”,
where “Cooper pairs” of resonant unbound Fermi atoms
undergo BEC [33–35] and give rise to superfluidity [36].
Very recently, an optically tuned Feshbach resonance in
87Rb2 has also been observed [37], as proposed in [38] and
further discussed in [39,40].

Thus there is great excitement and rapid progress
in producing Feshbach-resonance-related ultracold alkali
dimer molecules, particularly 6Li2 and 40K2. However, the
conversion of these molecules to X 1Σ+

g v = 0, J = 0
molecules and a “stable” molecule BEC is not straight-
forward. Ignoring hyperfine, a stimulated Raman process
would not work efficiently to convert a predominantly
triplet ungerade Feshbach-resonance-related state into a
singlet gerade ground state. The hyperfine terms in the
Hamiltonian do mix u and g symmetries and would al-
low some conversion, but the Franck-Condon factors for
X 1Σ+

g (vmax) → A 1Σ+
u (various v) → X 1Σ+

g (v = 0)
are quite small. Nevertheless, weak transitions to pri-
marily triplet levels very near dissociation have been ob-
served [41]; thus a stimulated Raman (e.g. STIRAP [42])
conversion of such levels to X 1Σ+

g (v = 0, J = 0) remains
a challenging possibility. Moreover, there is a large poten-
tial barrier if the B 1Πu state replaces the A 1Σ+

u state
as the intermediate state. There are similar problems for
other higher energy 1Σ+

u and 1Πu states as well.

2 Heteronuclear alkali dimers

The progress on photoassociation [43], formation of ul-
tracold molecules [1,44], determination of Feshbach reso-
nances, etc. for heteronuclear alkali dimer molecules is well
behind that for homonuclear alkali dimer molecules. Ul-
tracold polar alkali dimer molecules have been observed
for NaCs+ [45], RbCs [46,47], and KRb [48–50]. Pho-
toassociative spectra have only been recently observed for
RbCs [51] and KRb [49,50]. However, accurate ab initio
calculations and limited molecular spectra are available
for all polar alkali dimers (excluding those containing Fr).
The non-polar 6Li7Li molecule has also been observed by
photoassociation [52]. Very recently Feshbach resonances
have been experimentally observed for LiNa [53] and
KRb [54], opening the way for copious production of near-
dissociation levels of heteronuclear polar molecules and
formation of quantum degenerate gases of such molecules.
What we wish to emphasize here is that we believe such
molecules can be efficiently converted to v = 0, J = 0,
ground X 1Σ+ state molecules by a stimulated Raman
process (e.g. STIRAP [42]) via b 3Π ∼ A 1Σ+ mixed
levels.

Five examples of heteronuclear polar alkali dimers are
shown in Figures 1–5. In each case, the potential curves
plotted are based on high quality ab initio calculations,
but experimentally-based RKR potentials are virtually
identical, e.g. for NaK for which the greatest amount of
spectroscopic data is available. In each case, the proposed
initial state is a very slightly bound state correlating to a

Fig. 1. Ab initio potential energy curves of KRb [55]. The hor-
izontal lines represent the three levels involved in the proposed
stimulated Raman transition: the initial a 3Σ+ level near dis-
sociation created via a Feshbach resonance; the intermediate
level of mixed singlet-triplet character (b(1) 3Π ∼ A(2) 1Σ+)
with four important turning points (see text); and the final
true ground state level, X 1Σ+ v = 0, J = 0. The PUMP
“triplet” transition excites the initial level up to the interme-
diate level and the DUMP “singlet” transition de-excites the
intermediate level to the final level.

quasibound Feshbach-resonance-related state of predom-
inantly triplet character (especially near its inner turn-
ing RFR−). A vertical excitation from RFR− in accord
with the Franck-Condon Principle will efficiently reach
an outer turning point of the b(1) 3Π state, Rvb+. How-
ever, especially for the heteronuclear alkali dimers includ-
ing a Rb or Cs atom, levels of the b 3Π state will be
strongly mixed with levels of the A(2) 1Σ+ state. Such
mixed upper levels will be sparse in LiNa (as in Li2),
dense in NaRb, KRb and RbCs, and intermediate in NaK.
Such levels will have four turning points, two associated
with the b 3Π state (Rvb±) and two associated with the
A 1Σ+ state (RvA±). By a somewhat fortunate coinci-
dence, the appropriate RvA− turning points are directly
above the ground X 1Σ+ Re region, i.e. between the turn-
ing points R0X±. Such turning point matches imply large
transition moment/Franck-Condon factors for both the
PUMP step (a 3Σ+ → b 3Π ∼ A 1Σ+) and the DUMP
step (b 3Π ∼ A 1Σ+ → X 1Σ+) of a stimulated Raman
transition.

3 Specific heteronuclear alkali dimers

Let us begin a more detailed discussion with KRb, as
shown in Figure 1, a case for which both photoassocia-
tive spectra [49,50] and Feshbach resonance data [54] are
available. There are three sets of high quality ab initio cal-
culations available [55–57] as well as an accurate descrip-
tion of the long-range portion of the potential in terms

Quantum degenerate polar molecules 
from cold atoms: state of the art

2004 Proposal: Efficient conversion of ultracold Feshbach-resonance-related 
polar molecules into ultracold ground state molecules [Stwalley], 
Eur. Phys. J. D 31, 221–225 (2004)

• 2008, Ultracold dense gas of deeply bound heteronuclear 
molecules [Jin, Ye]  (KRb)
• 2010, Dipolar collisions of polar molecules
• 2012, Long-Lived Dipolar Molecules in a 3D Optical Lattice

Limitations of KRb ?

solution: other alkali mixtures are chemically stable
NaK, NaRb, NaCs, KCs, RbCs (endoergic - stable)
LiNa, LiK, LiRb, LiCs and KRb (exoergic - unstable)

solution : ultra-cold paramagnetic polar molecules made from 
alkaline-earth or rare earth + alkali atoms : SrLi, YbLi

• chemically reactive

• Zero spin

what about the triplet state of a bi-alkali molecule?
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 

J. Chern. Phys., Vol. 84, No.9, 1 May 1986 

Downloaded 17 Feb 2013 to 128.189.113.51. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Dipole moments (Debye)

J. Chem. Phys. 84, 5007 (1986)

KRb + KRb -> K2 + Rb2

Nature Phys. 4, 622 (2008)



What about the lowest triplet state?

singlet g.s.

triplet g.s.



What about the lowest triplet state?

singlet g.s.

triplet g.s.

√  paramagnetic
magnetically tunable collisions (FRs)



What about the lowest triplet state?

singlet g.s.

triplet g.s.

√  paramagnetic

√  somewhat polar (triplet DM ~1/10 that of singlet)
DM of triplet state LiRb is about 0.4 Debye
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valence correlation by a superposition of atomic one-elec-
tron polarization potentials is 6 cm - 1 for Li2,40 and 4 cm - 1 
for NaK.14 Neglecting core polarization altogether leads to 
errors of 4 cm -I for Li22,39 and 8 cm -I for NaK.2 

The interpolation formula by Cavaliere et al., 48 based on 
the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
parison is made to experimental data where available. The 
calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
I.P. v ; forI.P. a , our present results for De (XY) are combined 
with previous ones5,19 for De (XY+) and experimental 
atomic I.P. values. The experimental spectroscopic data for 
Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
I.P' Q to <0.02 eV. The agreement is much worse with the 
electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
quite large ( ± 0.1 e V), neither our computed I,P'Q nor our 
I.P. v are within the error bars for both of the molecules. We 
feel that the experimental accuracy may have been overesti-
mated by 2mbov et al. 

The computed all-electron CPP results by Muller and 
Meyer,2 for which an accuracy of <0.01 eV has been 
claimed, are within 0.01 eV of our I.P'Q values, for the 
dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 

TABLE IV. Vertical/adiabatic ionization energies (in e V) of alkali dimers XY (experimental values in paren-
theses). 

Li 

Na 

K 

Rb 

Cs 

• Reference 54. 
b Reference 55. 
"Reference 56. 
dReference 57. 
"Reference 58. 
fReference 50. 

Li 

5.26/5.15 
(5.14" ) 

Na 

5.12/5.00 
(4.94b ) 

4.99/4.88 
(4.90" ) 

K Rb Cs 

4.61/4.50 4.49/4.38 4.28/4.19 
(4.69b ) 

4.51/4.41 4.39/4.30 4.18/4.10 
(4.42d ) 

4.14/4.05 4.05/3.97 3.89/3.81 
(4.06· ) 

3.97/3.89 3.82/3.75 
(3.44 ... 3.95f ) 

3.68/3.62 
(3.59 ... 3.82f ) 
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for NaK.14 Neglecting core polarization altogether leads to 
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the ionization energies of the atoms and the (()e values of the 
homonuc1ear dimers, leads to deviations from our results for 
the mixed dimers of up to - 10 cm - I, the deviations being 
largest for the Li-containing molecules. 

