

Dynamics, Thermalization and Cooling of a

Simple Quantum System in

Environments Out of Thermal Equilibrium

Mauro Antezza

Laboratoire Charles Coulomb Université Montpellier 2 France

B. Bellomo, R. Messina and M. Antezza, EPL **100**, 20006 (2012)

B. Bellomo, R. Messina, D. Felbacq and M. Antezza, arXiv: 1205.6089 (2012)

16/11/2012, LKB-ENS, Paris (France)

Thermalization of classical and quantum systems driven by changes of external parameters may offer a great variety of relaxation phenomena, typically studied for many-body systems

What does happen to an elementary, one-body quantum system in an environment driven out of thermal equilibrium?

Out of thermal equilibrium great richness: quantum gases, biology, Casimir forces, heat transfer,...

We study the internal evolution of an atomic system (real atoms, quantum dots, ...) by means of its density matrix

Physical configuration: a *N*-level system placed close to a body

Multipolar-coupling Hamiltonian

$$H_I = -\mathbf{D} \cdot \mathbf{E}(\mathbf{R})$$

Body M of arbitrary geometry and dielectric permittivity

Body temperature T_M different from that of the surrounding walls T_W

Walls of irregular shape very far from both the body and the atom: universal isotropic black-body radiation in absence of the body

E(R) : total electromagneticfield at the atomic positionD: Atomic electric-dipole operator

$$\mathbf{D}(t) = \sum_{m,n} \left(\mathbf{d}_{mn} | m \rangle \langle n | e^{-i\omega_{nm}t} + \mathbf{d}_{mn}^* | n \rangle \langle m | e^{i\omega_{nm}t} \right) \quad \text{where} \quad \mathbf{d}_{mn} = \langle m | \mathbf{D} | n \rangle$$

Free Hamiltonians $H_A = \sum_{n=1}^N \hbar \omega_n | n \rangle \langle n | \quad H_B = \int d^3 \mathbf{r} \int_0^\infty d\omega \hbar \omega b^{\dagger}(\mathbf{r}, \omega) b(\mathbf{r}, \omega)$

Open quantum system approach: master equation

Starting point:
$$\frac{d}{dt}\rho_{\text{tot}}(t) = -\frac{i}{\hbar}[H_I(t), \rho_{\text{tot}}(t)]$$
 ρ (t)= Tr_B $\rho_{\text{tot}}(t)$

Derivation of atomic master equation (weak coupling)

Born, Markovian and rotating-wave approximations

$$\begin{split} &\frac{d}{dt}\rho(t) = -i\Big[\sum_{n}\omega_{n}|n\rangle\langle n| + \sum_{m,n}S(-\omega_{nm})|m\rangle\langle m| \\ &+ \sum_{m,n}S(\omega_{nm})|n\rangle\langle n|,\rho(t)\Big] \\ &+ \sum_{m,n}\Gamma(-\omega_{nm})\Big(\rho_{mm}|n\rangle\langle n| - \frac{1}{2}\{|m\rangle\langle m|,\rho(t)\}\Big) \\ &+ \sum_{m,n}\Gamma(\omega_{nm})\Big(\rho_{nn}|m\rangle\langle m| - \frac{1}{2}\{|n\rangle\langle n|,\rho(t)\}\Big), \end{split}$$

S(± ω): Lamb-shifts not influencing the dynamics of populations (ρ_{ii}) and modulus of coherences ($|\rho_{ij}|$)

Transition rates

$$\Gamma(-\omega_{nm}) = \sum_{i,j} \gamma_{ij}(-\omega_{nm}) [\mathbf{d}_{mn}]_i [\mathbf{d}_{mn}]_j^*,$$

$$\Gamma(\omega_{nm}) = \sum_{i,j} \gamma_{ij}(\omega_{nm}) [\mathbf{d}_{mn}]_i^* [\mathbf{d}_{mn}]_j.$$

Key ingredient: correlation functions of the EM field

$$\gamma_{ij}(\omega) = \frac{1}{\hbar^2} \int_{-\infty}^{\infty} ds \, e^{i\omega s} \langle E_i(\mathbf{R}, t) E_j(\mathbf{R}, t-s) \rangle$$

Correlation functions out of thermal equilibrium

Correlation functions out equilibrium

For a given set (ω ; k; p), modes of the field propagating in the two directions

$$\begin{cases} E^+ = E^{(M)+} + \mathcal{T}E^{(W)+} + \mathcal{R}E^{(W)-} \\ E^- = E^{(W)-} \end{cases}$$

