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Optical Lattice Systems and Bose-Hubbard Model

[Bose-Hubbard Model] t
O
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K. Jaksch et al., Phys. Rev. Lett. 81 3108 (1998)
[ Observation of the SF-MI Transition]

Sharp peak which indicates the SF (BEC)

High controllabitiy of system parameters 3 \/ ven ST (A
= We can control the ratio #/U by changing ® ¢ @ o ||e B || e
the potential depth V. o o 2
(In the right figure, #/U is decreased from a to h.) . e = .
» By using the Feshbach resonance, we can also | * ‘ . ’ o ’ .
control the short-range interaction U. " .

M. Greiner ef al., Nature 415 39 (2002)

A system of bosonic atoms trapped in optical lattices
is well described by the Bose-Hubbard model.
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Optical Lattice Systems and Quantum Monte Carlo

[Ground-state phase diagram]

(cubic Iattice) [Comparison with experimental results]
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cf. The transition temperature of a uniform system is
T.=5.3nK

Advantages of the quantum Monte Carlo (QMC) method
1.  We can obtain the unbiased accurate results within statistical errors.
2. We can perform simulation of large systems (~10° particles).

Y. Kato and N. Kawashima, PRE 81 011123 (2010)
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Cold atoms with large dipole moments

[Dipole moments polarized by an external field ] [Observation of BEC of S2Cr (4, =6y,)]
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T. Lahaye et al., Rep. Prog. Phys. 72 126401 (2009)

Effective potential in low-energy regimes

4rh’a, *1-3cos% @
Vo (r)= === 8(r)+ 27 =2

Scattering length, a/a,,g
(=]

S.Yi and L. You, Phys. Rev. A 63 053607 (2001)
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By suppressing the short-range interaction through the Magnetic field, B - B (@)
Feshbach resonance, we can enhance the dipole- T. Lahaye et al., Nature 448 672 (2007)

dipole interaction relatively. B,=589G

Owing to the long-range (and anisotropic) nature of the dipole-dipole interaction,
new phenomena are expected to be realized.
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Motivation of our study

Especially for a system of cold dipolar atoms trapped in an optical lattice,

the presence of exotic quantum phases such as checkerboard solid and its supersolid phase
are predicted theoretically.

Ex. S. Yi et al., Phys. Rev. Lett. 98 260405 (2007)

[Our study]

By using the QMC method, we have investigated and explore exotic quantum states such as a
supersolid state in the Bose-Hubbard models that include the effect of the long-range interaction.

1. Bose-Hubbard model with the nearest-neighbor repulsion

One of the simplest models that support the presence of the supesolid phase. Furthermore,
it may be realized approximately in a cold dipolar atoms trapped in a 2D optical lattice.

[Cold atoms whose dipole moments are polarized perpendicularly to the 2D plane]

T. Lahaye et al., Rep. Prog. Phys. 72 126401 (2009)

2. Bose-Hubbard model with the dipole-dipole interaction (without cutoff)
We can understand the effect of the long-range interaction precisely.
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Worm Algorithm

Worm algorithm...One of the most efficient and generic QMC methods
based on the path-integral (world-line) representation.

N. V. Prokof’ev, B. V. Svistunov and I. S. Tupitsyn, Sov. Phys. JETP 87 310 (1998)
O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E 66 046701 (2002)

[A world-line configuration with a worm]

A worm 1s a pair of creation and annihilation
operators, i.e. a’ and a.

— One boson

--=  No bosons

5 |

I = 'Y

> ] ] \

< 1 1

k= P |

é” o i worm head

= R A S _
Real space (sites) " worm tail

Anvantages
1. Efficient simulations due to the global updates.

2. Calculation of the Green’s function. etc.
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Bose-Hubbard model with the nearest-neighbor interaction

[Bose-Hubbard model with the nearest-neighbor repulsion]

(We consider the d-dimensional hypercubic lattices)
U
H= —t<z>(bfbj + h.c.)— yz n, + EZ n,(n, —1)+ <Z>Vninj
ij i i i,j

[Ground-state phase diagram for square lattices (by QMC)]
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For square lattices, the supersolid (SS) phase has been found for p > 1/2.
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Ground-state phase diagram by the Mean-field analysis

[Mean-field ground-state phase diagram (zV/U=1)]
K. Yamamoto, S. Todo and S. Miyashita, Phys. Rev. B 79 094503 (2009)
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cf. The presence of SS phase below p=1/2 has already been confirmed by the
QMC simulations in the same work.