D. Ionization energies 
Table IV contains our calculated values of vertical and 

adiabatic ionization potentials, I.P' v and I.P.a , and com-
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calculated values are from separate calculations for XY and 
XY+ at the equilibrium bond length of XY, in the case of 
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Li2, Na2, K 2, and NaK are to be considered as adiabatic 
ionization potentials.54,56,57 They agree with our computed 
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electron impact measurements for LiNa and LiK by 2mbov 
et al.55 Although the error bars given by 2mbov et al. are 
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dimers XY (X, Y = Li to K). The pseudopotential value for 
CS2 in Ref. 20 (perturbative treatment of core-valence corre-
lation) is smaller than ours by 0.04 eV; this deviation is in 
line with the corresponding one for De and may be 
attributed, for the main part, to the limited basis set in Ref. 
20. The neglect of core-valence correlation leads to rather 

TABLE V. Dipole moments (in D) of alkali dimers XY (experimental val-
ues in parentheses). 

Na K 

Li 0.53 3.50 
(0.45a ) (3.4Ib ) 

Na 2.75 
(2.73d ) 

K 
Rb 

• Reference 26. 
bReference 59, with B. from Ref. 27. 
c Reference 59, with B. from this work. 
dReference 53. 
"Reference 59, with B. from Ref. 31. 

Rb Cs 

4.13 5.48 
(4.01" ) 
3.33 4.60 

(3.05" ) (4.57" ) 
0.64 1.92 

1.26 

large errors for I.P'a (0.05 eV for Li2, 0.27 eV for NaK2); the 
errors are larger than for De (XY), since in De (XY) the 
contribution of the attractive one-electron part of the CPP is 
nearly cancelled by the repulsive one of the two-electron 
part, while such a cancellation does not occur for De (XY+ ). 

The difference between vertical and adiabatic ionization 
energy is of the order of 0.1 e V, in our calculations, and the 
change ofI.P.v - I.P'Q from Li2 (0.11 eV) to CS2 (0.06 eV) 
is roughly proportional to the magnitude of the ionization 
potentials themselves. 

E. Dipole moments 
Our calculated dipole moments for R = Re are collect-

ed in Table V. The valence dipole moments /-Lv have been 
corrected by the induced dipole moments of the alkali cores 
/-Lc = a(f), where a is the core dipole polarizability and (f) 
is the mean value of the electric field at the site of the core. 
Note that, in contrast to Eq. (3), no cut-off factor has been 
used for determining (f). We also give experimental values, 
for comparison, in Table V. They are derived from ground 
vibronic Stark coefficients approximating /-L; by 
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Is the lowest triplet state stable?
• spin relaxation collisions (triplet to singlet coupling) ?

• chemical reactivity ?

by some magic*, is the triplet state stable?
* or suitably physical reasons



Is the lowest triplet state stable?
• spin relaxation collisions (triplet to singlet coupling) ?

“Spin-orbit couplings are small in light systems.  For Li2, one wouldn't expect fast relaxation.
... but will be more important in heavy systems (like LiRb), but how important?”

• chemical reactivity ?



Is the lowest triplet state stable?of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
tion in collisions of CaD molecules with He atoms computed
as a function of electric and magnetic fields at a collision

energy of 0.5 K. The interaction between CaD and He is
weak.37 In the absence of electric fields or at magnetic fields far
detuned from the circled area of Fig. 3, collisions with He
cannot significantly change the orientation of the electron spin
of the molecule. At certain combinations of electric and
magnetic fields, however, the spin-up state of CaD becomes
very unstable and even weak collisional perturbations result in
spin re-orientation. The efficiency of collisional spin re-orien-
tation of 2S molecules in the rotationally ground state may
thus be controlled with superimposed electric and magnetic
fields. The same mechanism can be used to induce transitions
between the S = 0 and S = 1 states of the A(2S)–BC(2S)
reactive complex35 and manipulate the efficiency of spin-for-
bidden chemical reactions in a magnetic trap.
The development of experimental techniques for producing

slow molecular beams with narrow velocity distributions has
opened another exciting research direction to study molecular
collisions and explore new mechanisms for controlling chemi-
cal reactions in the gas phase. Meijer and coworkers17,38–41

demonstrated that molecular beams produced in a supersonic
expansion can be slowed down and bunched by an alternating

Fig. 4 Schematic illustration of minimum energy profiles for an

A(2S) + BC(2S) chemical reaction in the singlet-spin (lower curve)

and triplet-spin (upper curve) electronic states. Electric fields may

induce non-adiabatic transitions between the different spin states and

modify the reaction mechanism.

Fig. 3 Zeeman energy levels of the CaD(2S) molecule. The dashed

line indicates the energy of the molecule confined in a magnetic trap.

Fig. 5 Stark levels of the CaD molecule in a magnetic field of 0.5 T

(upper panels) and 4.7 T (lower panels) as functions of the electric field

strength. The curves are labeled by the rotational quantum number of

the molecule at zero electric field. The dashed line indicates the energy

of the molecule confined in a magnetic trap. The curved arrows

connect states coupled by electric fields; the straight arrows connect

states coupled by the spin-rotation interaction. Adapted from the

paper of E. Abrahamsson, T. V. Tscherbul and R. V. Krems, J. Chem.

Phys., 2007, 127, 044302. Copyright 2007, American Institute of

Physics.
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of N = 0 and the high-field-seeking states of N = 1 have
different symmetries. Therefore, the variation of the magnetic
field in the circled area of Fig. 3 does not affect collision
dynamics of trapped CaD molecules.36 An external electric
field may, however, couple states with different symmetries
(Fig. 5). Fig. 6 demonstrates the effects of combined electric
and magnetic fields on the energy levels of the CaD molecule.
In the presence of an electric field, the crossing in the circled
area of Fig. 3 becomes an avoided crossing and the collision
dynamics of CaD in the low-field-seeking Zeeman state be-
comes very sensitive to both the magnetic and electric fields.

Fig. 6 shows the cross section for magnetic spin re-orienta-
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state, X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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ultra-cold Li+Rb mixtures



ultra-cold Li+Rb mixtures

Lithium oven

MOT cell



ultra-cold Li+Rb mixtures



ultra-cold Li+Rb mixtures



ultra-cold Li+Rb mixtures

Feshbach coil

Feshbach coil

oven

MOT cell



ultra-cold Li+Rb mixtures
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ultra-cold Li+Rb mixtures

1 cm

108 Li atoms @ 1mK



108 Li in MOT

1 cm

106  Li atoms at 250 uK

100 um

transfer to an ODT



108 Li in MOT

1 cm

106  Li atoms at 250 uK

100 um 50 um

104  Li dimers at 300 nK

forced evaporative cooling



50 um

104  Li dimers at 300 nK

Mixture @ T ~ 2 uK, 104  Li, T/TF ~ 0.3, 104  Rb, T/Tc ~ 3

Only Rubidium: 2x104 atoms, T~500nK, T/Tc ~ 2

Only Lithium: 104  Li dimers, T~300nK, T/Tc ~ 0.7

50 um



observing Rb+Li Feshbach resonances



20 W

MOT
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imaging axis

Trap Schematic

Crossed ODT
(optical dipole trap)



Load Lithium MOT



20 W
20 W

Transfer Li from MOT to crossed trap

Crossed ODT



20 W
20 W

Transfer Li from MOT to crossed trap

Crossed ODT



15 W
15 W

Evaporate Li from crossed trap

Crossed ODT



Load Rb MOT while holding Li

Crossed ODT



Transfer Rb to crossed trap

Rb MOT turned off:

In trap: Rubidium and Lithium

Crossed ODT



Trap for Li half as deep for Rb

Both Rb and Li in trap: trap depths different

Crossed ODT



Simultaneous evaporation of Li and Rb

Trap power lowered to force 
evaporation losses

A) If Li+Rb reach thermal 
equilibrium, Li leaves trap quickly

B) If Li+Rb decoupled, Li 
evaporatively cools and leaves trap 
slowly

Trap for Li half as deep for Rb

Crossed ODT



Image Li or Rb

imaging axis
Crossed ODT
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• broadest resonances known 
in any hetero-nuclear mixture

• large mass imbalance
Efimov physics
Bose Fermi pairing physics

• large electric dipole moment
electric field tuning of FRs
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

atom loss

!1

width set by excited state lifetime

width ~ 10 MHz

“one-color PA”
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For photo-association, just add additional light