 \mathcal{R} and \mathcal{T} : standard reflection and transmission scattering operators, associated to the right side of the body

Total field correlators obtained by mean of the correlators of the fields emitted by each source

Source fields characterized by treating each source independently as if it was at thermal equilibrium at its own temperature and thus applying the fluctuation-dissipation theorem

R. Messina and M. Antezza, Europhys. Lett. 95, 61002 (2011); Phys. Rev. A 84, 042102 (2011)

Transition rates: thermal equilibrium

 α_{W} and α_{M} functions depend on the properties of the body and of the atom (geometry, dielectric permittivity, ...)

Average number of photons: $n(\omega, T) = \left(e^{\frac{\hbar\omega}{k_BT}} - 1\right)^{-1}$

General expressions for an arbitrary body

$$\begin{aligned} \alpha_{\rm W}(\omega_{nm}) &= \frac{3\pi c}{2\omega} \sum_{p,p'} \sum_{i,j} \frac{[\mathbf{d}_{mn}]_i^* [\mathbf{d}_{mn}]_j}{|\mathbf{d}_{mn}|^2} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \int \frac{d^2 \mathbf{k}'}{(2\pi)^2} e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}} \langle p, \mathbf{k} | \left[e^{-i(k_z-k_z^{'*})z} [\hat{\epsilon}_p^-(\mathbf{k},\omega)]_i [\hat{\epsilon}_{p'}^-(\mathbf{k}',\omega)]_j^* \mathcal{P}_{-1}^{(pw)} \right] \\ &+ e^{i(k_z+k_z^{'*})z} [\hat{\epsilon}_p^+(\mathbf{k},\omega)]_i [\hat{\epsilon}_{p'}^-(\mathbf{k}',\omega)]_j^* \mathcal{R} \mathcal{P}_{-1}^{(pw)} + e^{-i(k_z+k_z^{'*})z} [\hat{\epsilon}_p^-(\mathbf{k},\omega)]_i [\hat{\epsilon}_{p'}^+(\mathbf{k}',\omega)]_j^* \mathcal{P}_{-1}^{(pw)} \mathcal{R}^{\dagger} \\ &+ e^{i(k_z-k_z^{'*})z} [\hat{\epsilon}_p^+(\mathbf{k},\omega)]_i [\hat{\epsilon}_{p'}^+(\mathbf{k}',\omega)]_j^* \left(\mathcal{T} \mathcal{P}_{-1}^{(pw)} \mathcal{T}^{\dagger} + \mathcal{R} \mathcal{P}_{-1}^{(pw)} \mathcal{R}^{\dagger} \right) \right] |p',\mathbf{k}'\rangle, \end{aligned}$$

$$\begin{aligned} \alpha_{\mathrm{M}}(\omega_{nm}) &= \frac{3\pi c}{2\omega} \sum_{p,p'} \sum_{i,j} \frac{[\mathbf{d}_{mn}]_{i}^{*} [\mathbf{d}_{mn}]_{j}}{|\mathbf{d}_{mn}|^{2}} \int \frac{d^{2}\mathbf{k}}{(2\pi)^{2}} \int \frac{d^{2}\mathbf{k}'}{(2\pi)^{2}} e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}} \langle p, \mathbf{k} | e^{i(k_{z}-k_{z}'^{*})z} \\ &\times [\hat{\epsilon}_{p}^{+}(\mathbf{k},\omega)]_{i} [\hat{\epsilon}_{p'}^{+}(\mathbf{k}',\omega)]_{j}^{*} \Big(\mathcal{P}_{-1}^{(\mathrm{pw})} - \mathcal{R}\mathcal{P}_{-1}^{(\mathrm{pw})}\mathcal{R}^{\dagger} + \mathcal{R}\mathcal{P}_{-1}^{(\mathrm{ew})} - \mathcal{P}_{-1}^{(\mathrm{ew})}\mathcal{R}^{\dagger} - \mathcal{T}\mathcal{P}_{-1}^{(\mathrm{pw})}\mathcal{T}^{\dagger} \Big) | p', \mathbf{k}' \rangle \end{aligned}$$

where
$$\langle p, \mathbf{k} | \mathcal{P}_n^{(\text{pw/ew})} | p', \mathbf{k}' \rangle = k_z^n \langle p, \mathbf{k} | \Pi^{(\text{pw/ew})} | p', \mathbf{k}' \rangle$$