At the mean-field level, the supersolid phase exists below and at p=1/2
as well as above p=1/2.

2013/2/8



Purpose of this study

Most supersolids appear when particles or holes are doped into perfect commensurate solids.

[Ex. The ground-state phase diagram of hard-core bosons on a square lattice
with the next-nearest-neighbor repulsion V,]

G. G. Batrouni and R. T. Scalettar, Phys. Rev. Lett. 84 1599 (2000)
7 : : : : : :

6 | MOTTINSULATOR _—
5 | — > Supersolid
4 ] We need doping of particles or holes
3 to produce a supersolid state.
3 p p
o | STRIPED
SOLID
1t
0 P . . .
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WZ
[Purpose]

We investigate the presence of a supersolid at the commensurate filling 1/2
for a square lattice as well as a cubic lattice.
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Ground-state phase diagram for a cubic lattice

First, we have obtained the ground-state phase diagram for a cubic lattice and confirmed
that it agrees qualitatively with the mean-field result.

[Ground-state phase diagram

(cubic lattice)]

V/U=1/z (2=6)

3D cubic lattice
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[Measured quantities]
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We obtained the ground-state phase diagram.




Direct evidence of SS at the commensurate filling 1/2

To show direct evidence of SS at p=1/2, we obtained the numerical results
for the canonical ensemble at p=1/2.

[ Temperature dependence of p, and S(x, )]

T T T .15
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[Finite-size scaling analysis]
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CB transition
—3D Ising universality
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SF transition—
3D XY universality
class

We have showed direct evidence of a supersolid at the commensurate filling factor 1/2.
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Ground-state phase diagram for square lattices

[Ground-state phase diagram [Evidence of SS for p<1/2]
(square lattice, zV/U=1)]
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The SS phase below and at p=1/2 exists in a square lattice as well as a cubic lattice.
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Ground-state phase diagram at p=1/2

[ Ground-state phase diagram (square lattice)]
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The parameter
in the previous work P. Sengupta ez. al. Phys. Rev. Lett. 94 207202 (2005)

The supersolid phase at p=1/2 extends for large hopping
amplitudes and nearest-neighbor repulsions.
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Phase diagram for strong nearest-neighbor repulsions

[ Correlation functions at *]
[Ground-state phase diagram (zV/U=1.5)])
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For large hopping amplitudes and nearest-neighbor repulsions,
the supersolid phase occupies the broad region in the phase diagram.
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Double-peak structure in the momentum distribution

As aresult of oscillation in the off-diagonal correlation function,
the momentum distribution shows a characteristic structure.

ikrij .

1
[Momentum distribution n(k) = N Z <b;rb j >e in the supersolid state]

1]

/ k =(0,0) indicates the superfluidity.

8x 103 | }
2 6x103 K—.(ﬂ,ﬂ) N
S 4x103 indicates the solidity.
X
2x 103
s

Observation of the double-peak structure will become clear evidence of supersolid state.
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Model and previous works

[Bose-Hubbard model [Ground-state phase diagram
with the dipole-dipole interaction] of hard-core bosons]
U (square lattice, 6=r)
T q ,
H = _tz (bi bj + h-C->_ /UZ n; + E Z r.Ii( Zvu i''j  B.Capogrosso-Sansone et. al. Phys. Rev. Lett.
i i i <] 104 125301 (2010)

2 : .
The dipole- V. =V 1-3cos’ 6 V = Mol (a) 6 -
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Owing to the long-range interactions, several exotic phases appear.
[several types of solid phases, their supersoild phases, and devil’s staircase]

2013/2/8



Purpose of this study

In contrast to the case of long-range interaction 1/73, the checkerboard supersolid of
hard-core bosons cannot be stabilized by the nearest-neighbor repulsion only.

G. G. Batrouni and R. T. Scalettar, Phys. Rev. Lett. 84 1599 (2000)

[Motivation1]
Why does the long-range interaction stabilize the checkerboard supersolid of hard-core bosons?

The anisotropic nature of interactions or multiple occupations of bosons
may also produce novel physics.

[Motivation2]
How does the phase diagram change if the dipole-dipole interactions becomes anisotropic?