Autler-Townes splitting

“two-color PA”

PRA 68, 051403 (2003)
[Schloder, Deuschle, Silber, Zimmermann]



photo-association light

!1
!2

continuum (s-wave coll.)
N=0, G=0, S=1, I=1

For photo-association, just add additional light

atom loss suppressed

!2 - !1

width set by coupling induced by Ω2

Autler-Townes splitting

“two-color PA”

PRA 68, 051403 (2003)
[Schloder, Deuschle, Silber, Zimmermann]



2 Ti:sapphire lasers

Rb+Li MOT chamber

For photo-association, we just add additional light



For photo-association, we just add additional light

2 Ti:sapphire lasers

frequency comb



Photo-association (PA) laser system

When locked to comb:
1) uncertainty on frequency difference < 10 kHz.
2) line width of each Ti:sapphire: ~ 100 kHz
(verified by an independent heterodyne measurement)

frequency comb 2 Ti:sapphire lasers

self reference lock
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B. Minaev / Spectrochimica Acta Part A 62 (2005) 790–799 791

Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state,X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state,X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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S-wave collision: N=0
Total spin = 0  (G = S+I = 0)
electronic spin = 0, 1 
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this work
Initial state:
S-wave collision: N=0
Total spin = 0  (G = S+I = 0)
electronic spin = 0, 1 

two states are:
|S=0,N=0,J=0,I=0>
|S=1,N=0,J=1,I=1>

0) To minimize broadening and systematic shifts, 
we evaporate to very low trap powers and photo-
associate a 2-component quantum degenerate 
Fermi gas (T/TF ~ 0.4)

+
|F=1/2, mF=1/2>

|mF= -1/2>6Li2

the relevant initial state is:
|S=1,N=0,J=1,I=1>
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3

NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2

E(2
1Σ+

g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)

A(1
1Σ+

u )

c(13Σ+
g )

B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
3Σ+

u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=

� �
dν
dI

�
bare�

dν
dI

�
ECDL

�2

d

L

γstd
sc

vth

(8) σxσpx = σzσpz =
�
2

1

the relevant initial state is:
|S=1,N=0,J=1,I=1>

continuum (s-wave coll.)

We resolve three features for each vibrational level

v’=24
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v’=24,  N’=1, G’=0, S’=1, I’=1

3

NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2

E(2
1Σ+

g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)

A(1
1Σ+

u )

c(13Σ+
g )

B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
3Σ+

u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=

� �
dν
dI

�
bare�

dν
dI

�
ECDL

�2

d

L

γstd
sc

vth

(8) σxσpx = σzσpz =
�
2

1

the relevant initial state is:
|S=1,N=0,J=1,I=1>

continuum (s-wave coll.)

We resolve three features for each vibrational level

v’=24
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3

NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-

4

0.404 0.4045 0.405 0.4055 0.406 0.4065
0.4

0.5

0.6

0.7

0.8

0.9

1

wavenumber − 12394 [cm−1]

no
rm

al
iz

ed
 a

to
m

 n
um

be
r

Student Version of MATLAB

FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2

We resolve three features for each vibrational level
split by spin-spin and spin-rotation coupling

E(2
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g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)
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1Σ+

u )
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B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
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u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2
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it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin
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In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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=
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =
0.19 kW cm−2 to IPA = 1.27 kW cm−2 we observed
that the centroid of the first feature (J � = 1) associated
with the v� = 26 excited state shifted to higher frequen-
cies at a rate of 471± 433 kHz per kW cm−2. When the
CDT laser intensity was varied from 5.4 kW cm−2 (145
mW total CDT power) to 140 kW cm−2 (3.1 W total
CDT power) the PA feature centroid associated with the
v� = 24, J � = 1 state shifted down in frequency at a rate
of −(19 ± 1.2) kHz per kW cm−2. The resonance po-
sitions reported in Table I were determined using a PA
laser intensity of IPA = 635 W cm−2, and a CDT inten-
sity of 7.5 kW cm−2. Assuming the differential AC Stark
shift is the same for all excited states, the reported val-
ues are therefore shifted lower by 142± 9 kHz due to the
CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC
Stark shift. The overall AC Stark shift of the resonance
positions is thus higher by 157 kHz with an uncertainty
of ±274 kHz. Both this shift and uncertainty are small
compared to the absolute uncertainty of the frequency
comb. For the resonance positions reported in Tables II
and III, the trapping power was larger (40 W total) and
the differential AC Stark shift due to the CDT is esti-
mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G
the PA features associated with the v� = 24, J � = 1,
J � = 2, and J � = 0 states were observed to shift and, in
the case of J � = 1 and J � = 2, to broaden and eventually
split into multiple resolvable peaks. In each case, we mea-
sured the PA feature center of mass and found that when
the magnetic field was varied from 0 to 1 G, the barycen-
ter of the PA features moved by −(91.2 ± 18.3) kHz for
the J � = 1 state, +(46±28) kHz for the J � = 2 state, and
+(74.5 ± 30.1) kHz for the J � = 0 state. Since the res-
onance positions reported in Table I were determined in
the presence of a residual magnetic field below 400 mG,
the uncertainty in their positions due to the magnetic
field was below 50 kHz for all J states and thus small
compared to the absolute uncertainty of the frequency
comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with
a brief review of the symmetry properties and corre-
sponding selection rules relevant for the photoassociation
process. Molecules in the 13Σ+

g excited state are charac-
terized by the Hund’s case “b” coupling scheme in which
the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here
�sj (�ij) is the electronic (nuclear) spin of atom “j”. This
occurs when Λ = 0, the projection of the orbital angular
momentum of the electrons along the internuclear axis
is zero, and there is therefore no axial magnetic field to
couple the total spin to the axis. For “Σ” states, the
orbital angular momentum of the electrons is zero and
therefore Λ is always identically zero; however, even in
some cases where Λ �= 0, especially for light molecules,
the coupling is sufficiently weak that Hund’s case “b” is
still the appropriate scheme [21]. The total angular mo-
mentum, apart from the spin, is �K ≡ �N + �Λ, the vector
sum of �Λ and the rotational angular momentum of the
nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is
perpendicular to the internuclear axis. The total spin of
the molecule is �G = �S+�I and is a good quantum number
so long as the hyperfine interaction and spin-rotational
couplings are small. The total spin combines with the to-
tal angular momentum apart from spin �K to result in the
total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that
∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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NIR) with an absolute accuracy of 60 MHz and a shot-
to-shot repeatability (i.e. precision) of 10 MHz in the fre-
quency range of this work. For the high resolution mea-
surements, the Ti:sapphire laser, operating in the range
from 770 to 820 nm, is stabilized to a fiber based, self-
referenced frequency comb operating with a center wave-
length of 1550 nm as described previously [18]. Briefly,
the frequency comb is an Erbium-doped fiber laser fre-
quency comb with two amplified output branches. One
branch is used for self-referencing the carrier-envelope off-
set frequency via an f–2f interferometer. The second
branch is also spectrally broadened in a highly nonlin-
ear fiber, but not to a full octave of optical frequencies.
The output of this branch is frequency-doubled using an
array of periodically-poled lithium niobate waveguides
with different poling periods. The frequency-doubled
comb is then mixed with the Ti:sapphire laser on a fast
photodiode to generate a heterodyne beatnote, which is
used to stabilize the Ti:sapphire laser to the frequency
comb. For this work we verified the comb-referenced
Ti:sapphire’s absolute frequency uncertainty by measur-
ing the resonant frequencies of the D2 line at 780 nm
(the 5s1/2,→ 5p3/2 transition) of 85Rb atoms in a vapor
cell and comparing them with their known values [19].
We verified that the absolute uncertainty is ±600 kHz,
consistent with that determined previously [18].

III. OBSERVATIONS
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FIG. 2: Normalized 6Li atom number as a function of photo-
association laser energy hνPA after a 2 second hold time
at zero magnetic field and a PA laser intensity of IPA =
635 W cm−2. These three resonances correspond to a transi-
tion from an initial unbound molecular state with N = 0, G =
0 to the v� = 21 vibrational level of the 13Σ+

g excited state
with N � = 1, G� = 0. The ensemble temperature was 15 µK.