At thermal equilibrium $\alpha_{\sf W}$ and $\alpha_{\sf M}$ functions sum each other producing cancellations

Instead, out of thermal equilibrium...

effective number of photons!

$$n_{\text{eff}}^{(nm)} = \frac{n(\omega_{nm}, T_{\text{W}})\alpha_{\text{W}}(\omega_{nm}) + n(\omega_{nm}, T_{\text{M}})\alpha_{\text{M}}(\omega_{nm})}{\alpha_{\text{W}}(\omega_{nm}) + \alpha_{\text{M}}(\omega_{nm})}$$

$$n(\omega_{nm}, T_{\min}) < n_{\text{eff}}^{(nm)} < n(\omega_{nm}, T_{\max}) \quad \checkmark \quad T_{\min} = \min(T_{\text{M}}, T_{\text{W}})$$
$$T_{\max} = \max(T_{\text{M}}, T_{\text{W}})$$

Transition rates confined by their values at thermal equilibrium at T_{min} and T_{max}

The decay rates of each transition have the same value they would have if the temperatures of the body and of the environment were equal to the same:

$$\begin{split} T_{\rm eff}^{(nm)} &= \frac{\hbar \omega_{nm}}{k_B} \Big[\log \Big(1 + n_{\rm eff}^{(nm)^{-1}} \Big) \Big]^{-1} & \text{being, in general} \\ T_{\rm eff}^{(nm)} &\neq T_{\rm eff}^{(n'm')} \\ \end{split}$$
To each transition we can associate an effective temperature comprised between $T_{\rm W}$ and $T_{\rm M}$ $T_{\rm min}^{(nm)} < T_{\rm eff}^{(nm)} < T_{\rm max}$

The various transitions *feel* **different temperatures** whose values depend on the system-body distance, on the geometry of the body and on the interplay of all such parameters with the resonances of the body dielectric function.

Thermalization dynamics can be readily interpreted in terms of effective temperatures

Steady states: three-level system (thermal equilibrium)

 Λ configuration |3> ω₃₂ ω_{31} |2> $|1\rangle$

The atom thermalizes to a diagonal state whose populations are given by ratios of functions of various transition rates

At thermal equilibrium **Steady populations: thermal state**

 $\begin{pmatrix} \rho_{11}(\infty) \\ \rho_{22}(\infty) \\ \rho_{33}(\infty) \end{pmatrix} = \frac{1}{Z} \begin{pmatrix} n(\omega_{32}, T)(1 + n(\omega_{31}, T)) \\ n(\omega_{31}, T)(1 + n(\omega_{32}, T)) \\ n(\omega_{31}, T)n(\omega_{32}, T) \end{pmatrix} \\ Z = 3n(\omega_{31}, T)n(\omega_{32}, T) + n(\omega_{31}, T) + n(\omega_{32}, T) \end{pmatrix}$

Peculiar cancellation of $\alpha_{\rm W}$ and $\alpha_{\rm M,}$ so that the result becomes universal and independent on the atom-body distance and body's properties: steady populations depend only on the ratios $h\omega_{nm}/k_BT$

Steady populations depend on α_{W} and α_{M} , that

is on properties of the body and of the atom

Steady state is **not in general a thermal-state**

Emergence of various interesting and counter-intuitive dynamical features!!

Playing with effective temperatures

By varying the various parameters one can control separately effective temperatures

Inversion of population ordering of the two lowest energy states |1> and |2>

Required condition: $n_{eff}^{(32)} < n_{eff}^{(31)}$ that is $\omega_{32}/T_{eff}^{(32)} > \omega_{31}/T_{eff}^{(31)}$ This can happen if $n(\omega_{32}, T_{min}) < n(\omega_{31}, T_{max})$ $n_{eff}^{(31)}$ $n_{eff}^{(32)}$

Steady populations can go outside their values at equilibrium

The maximum of $\rho_{11}(\infty)$, obtained when $n_{\text{eff}}^{(32)} = n(\omega_{32}, T_{\text{max}}) \quad n_{\text{eff}}^{(31)} = n(\omega_{31}, T_{\text{min}})$ is larger than its value when $T_{\text{W}} = T_{\text{M}} = T_{\text{min}}$: $|1\rangle$ $|1\rangle$ $|3\rangle$ $|3\rangle$ $|T_{\text{eff}}^{(32)} = T_{\text{max}}$ $|2\rangle$

One can also obtain $T_{\text{eff}}^{(32)} = T_{\text{eff}}^{(31)}$. In this case the steady atomic state is a thermal one even if the full system is out of thermal equilibrium.