[Motivation3]
How does the phase diagram change if bosons becomes soft-core?
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SS vs Domain wall (nearest-neighbor repulsion)

We can understand the absence of the supersolid by strong-coupling argument.
cf. P. Sengupta et. al. Phys. Rev. Lett. 94 207202 (2005)

Supersolid Domain wall
(Delocalization of doped particles) (which is formed by doped particles)
¢
RFRS A SRS
00 @
__'_
B aamm @
$ .4 @

Energy cost of doping a particle

N

t=0 E, =2V —-u

The same energy
E,

In the zeroth order
When we consider a small kinetic term,

Not the same order
<t<<\V —~O(t? -
O<t<<V O(t") O(t) In the kinetic energy gain

X O

The checkerboad SS is unstable against the domain-wall formation.
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SS vs Domain wall (1/7° interaction)

How does the situation change for the long-range interacting systems?

Supersolid Domain wall

Not the same energy
= E E
t=0 SS < DW In the zeroth order

When we consider a small kinetic term,
The same order

2 2
o<tV — O(t ) o O(t ) In the kinetic energy gain

O X

The repulsions between doped particles increase the energy cost of the
domain-wall formation. Therefore, the SS becomes stable against it.

2013/2/8



Hard-core bosons with the fully anisotropic
dipole-dipole interaction

What happens if the dipole-dipole interactions becomes anisotropic?
— We studied the case where the dipole moments are polarized parallelly to the 2D plane.

[Ground-state phase diagram ] [Multiple plateaus in the shaded regions]
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Our phase diagram shows
(1) the presence of the striped solid phase, (i1) the absence of its supersolid phase, and (i11)
the presence of regions where multiple plateaus are observed in the particle density.
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Ground-state phase diagram of soft-core bosons
with the purely repulsive interaction 1/#°

[Ground-state phase diagram] [Nested-solid (NS) structure at p=3/4]
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Owing to the multiple occupations of bosons and long-range interaction,
there appear a nested-solid (NS) phase and its supersolid (SS-II) phase.
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Successive transitions in the SS-II state

[Finite-temperature behaviors in the SS-II phase]
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The nested-solid structure appears through two successive transitions at finite temperatures.
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Why the two Ising-type transitions?

Finally, we give an explain why the two solid-transitions belong to the Ising universality.
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Three bosons In both two solid-transitions, one of the two sublattices is chosen,

2013/2/8 and thus they belong to the Ising universality class.
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Summary

For the Bose-Hubbard model with the nearest-neighbor repulsion, we have
obtained convincing evidence of a supersolid at the commensurate filling 1/2
for a square lattice as well as a cubic lattice.

For the Bose-Hubbard model with the dipole-dipole interaction, we have
obtained the ground-state phase diagrams for some cases. As a result, we have
found several novel quantum phases such as regions where multiple plateaus
are observed in the particle density, a novel nested-solid phase, and its
supersoild phase.

2013/2/8



Appendices



Previous algorithm

Y. Kato and N. Kawashima, Phys. Rev. E 81 011123 (2010)

= =

=

The head is scattered at a
bond b.

!

1 i
¢ Q Q

1. Creation of a worm.

2. Generate a distance 7 by which the head moves forward.

1 * Averaged number of scattering per unit time A = Z Ao
r=-——InR depends on the states in the shaded uniform area.b
*Re[0, 1) 1s a uniform random number.

3. Scatter the head at stochastically chosen bond b.

We update the world-line configuration by repeating vertical movement and
scattering of the worm head.
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Difficulty in long-range interacting systems

The uniform area becomes global in real space but local in imaginary time, when
the longer-range interaction is included.

1. Nearest-neighbor interaction 2. Up to the next-nearest-neighbor 3. Up to the third-nearest-
only interaction neighbor interaction

It takes O(N) time to move the worm head forward. (Here, N is the system size.)
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Modification of the algorithm

?

-
-

A

-
—————— -
—————— -

= =

1)@

?

T

i

0

1. Generate a distance 7 by which the head moves forward.

r—_ i InR « A= Zzg depends only on the worm head’s site and
' A >4 s satisfied.

2. Choose a bond b and accept it by the probability A,=1,’/ 4,.  cf. K. Fukui and S. Todo,

J. Comput. Phys. 228 2629 (2009)

(We repeat 1-2 until a bond is accepted.)

3. Scatter the worm head at the accepted bond 5.
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It takes only O(1) time to move the worm head forward.