In our initial search of PA resonances, we held the mag-

netic field near to the s-wave Feshbach resonance between
the |1� and |2� states at 834 G to enhance the collision
rate. This produced a very wide (1 GHz FWHM) PA
loss feature which facilitated initial detection [20]. Af-
ter the approximate locations of the PA resonances were
found in this way, we performed a high resolution scan
with an ensemble temperature of 15 µK and with no bias
magnetic field [51]. We observed that the PA spectrum
of each vibrational level had associated with it three nar-
row (below 10 MHz FWHM) features distributed across
a range of 0.7 GHz as shown in Fig. 2. Figure 3 shows
a higher resolution scan of the second feature shown in
Fig. 2. In order to reduce as much as possible the thermal
broadening and the inhomogeneous AC Stark shift pro-
duced by the optical dipole trapping potential, these data
were obtained in a very shallow trap (Utrap/kB ∼ 8 µK)
and an ensemble temperature of 800 nK, a temperature
well below the Fermi temperature for this two component
Fermi-gas (T/TF = 0.4). We then verified that these PA
resonances arise from collisions between atoms in states
|1� and |2� by using a state-selective resonant pulse of
light to remove all atoms in either of the two states. The
spin purification was done at the end of the preparation
sequence, and we observed the absence of these atom loss
features with either one of the states removed [52]. To
rule out the absence of these loss features due to a sim-
ple reduction of the density, we observed a reappearance
of the PA features when using a 50:50 mixture of the
|1� and |2� states with the same total number of particles
and temperature as the ensembles after spin purification.
Given that p-wave collisions are dramatically suppressed
at these temperatures and that these PA loss features
were visibly enhanced by the s-wave FR, we inferred that
they arise from s-wave collisions between atoms in states
|1� and |2�. Thus, they correspond to a transition from
an initial unbound molecular state with N = 0, G = 0
to an excited state with N � = 1, G� = 0 (assuming G
is a good quantum number). As we describe later, we
find that spin-spin and spin-rotation coupling split the
excited state into three sub-levels producing the three
PA features. In this case G is no longer a good quantum
number. The locations of these three features for each of
the seven vibrational levels is provided in Table I.

We also located for each of the vibrational states the
PA resonances associated with p-wave ground-state col-
lisions. However, these features were only observable in
our experiment when measures were taken to enhance
the PA scattering rate. In order to observe these PA
resonances, we enhanced the p-wave scattering rate by
stopping the evaporation at an ensemble temperature of
250 µK and by holding the magnetic field at 185 G during
the PA stage. This magnetic field is near the p-wave Fes-
hbach resonance between the |1� and |2� states at 185.1 G
[16]. Due to the Feshbach resonance enhancement of in-
elastic ground-state collisions, the ensemble particle loss
in the absence of the PA light was approximately 50%
during the 2 second hold time. Additional loss was in-
duced when the light was near a PA resonance. Fig-
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FIG. 3: High resolution scan of the normalized
6
Li atom num-

ber as a function of photo-association laser energy hνPA after

a 750 ms hold time at zero magnetic field and a PA laser

intensity of IPA = 635 W cm
−2

. This is the second of the

three resonances shown in Fig. 2 corresponding to a transition

from an initial unbound molecular state with N = 0, G = 0

to the v� = 21 vibrational level of the 1
3Σ+

g excited state with

N �
= 1, G�

= 0. The ensemble temperature was 800 nK. The

FWHM of this loss peak is 0.00048 cm
−1

(14.4 MHz).

ure 4 shows the loss spectrum for a transition from an

initial unbound molecular state with N = 1, G = 1 to

the v� = 20 vibrational level of the 1
3Σ+

g excited state

with N �
= 2, G�

= 1. For each of the seven vibrational

levels, we observed at least 4 (3) distinct loss features

for transitions to the N �
= 2, G�

= 1 (N �
= 0, G�

= 1)

final state. By evaporating the ensemble to 15 µK and

holding the magnetic field at 184.7 G, we observed that

each of these loss features results from multiple PA res-

onances that are unresolvable at 250 µK. The locations

of the loss features observed at 250 µK for each of the

seven vibrational levels is provided in Tables II and III.

These measurements were performed in the absence of

the comb stabilization. Instead, the Ti:sapphire lasers

were referenced to the wavemeter whose uncertainty is

60 MHz.

A. Systematic shifts

While the absolute uncertainty of our PA measure-

ments made using the frequency comb is ±600 kHz, the

data was taken in the presence of a small but non-zero

magnetic field and in an optical dipole trap with a known

intensity. These residual fields as well as the PA laser

itself can lead to a systematic shift of the resonance posi-

tions from their zero-field values. Therefore, in an effort

to quantify the role of the PA laser intensity, the CDT

laser intensity, and the residual magnetic field on the PA
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FIG. 4: (Color online) Normalized
6
Li atom number as a

function of photo-association laser energy hνPA after a 2 sec-

ond hold time. The circles are for an ensemble temperature of

250 µK at 185 G, and four distinct features are observed. The

diamonds denote the atom loss for an ensemble temperature

of 15 µK and at a magnetic field of 184.7 G. At this lower

temperature, these loss features are seen to result from multi-

ple PA resonances that are unresolvable at 250 µK. These PA

features arise from p-wave ground-state collisions and are en-

hanced by proximity to a p-wave Feshbach resonance between

the |1� and |2� states at 185.1 G.

TABLE I: Experimentally measured PA resonances for s-wave

collisions in a 50:50 mixture of the |1� and |2� states of
6
Li.

These three PA resonances correspond to a transition from an

initial unbound molecular state with N = 0, G = 0 to the vth

vibrational level of the 1
3Σ+

g excited state with N �
= 1. As we

explain in Sec. IV, spin-spin and spin-rotation coupling split

the excited state into three sub-levels producing the three PA

features corresponding to quantum numbers (N �
= 1, J �

= 1),

(N �
= 1, J �

= 2), and (N �
= 1, J �

= 0) respectively. The

absolute uncertainty in each these measurements is ±0.00002
cm

−1
(±600kHz).

v� 1st 2nd 3rd

cm
−1

cm
−1

cm
−1

20 12237.17755 12237.18587 12237.20126

21 12394.39726 12394.40535 12394.42039

22 12546.06767 12546.07552 12546.09025

23 12692.17316 12692.18080 12692.19509

24 12832.70080 12832.70820 12832.72214

25 12967.64116 12967.64862 12967.66219

26 13096.99114 13096.99804 13097.01125

loss features, we varied each one and measured the PA

resonance position and width for various excited states.

In each case, we assumed a linear dependence and de-

termined a shift rate of the resonance position with the

corresponding field strength. The uncertainty in this rate

is a one-sigma statistical uncertainty on the slope of the

linear fit.

When varying the PA laser intensity from IPA =

0.19 kW cm
−2

to IPA = 1.27 kW cm
−2

we observed

that the centroid of the first feature (J �
= 1) associated

J’=1

J’=0J’=2

We resolve three features for each vibrational level
split by spin-spin and spin-rotation coupling

E(2
1Σ+

g )

electronic excited states that correlate to the 2s+2p threshold in Lithium

b(13Πu)

A(1
1Σ+

u )

c(13Σ+
g )

B(1
1Πu)

C(1
3Πg)

electronic ground states that correlate to the 2s+2s threshold in Lithium

a(1
3Σ+

u )

X(1
1Σ+

g )

(1) E

(2) V (R) = VLvW(R) + VE(R)

(3) V = VLvW + VE

(4) V (R) = VLvW + VE

(5) VStark ∼ −
α0E2

2

(6) FStark = −∇VStark ∼ ∇
α0E2

2
= α0E ×∇E = 2VStark ×

∇E

E

VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then

Comparing this to the force due to gravity... For
6
Li over 1 cm, we have h × 1.5 MHz/cm and for

85
Rb we have h × 21

MHz/cm.

(7)
δνbare

δνECDL
= Q2

=

� �
dν
dI

�
bare�

dν
dI

�
ECDL

�2

d

L

γstd
sc

vth

(8) σxσpx = σzσpz =
�
2

1

Are the terms in the Hamiltonian explicitly

(1) Ĥspin−rot = γv
�N · �S

(2) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(3)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 3 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(4)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1
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FIG. 5: (Color online) The experimentally determined (cir-

cles) and ab initio computed (squares) spin-spin interaction

constants, λv, as a function of the vibrational quantum num-

ber for the 1
3Σ+

g electronic state. These constants were de-

termined from the frequency splittings of the three features

observed for the N = 0→ N �
= 1 transition. The uncertainty

in these values is ±400 kHz. The dashed lines are guides to

the eye.

TABLE V: The values for the spin-spin interaction constant,

λv, and the spin-rotation interaction constant, γv, determined

from Eq. 2 and the peak spacings reported in Table I. The

uncertainty in these values is ±400 kHz. The λv values are

plotted in Fig. 5 along with their expected values determined

from ab initio calculations.

v� λv (MHz) γv (MHz)

20 -348.2 -14.5

21 -339.4 -14.5

22 -331.1 -14.7

23 -321.7 -14.2

24 -312.2 -14.4

25 -309.6 -14.0

26 -294.3 -14.3

for each rovibrational state given spin-spin and spin-

rotational coupling, we redefine �J to be the total an-

gular momentum apart from nuclear spin, �J ≡ �N + �S.

Here, a magnetic coupling between �S and �N , (of the form

�N · �S), as well as a spin-spin coupling term, (of the form

[Ŝ2
z− Ŝ2/3]) cause a splitting of the rotational levels, pre-

viously labeled by N , according to the J quantum num-

ber, given by J = (N +S), (N +S− 1), (N +S− 2),· · · ,
|N − S|. Therefore, each level with a given N(≥ S) con-

sists of 2S + 1 sub-levels, and the number of sub-levels

is equal to the spin multiplicity. However, for N < S,

the number of sub-levels is equal to 2N + 1 (the rota-

tional multiplicity). Hence, all N = 0 levels do not split,

as mentioned previously. For a particular ro-vibrational

state, |ν, N �, with a total spin S = 1, the rotational

energy is given by [21, 22]

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN, (1)

where λv and γv are constants. Here, λv is related to

the spin-spin interaction and it describes the coupling

between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a mea-

sure of the coupling between �S and �N . Under most cir-

cumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typi-

cally ignored in the Dunham expansion. However, at the

level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In

the case where spin-spin and spin-rotation couplings are

small (Bv � |λv|, |γv|) we can simplify Eq. 1 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN. (2)

In addition, when spin-spin coupling is much more im-

portant than spin-rotation coupling (|λv| � |γv|), the

energy ordering results from the λv terms, and we can

label these three peaks in Table I, energetically from low

to high, as (N �
= 1, J �

= 1), (N �
= 1, J �

= 2), and

(N �
= 1, J �

= 0) because λv is negative.

Using the peak spacings reported in Table I and Eq. 2,

we extract the two parameters, λv and γv. The deter-

mined λv constants as a function of v� are plotted in

Figure 5. The dashed line is provided to show its trend.

These results agree well with the previous ab initio cal-

culation for lithium diatoms [23]. By using Fig. 3 of

Ref. [23] and the average internuclear distances obtained

from the wave functions corresponding to the eigenfunc-

tions of the excited state potential curve we refined with

our data, we estimate these ab initio λv constants for all

v� states and plot those also in Fig. 5. Note, the uncer-

tainty of the ab initio results given in Fig. 5 is at least a

few tens of MHz. This results from the estimated error

of the original ab initio calculation (a few percent corre-

sponding to ≈ 10 − 30 MHz) and the error (≈ 10 MHz)

associated with our digitization of the data in Fig. 3 from

Ref. [23], as well as the fact that the ab initio calculation

was likely done for
7,7

Li2 rather than
6,6

Li2.

This comparison of λv obtained from experimental

data and that obtained from ab initio calculations clearly

demonstrates the validity of the current model to label

separate peaks in Table I. The values for λv and γv deter-

mined from our data are provided in Table V. The uncer-

tainty in these parameters is ±400 kHz and results from

418 MHz
222 MHz

the relevant initial state is:
|S=1,N=0,J=1,I=1>

continuum (s-wave coll.)

(1) ∆J = ±1, 0

(2) f3 − f2

(3) f2 − f1

Are the terms in the Hamiltonian explicitly

(4) Ĥspin−rot = γv
�N · �S

(5) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1

(1) f4 − f5
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(3) f3 − f2

(4) f2 − f1

Are the terms in the Hamiltonian explicitly

(5) Ĥspin−rot = γv
�N · �S

(6) Ĥspin−spin = 2λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(7)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 7 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(8)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1
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Are the terms in the Hamiltonian explicitly

(6) Ĥspin−rot = γv
�N · �S

(7) Ĥspin−spin = 2λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(8)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 7 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(9)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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VStark ∼ h× 32 MHz (1.6 mK) for Li and VStark ∼ h× 64 MHz (3.2 mK) at 40kV/cm for Rb. For a change of the electric

field from the maximum to zero over a length L ∼ 1 cm, the force is then
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6
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Fig. 1. Potential energy curves for a number of excited states of Li2 molecule
obtained by linear response calculation from the ground state MCSCF wave
function.

Potential energy curves for a number of low-lying states of
theLi2 molecule calculated in presentwork are given in Fig.1,
which is presented just to recapitulate the results of previous
works and illustrate themain spectral features [6,7,20]. Three
lowest states are presented in larger scale in Fig. 2. Though
the triplet states of H2 molecule are well known from electric
discharge emission spectra since the beginning of molecular
spectroscopy [16], the first observation of the triplet state,
1(b)3!u, in Li2 molecule was reported only in 1983 [12].
Diffuse bands in emission spectra of dense alkali vapors have
also been known over 20 years [21], but triplet states of the
lithium dimer have not been observed directly until the work
of Engleke and Haage [12]. These authors have detected the
3"g → b3!u transition near 507 nm in collision-induced flu-
orescence and obtained the lower state molecular constants
from the partly resolved rotational structure. The 1(b)3!u
state spectroscopic constants were also derived from exami-
nation of the accidental predissociation of the 1(A)1#+

u rovi-
bronic levels [22]. The 1(b)3!u state of Li2 has received
a great attention not only because of its important role in
the perturbations and accidental predissociation of the 11#+

u
state (A state) [3,13], but also because of its fine structure
[2,23].
The crossing between 1(A)1#+

u and 1(b)3!u states in
Fig. 1, is one of the main features of the lithium dimer spec-
troscopy [6,8,9,13]. This A–b crossing is responsible for the
accidental predissociation of the 1(A)1#+

u state [23]. The
SOC perturbation between these singlet and triplet states pro-
vided a mixed “window” levels, through which the system
can penetrate from singlet to triplet manifolds. Using this
A–b window, a number of excited triplet states of lithium
dimer have been reached by perturbation-facilitated optical–
optical double-resonance (PFOODR) spectroscopy [8,9,13].
The 1(b)3!u state in turn predissociates via rotational–

Fig. 2. MCSCF potential energy curve for the three lowest states of Li2
molecule.

electronic interaction with the 1(a)3#+
u continuum (Fig. 1)

[23]. This weakly bound lowest triplet state of Li2 molecule
is getting increasing particular interest in recent time [3–
5,24,25].
The first rotationally resolved observation of the 1(a)3#+

u
state has been reported by Xie and Field [13,19]. Using the
selected (11#+

u –13!u) mixed levels of the A–b gateway,
the lowest triplet state in Li2 molecule has been studied by
double-resonance methods and by the 3!g → 13#+

u fluo-
rescence detection [3,13]. All triplet states of Li2 belong to
the Hund’s case (b) coupling scheme [2,3,13,17], since spin–
orbit coupling is very weak even for 3! states. The emission
which should correspond to electronic transition from the
weakly bound triplet state, a3#+

u , to the ground state,X1#+
g ,

is rather strictly forbidden as electric dipole radiation, even
when spin–orbit coupling is accounted; a magnetic dipole
transition moment for such emission has been calculated in
the present work and found to be completely negligible.
Recent developments in atom trapping and cold-atom

spectroscopy have led to new possibilities in the triplet states
study of the Li2 molecule through combinations of measure-
ments of cold collisions, photo-association spectroscopy and
magnetic-induced Feshbach resonances [1,26,27]. Collisions
of alkali metal atoms at ultra low temperatures ("10−4 K) are
very sensitive to the details of the interatomic potentials. Ob-
servation of Bose–Einstein condensation in 7Li2 [1] initiated
the interest in the scattering length of two ground state lithium
atoms when they approach each other as a triplet radical pair
[5]. This requires knowledge of the accurate potential energy
curve of the lowest triplet a3#+

u state of the Li2 molecule
[3,5].
The sign of the scattering length of two ground state

lithium atoms (the triplet radical pair) determines the sta-
bility of the Bose–Einstein condensate; it can be obtained
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Motivations:
1) Technical: we can access with our lasers.
2) It has a magnetic moment (Molecular FRs !)
3) Make a BEC of ground state molecules
4) Measure the “Spin blockade”
5) Study collision properties of ultra-cold super-
rotors (collaboration with Valery Milner)
6) Stepping stone for making triplet LiRb
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Lowest triplet state Li2

10 vibrational levels
all accessible with our laser system

2-color PA spectroscopy : ground electronic state spectroscopy
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2
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2
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λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =
0.19 kW cm−2 to IPA = 1.27 kW cm−2 we observed
that the centroid of the first feature (J � = 1) associated
with the v� = 26 excited state shifted to higher frequen-
cies at a rate of 471± 433 kHz per kW cm−2. When the
CDT laser intensity was varied from 5.4 kW cm−2 (145
mW total CDT power) to 140 kW cm−2 (3.1 W total
CDT power) the PA feature centroid associated with the
v� = 24, J � = 1 state shifted down in frequency at a rate
of −(19 ± 1.2) kHz per kW cm−2. The resonance po-
sitions reported in Table I were determined using a PA
laser intensity of IPA = 635 W cm−2, and a CDT inten-
sity of 7.5 kW cm−2. Assuming the differential AC Stark
shift is the same for all excited states, the reported val-
ues are therefore shifted lower by 142± 9 kHz due to the
CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC
Stark shift. The overall AC Stark shift of the resonance
positions is thus higher by 157 kHz with an uncertainty
of ±274 kHz. Both this shift and uncertainty are small
compared to the absolute uncertainty of the frequency
comb. For the resonance positions reported in Tables II
and III, the trapping power was larger (40 W total) and
the differential AC Stark shift due to the CDT is esti-
mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G
the PA features associated with the v� = 24, J � = 1,
J � = 2, and J � = 0 states were observed to shift and, in
the case of J � = 1 and J � = 2, to broaden and eventually
split into multiple resolvable peaks. In each case, we mea-
sured the PA feature center of mass and found that when
the magnetic field was varied from 0 to 1 G, the barycen-
ter of the PA features moved by −(91.2 ± 18.3) kHz for
the J � = 1 state, +(46±28) kHz for the J � = 2 state, and
+(74.5 ± 30.1) kHz for the J � = 0 state. Since the res-
onance positions reported in Table I were determined in
the presence of a residual magnetic field below 400 mG,
the uncertainty in their positions due to the magnetic
field was below 50 kHz for all J states and thus small
compared to the absolute uncertainty of the frequency
comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with
a brief review of the symmetry properties and corre-
sponding selection rules relevant for the photoassociation
process. Molecules in the 13Σ+

g excited state are charac-
terized by the Hund’s case “b” coupling scheme in which
the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here
�sj (�ij) is the electronic (nuclear) spin of atom “j”. This
occurs when Λ = 0, the projection of the orbital angular
momentum of the electrons along the internuclear axis
is zero, and there is therefore no axial magnetic field to
couple the total spin to the axis. For “Σ” states, the
orbital angular momentum of the electrons is zero and
therefore Λ is always identically zero; however, even in
some cases where Λ �= 0, especially for light molecules,
the coupling is sufficiently weak that Hund’s case “b” is
still the appropriate scheme [21]. The total angular mo-
mentum, apart from the spin, is �K ≡ �N + �Λ, the vector
sum of �Λ and the rotational angular momentum of the
nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is
perpendicular to the internuclear axis. The total spin of
the molecule is �G = �S+�I and is a good quantum number
so long as the hyperfine interaction and spin-rotational
couplings are small. The total spin combines with the to-
tal angular momentum apart from spin �K to result in the
total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that
∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2
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In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =
0.19 kW cm−2 to IPA = 1.27 kW cm−2 we observed
that the centroid of the first feature (J � = 1) associated
with the v� = 26 excited state shifted to higher frequen-
cies at a rate of 471± 433 kHz per kW cm−2. When the
CDT laser intensity was varied from 5.4 kW cm−2 (145
mW total CDT power) to 140 kW cm−2 (3.1 W total
CDT power) the PA feature centroid associated with the
v� = 24, J � = 1 state shifted down in frequency at a rate
of −(19 ± 1.2) kHz per kW cm−2. The resonance po-
sitions reported in Table I were determined using a PA
laser intensity of IPA = 635 W cm−2, and a CDT inten-
sity of 7.5 kW cm−2. Assuming the differential AC Stark
shift is the same for all excited states, the reported val-
ues are therefore shifted lower by 142± 9 kHz due to the
CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC
Stark shift. The overall AC Stark shift of the resonance
positions is thus higher by 157 kHz with an uncertainty
of ±274 kHz. Both this shift and uncertainty are small
compared to the absolute uncertainty of the frequency
comb. For the resonance positions reported in Tables II
and III, the trapping power was larger (40 W total) and
the differential AC Stark shift due to the CDT is esti-
mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G
the PA features associated with the v� = 24, J � = 1,
J � = 2, and J � = 0 states were observed to shift and, in
the case of J � = 1 and J � = 2, to broaden and eventually
split into multiple resolvable peaks. In each case, we mea-
sured the PA feature center of mass and found that when
the magnetic field was varied from 0 to 1 G, the barycen-
ter of the PA features moved by −(91.2 ± 18.3) kHz for
the J � = 1 state, +(46±28) kHz for the J � = 2 state, and
+(74.5 ± 30.1) kHz for the J � = 0 state. Since the res-
onance positions reported in Table I were determined in
the presence of a residual magnetic field below 400 mG,
the uncertainty in their positions due to the magnetic
field was below 50 kHz for all J states and thus small
compared to the absolute uncertainty of the frequency
comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with
a brief review of the symmetry properties and corre-
sponding selection rules relevant for the photoassociation
process. Molecules in the 13Σ+

g excited state are charac-
terized by the Hund’s case “b” coupling scheme in which
the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here
�sj (�ij) is the electronic (nuclear) spin of atom “j”. This
occurs when Λ = 0, the projection of the orbital angular
momentum of the electrons along the internuclear axis
is zero, and there is therefore no axial magnetic field to
couple the total spin to the axis. For “Σ” states, the
orbital angular momentum of the electrons is zero and
therefore Λ is always identically zero; however, even in
some cases where Λ �= 0, especially for light molecules,
the coupling is sufficiently weak that Hund’s case “b” is
still the appropriate scheme [21]. The total angular mo-
mentum, apart from the spin, is �K ≡ �N + �Λ, the vector
sum of �Λ and the rotational angular momentum of the
nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is
perpendicular to the internuclear axis. The total spin of
the molecule is �G = �S+�I and is a good quantum number
so long as the hyperfine interaction and spin-rotational
couplings are small. The total spin combines with the to-
tal angular momentum apart from spin �K to result in the
total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that
∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv
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�
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v − 2λvBv + γv(N + 1)
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�
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v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(7)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =
0.19 kW cm−2 to IPA = 1.27 kW cm−2 we observed
that the centroid of the first feature (J � = 1) associated
with the v� = 26 excited state shifted to higher frequen-
cies at a rate of 471± 433 kHz per kW cm−2. When the
CDT laser intensity was varied from 5.4 kW cm−2 (145
mW total CDT power) to 140 kW cm−2 (3.1 W total
CDT power) the PA feature centroid associated with the
v� = 24, J � = 1 state shifted down in frequency at a rate
of −(19 ± 1.2) kHz per kW cm−2. The resonance po-
sitions reported in Table I were determined using a PA
laser intensity of IPA = 635 W cm−2, and a CDT inten-
sity of 7.5 kW cm−2. Assuming the differential AC Stark
shift is the same for all excited states, the reported val-
ues are therefore shifted lower by 142± 9 kHz due to the
CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC
Stark shift. The overall AC Stark shift of the resonance
positions is thus higher by 157 kHz with an uncertainty
of ±274 kHz. Both this shift and uncertainty are small
compared to the absolute uncertainty of the frequency
comb. For the resonance positions reported in Tables II
and III, the trapping power was larger (40 W total) and
the differential AC Stark shift due to the CDT is esti-
mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G
the PA features associated with the v� = 24, J � = 1,
J � = 2, and J � = 0 states were observed to shift and, in
the case of J � = 1 and J � = 2, to broaden and eventually
split into multiple resolvable peaks. In each case, we mea-
sured the PA feature center of mass and found that when
the magnetic field was varied from 0 to 1 G, the barycen-
ter of the PA features moved by −(91.2 ± 18.3) kHz for
the J � = 1 state, +(46±28) kHz for the J � = 2 state, and
+(74.5 ± 30.1) kHz for the J � = 0 state. Since the res-
onance positions reported in Table I were determined in
the presence of a residual magnetic field below 400 mG,
the uncertainty in their positions due to the magnetic
field was below 50 kHz for all J states and thus small
compared to the absolute uncertainty of the frequency
comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with
a brief review of the symmetry properties and corre-
sponding selection rules relevant for the photoassociation
process. Molecules in the 13Σ+

g excited state are charac-
terized by the Hund’s case “b” coupling scheme in which
the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here
�sj (�ij) is the electronic (nuclear) spin of atom “j”. This
occurs when Λ = 0, the projection of the orbital angular
momentum of the electrons along the internuclear axis
is zero, and there is therefore no axial magnetic field to
couple the total spin to the axis. For “Σ” states, the
orbital angular momentum of the electrons is zero and
therefore Λ is always identically zero; however, even in
some cases where Λ �= 0, especially for light molecules,
the coupling is sufficiently weak that Hund’s case “b” is
still the appropriate scheme [21]. The total angular mo-
mentum, apart from the spin, is �K ≡ �N + �Λ, the vector
sum of �Λ and the rotational angular momentum of the
nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is
perpendicular to the internuclear axis. The total spin of
the molecule is �G = �S+�I and is a good quantum number
so long as the hyperfine interaction and spin-rotational
couplings are small. The total spin combines with the to-
tal angular momentum apart from spin �K to result in the
total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that
∆J = 0,±1 with the restriction that J = 0 � J = 0. In

6

addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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2-color PA spectroscopy results : here !1 is fixed and !2 is scanned

v’’=1, N’’=0

three features
hyperfine structure

F = I + S = 0, 1, 2 (expect three hyperfine levels)

+
the relevant initial state is:
|S=1,N=0,J=1,I=1>

the intermediate state is:
|S=1,N=1,J=1,I=1>

the final state is:
|S=1,N=0,J=1,I=1> only one value of  J

!2 - !1(1) ∆J = ±1, 0

(2) f3 − f2

(3) f2 − f1

Are the terms in the Hamiltonian explicitly

(4) Ĥspin−rot = γv
�N · �S

(5) Ĥspin−spin = λv[Ŝ
2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
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+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(6)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to
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�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.
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TABLE II: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 0, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd
cm−1 cm−1 cm−1

20 12236.388 12236.407 12236.424
21 12393.629 12393.648 12393.664
22 12545.320 12545.338 12545.355
23 12691.446 12691.465 12691.480
24 12831.995 12832.012 12832.029
25 12966.957 12966.975 12966.991
26 13096.326 13096.346 13096.362

TABLE III: Experimentally measured PA resonances for p-
wave collisions in an incoherent mixture of the |1� and |2�
states of 6Li held at a magnetic field of B = 185 G. Each
of these values was extracted by fitting a loss spectrum like
that shown in Fig. 4. These PA resonances correspond to
a transition from an initial unbound molecular state with
N = 1, G = 1 to the vth vibrational level of the 13Σ+

g ex-
cited state with N � = 2, G� = 1. While the precision in these
measurements is 0.001 cm−1, the uncertainty, limited by the
wavemeter, is ±0.002 cm−1

v� 1st 2nd 3rd 4th
cm−1 cm−1 cm−1 cm−1

20 12238.757 12238.772 12238.780 12238.795
21 12395.936 12395.951 12395.958 12395.973
22 12547.567 12547.579 12547.587 12547.601
23 12693.628 12693.642 12693.648 12693.665
24 12834.113 12834.128 12834.134 12834.150
25 12969.011 12969.026 12969.032 12969.047
26 13098.315 13098.332 13098.339 13098.355

When varying the PA laser intensity from IPA =
0.19 kW cm−2 to IPA = 1.27 kW cm−2 we observed
that the centroid of the first feature (J � = 1) associated
with the v� = 26 excited state shifted to higher frequen-
cies at a rate of 471± 433 kHz per kW cm−2. When the
CDT laser intensity was varied from 5.4 kW cm−2 (145
mW total CDT power) to 140 kW cm−2 (3.1 W total
CDT power) the PA feature centroid associated with the
v� = 24, J � = 1 state shifted down in frequency at a rate
of −(19 ± 1.2) kHz per kW cm−2. The resonance po-
sitions reported in Table I were determined using a PA
laser intensity of IPA = 635 W cm−2, and a CDT inten-
sity of 7.5 kW cm−2. Assuming the differential AC Stark
shift is the same for all excited states, the reported val-
ues are therefore shifted lower by 142± 9 kHz due to the
CDT and higher by 300 ± 274 kHz due to the PA laser

than their extrapolated position at zero differential AC
Stark shift. The overall AC Stark shift of the resonance
positions is thus higher by 157 kHz with an uncertainty
of ±274 kHz. Both this shift and uncertainty are small
compared to the absolute uncertainty of the frequency
comb. For the resonance positions reported in Tables II
and III, the trapping power was larger (40 W total) and
the differential AC Stark shift due to the CDT is esti-
mated to be −(15± 1) MHz.

When the magnetic field was varied from 0 G to 10 G
the PA features associated with the v� = 24, J � = 1,
J � = 2, and J � = 0 states were observed to shift and, in
the case of J � = 1 and J � = 2, to broaden and eventually
split into multiple resolvable peaks. In each case, we mea-
sured the PA feature center of mass and found that when
the magnetic field was varied from 0 to 1 G, the barycen-
ter of the PA features moved by −(91.2 ± 18.3) kHz for
the J � = 1 state, +(46±28) kHz for the J � = 2 state, and
+(74.5 ± 30.1) kHz for the J � = 0 state. Since the res-
onance positions reported in Table I were determined in
the presence of a residual magnetic field below 400 mG,
the uncertainty in their positions due to the magnetic
field was below 50 kHz for all J states and thus small
compared to the absolute uncertainty of the frequency
comb.

IV. INTERPRETATION

In order to interpret our measurements, we begin with
a brief review of the symmetry properties and corre-
sponding selection rules relevant for the photoassociation
process. Molecules in the 13Σ+

g excited state are charac-
terized by the Hund’s case “b” coupling scheme in which
the total electronic (nuclear) spin �S = �s1+�s2 (�I =�i1+�i2)
is completely uncoupled from the internuclear axis. Here
�sj (�ij) is the electronic (nuclear) spin of atom “j”. This
occurs when Λ = 0, the projection of the orbital angular
momentum of the electrons along the internuclear axis
is zero, and there is therefore no axial magnetic field to
couple the total spin to the axis. For “Σ” states, the
orbital angular momentum of the electrons is zero and
therefore Λ is always identically zero; however, even in
some cases where Λ �= 0, especially for light molecules,
the coupling is sufficiently weak that Hund’s case “b” is
still the appropriate scheme [21]. The total angular mo-
mentum, apart from the spin, is �K ≡ �N + �Λ, the vector
sum of �Λ and the rotational angular momentum of the
nuclei �N . Therefore for “Σ” states �K = �N , and thus �K is
perpendicular to the internuclear axis. The total spin of
the molecule is �G = �S+�I and is a good quantum number
so long as the hyperfine interaction and spin-rotational
couplings are small. The total spin combines with the to-
tal angular momentum apart from spin �K to result in the
total angular momentum including spin as �J = �K + �G.

For electric dipole radiation, the selection rule is that
∆J = 0,±1 with the restriction that J = 0 � J = 0. In
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addition, under the emission or absorption of a photon

the parity of the electronic orbital must change (+↔ −)

and for a homonuclear molecule, the symmetry of the

coordinate function under interchange of the two nuclei

must change from symmetric to anti-symmetric or vice

versa (g ↔ u). In the present scenario of Hund’s case

“b” coupling, the spin is so weakly coupled to the other

angular momenta that both quantum numbers S and K
are well defined and we have in addition the selection

rules ∆S = 0 (or equivalently ∆G = 0) and therefore

∆K = 0,±1 with the restriction that ∆K = 0 is for-

bidden for Σ → Σ transitions. Since we are here only

concerned with transitions to the 1
3Σ+

g excited state, we

have that ∆N = ±1 and ∆G = 0.

TABLE IV: Allowed rotational levels and corresponding nu-
clear spin configurations for 6Li2 molecules in the limit that
spin-spin and spin-rotation couplings are small enough that
G is a good quantum number.

State Electronic Nuclear Allowed Total
spin spin rotational states Spin

ground states
- - - N = 0, 2, 4 . . . G = 0
- - - N = 1, 3, 5 . . . G = 1

excited states
13Σ+

g : S = 1 I = 0 N = 0, 2, 4 . . . G = 1
I = 1 N = 1, 3, 5 . . . G = 0, 1, 2
I = 2 N = 0, 2, 4 . . . G = 1, 2, 3

We now discuss the allowed quantum numbers for the

initial and final states. In this work, we only consider

collisions between two
6
Li atoms, which are composite

fermions (consisting of 9 fermions: 3 protons, 3 neu-

trons, and 3 electrons), and we note that the 2-body

eigenstates, composed of a spin part and an orbital part,

must be antisymmetric upon exchange of the two atoms.

The consequence is that only certain spin states are pos-

sible given a particular orbital state. An important ex-

ample of this constraint imposed by exchange symmetry

is that the two-body position wave function (sometimes

called the “coordinate function” or orbital state) must

be antisymmetric for a collision between two fermions in

the same spin state (for which the spin wave function is

manifestly symmetric). Thus a spin polarized Fermi gas

can only have odd partial wave collisions (p-, f -, h-wave,

etc...) corresponding to odd values of the rotational an-

gular momentum of the complex (N = 1, 3, 5 . . .), which

are antisymmetric with respect to atom exchange. For

a gas composed of two distinct spin states, even partial

wave collisions can occur (s-, d-, g-wave, etc...) so long

as the spin wave function is antisymmetric upon atom

exchange. As we described in Sec. III, the ability to turn

off s-wave collisions by spin polarizing the gas is a useful

feature of our system that we use to validate our assign-

ment of the PA lines.

The total spin angular momentum of the initial un-

bound molecular state is given by the vector sum of the

f quantum numbers for the isolated atoms: �G = �f1 + �f2.

Here �f1 = �s1 +�i1. In our experiment, the atoms are op-

tically pumped to the lowest hyperfine state before being

exposed to the photoassociation light. Therefore we have

that f1 = f2 =
1
2 and there are two allowed values of the

total spin: G = 0, 1. Certain values of G (specifically

G = f1 + f2, f1 + f2 − 2, . . .) are associated with spin

states symmetric with respect to interchange of the atoms

while the orbital states with even values of N are sym-

metric under the interchange of the atoms. Therefore all

even partial wave collisions (N = 0, 2, 4, . . .) have a total

spin of zero (G = 0) and all odd partial wave collisions

(N = 1, 3, 5, . . .) have a total spin of one (G = 1).

The final state is a molecule in the 1
3Σ+

g potential. For

this triplet state, the total electronic spin is well defined

(S = 1) and the “gerade” symmetry signified by a sub-

script “g” denotes that all states with an even rotational

quantum number (N = 0, 2, 4, . . .) are symmetric under

the interchange of the two nuclei. Because the electronic

spin is well defined and fixed for this excited state, we

now consider interchanging just the nuclei while leaving

the electrons untouched. There are three possible values

of the total nuclear spin (I = 0, 1, 2) since the nuclear

spin of each atom is i = 1. Similar to the symmetry of

G, states with I = i1 + i2, i1 + i2 − 2 . . . (corresponding

here to I = 0 and I = 2) are symmetric with respect

to interchange of the nuclei whereas the I = 1 state is

antisymmetric. Since the nuclei are bosons the total wave

function must be symmetric under the interchange of the

nuclei. Putting this together, we have that the even (odd)

values of I occur with even (odd) values of N . The total

spin angular momentum quantum number G can take on

all values between and including |I + S| and |I − S|.
The possible quantum numbers for the ground and ex-

cited states are tabulated in Table IV. For a ground state

s-wave collision (N = 0) we find that there is only one

allowed value for the total spin: G = 0. From an ini-

tial state with N = 0 and G = 0, we see that there is

only one possible transition to the excited triplet state:

(N = 0, G = 0) → (N �
= 1, G�

= 0). For a ground state

p-wave collision, the initial state is (N = 1, G = 1) and

there are two possible transitions to the excited triplet

state: (N = 1, G = 1) → (N �
= 0, G�

= 1) and

(N = 1, G = 1) → (N �
= 2, G�

= 1). In both cases,

there are two possible values of the total nuclear spin:

I = 0 or 2.

In the preceding discussion, we have assumed that both

the spin-spin coupling, involving terms of the form �s1 ·�s2,

and the coupling of the total electronic spin, �S, with

the molecular rotation, �N , are negligible. In this case,

the total spin (characterized by �G) is a good quantum

number. However, while these couplings are small, we

nevertheless do resolve a splitting of the excited state

energy levels by observing three PA resonances as seen

in Fig. 2 instead of a single feature for an initial s-wave

collision. As we explain later, the ground state is not

split in this particular case because N = 0.

In order to properly label the three PA resonances (as-

sociated with ground state s-wave collisions) observed
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... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv
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where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to
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2
z − Ŝ

2
/3]

... of the rotational levels, previously labeled by N , according to the J quantum

number, given by J = (N + S), (N + S − 1), (N + S − 2),· · · , |N − S|. Therefore,

each level with a given N(≥ S) consists of 2S + 1 sub-levels, and the number of

sub-levels is equal to the spin multiplicity. However, for N < S, the number of

sub-levels is equal to 2N + 1 (the rotational multiplicity). Hence, all N = 0 levels

do not split, as mentioned previously. For a particular ro-vibrational state, |ν, N �,
with a total spin S = 1, the rotational energy is given by

FJ=N+1 = BvN(N + 1) + (2N + 3)Bv − λv

−
�

(2N + 3)2B2
v + λ2

v − 2λvBv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− (2N − 1)Bv − λv

+

�
(2N − 1)2B2

v + λ2
v − 2λvBv − γvN,(5)

where λv and γv are constants. Here, λv is related to the spin-spin interaction and

it describes the coupling between the total spin, �S, and the molecular axis; γv is

related to the spin-rotation interaction and it is a measure of the coupling between

�S and �N . Under most circumstances, these two constants describe small effects

which are not spectroscopically resolvable and are typically ignored in the Dunham

expansion. However, at the level of resolution in the current experiment, one needs

to take into account these second-order perturbations. In the case where spin-spin

and spin-rotation couplings are small (Bv � |λv|, |γv|) we can simplify Eq. 5 to

FJ=N+1 = BvN(N + 1)− 2N + 2

2N + 3
λv + γv(N + 1)

FJ=N = BvN(N + 1)

FJ=N−1 = BvN(N + 1)− 2N

2N − 1
λv − γvN.(6)

In addition, when spin-spin coupling is much more important than spin-rotation

coupling (|λv| � |γv|), the energy ordering results from the λv terms, and we can

label these three peaks in Table ??, energetically from low to high, as (N
�
= 1, J

�
=

1), (N
�
= 1, J

�
= 2), and (N

�
= 1, J

�
= 0) because λv is negative.

1

(1) f3 − f2

(2) f2 − f1

Are the terms in the Hamiltonian explicitly
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(2) Ĥspin−rot = γv
�N · �S
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2-color PA spectroscopy results : here !1 is fixed and !2 is scanned
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(6) Ĥspin−spin = λv[Ŝ
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(6) Ĥspin−spin = λv[Ŝ
2
z − Ŝ
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Full characterization of the bound levels of the ground triplet state of 6Li2

• all 10 vibrational levels found
• 2 rotational levels for each vibrational level (N”=0, N”=2)
• spin-spin and spin-rotation splitting of J levels observed
• hyperfine structure resolved
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bound state energy resolution < 500 kHz (< 100 kHz)
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Full characterization of the bound levels of the ground triplet state of 6Li2

• all 10 vibrational levels found
• 2 rotational levels for each vibrational level (N”=0, N”=2)
• spin-spin and spin-rotation splitting of J levels observed
• hyperfine structure resolved

the ground triplet state of Li is now the most accurately known molecular potential.

bound state energy resolution < 500 kHz (< 100 kHz)
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Full characterization of the bound levels of the ground triplet state of 6Li2

• all 10 vibrational levels found
• 2 rotational levels for each vibrational level (N”=0, N”=2)
• spin-spin and spin-rotation splitting of J levels observed
• hyperfine structure resolved

the ground triplet state of Li is now the most accurately known molecular potential.

bound state energy resolution < 500 kHz (< 100 kHz)

Is this useful?
It’s the simplest molecule after to H2
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Full characterization of the bound levels of the ground triplet state of 6Li2

• all 10 vibrational levels found
• 2 rotational levels for each vibrational level (N”=0, N”=2)
• spin-spin and spin-rotation splitting of J levels observed
• hyperfine structure resolved

the ground triplet state of Li is now the most accurately known molecular potential.

bound state energy resolution < 500 kHz (< 100 kHz)

Is this useful?
It’s the simplest molecule after to H2

Next step: STIRAP transfer FR molecules into these states and measure their lifetime
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Full characterization of the bound levels of the ground triplet state of 6Li2

• all 10 vibrational levels found
• 2 rotational levels for each vibrational level (N”=0, N”=2)
• spin-spin and spin-rotation splitting of J levels observed
• hyperfine structure resolved

the ground triplet state of Li is now the most accurately known molecular potential.

bound state energy resolution < 500 kHz (< 100 kHz)

Is this useful?
It’s the simplest molecule after to H2

Next step: STIRAP transfer FR molecules into these states and measure their lifetime
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