Specific example: atom in front of a slab

Slab: simple expressions for \mathcal{R} and \mathcal{T} : analytic results for α_{w} and α_{M} $\alpha_{W}(\omega_{nm}) = \frac{1 + B(\omega_{nm}) + 2C(\omega_{nm})}{2} \cdot \tilde{d}_{nm}$ $\alpha_{M}(\omega_{nm}) = \frac{1 - B(\omega_{nm}) + 2D(\omega_{nm})}{2} \cdot \tilde{d}_{nm}$ where 1 = (1, 1, 1) $\tilde{d}_{nm} = (|[d_{nm}]_{x}|^{2}, |[d_{nm}]_{y}|^{2}, |[d_{nm}]_{z}|^{2})/|d_{nm}|^{2}$

Dielectric permittivity of SiC

Drude-Lorentz model

$$\epsilon(\omega) = \epsilon_{\inf} \frac{\omega^2 - \omega_l^2 + i\Gamma\omega}{\omega^2 - \omega_r^2 + i\Gamma\omega}$$

Resonances: $\omega_r = 1.495 \ 10^{14} \ rad/s$ Surface phonon: $\omega_p = 1.787 \ 10^{14} \ rad/s$ Relevant length scale: $c/\omega_r \approx 2 \ \mu m$ Relevant temperature: $\hbar \omega_r / k_B \approx 1140 \ K$

At thermal equilibrium $B(\omega)$ disappears

Specific example: atom in front of a slab

$$\mathbf{M}_{1}^{\phi} = (1, 1, 0) \quad \mathbf{M}_{2}^{\phi} = \frac{c^{2}}{\omega^{2}} (\phi |k_{z}|^{2}, \phi |k_{z}|^{2}, 2k^{2}) \qquad \text{Fresnel coefficients}$$

$$\mathbf{Propagative}_{sector} \qquad \mathbf{B}(\omega) = \frac{3c}{4\omega} \sum_{p} \int_{0}^{\frac{\omega}{c}} \frac{k \, dk}{k_{z}} \mathbf{M}_{p}^{+}(k) \left(|\rho_{p}(k, \omega)|^{2} + |\tau_{p}(k, \omega)|^{2} \right)$$

$$\mathbf{C}(\omega) = \frac{3c}{4\omega} \sum_{p} \int_{0}^{\frac{\omega}{c}} \frac{k \, dk}{k_{z}} \mathbf{M}_{p}^{-}(k) \operatorname{Re}(\rho_{p}(k, \omega)e^{2ik_{z}z})$$

$$\mathbf{Evanescent}_{sector} \longrightarrow \mathbf{D}(\omega) = \frac{3c}{4\omega} \sum_{p} \int_{\frac{\omega}{c}}^{+\infty} \frac{k \, dk}{\operatorname{Im}(k_{z})} e^{-2\operatorname{Im}(k_{z})z} \mathbf{M}_{p}^{+}(k) \operatorname{Im}(\rho_{p}(k, \omega))$$

B is distance-independent and depends on the slab thickness δ **C** and **D** depend both on δ and on the atom-slab distance z For $z \rightarrow \infty$: **C** and **D** tend to 0, **B** remains finite and less than one for $z \rightarrow 0$: **C** remains finite and **D** diverges (its TM contribution) as

$$\mathbf{D}(\omega, z \to 0) \simeq \frac{3c^3}{16\omega^3 z^3} \operatorname{Im}\left(\frac{\varepsilon(\omega) - 1}{\varepsilon(\omega) + 1}\right) (2, 2, 1)$$

For small z: α_{M} dominates because of **the divergence of evanescent slab-field (D)** For large z: $\alpha_{W} > \alpha_{M}$ and their values are determined by a **propagative contribution (B)**

Effective temperature for a given transition

Isotropic dipoles. ω = 0.5 ω_r

 $T_{\rm W} = 470$ K, $T_{\rm M} = 170$ K

For small *z*, for any thickness δ , the atomic temperature always tends to $T_{\rm M}$, because of the divergence of **D**

By increasing z, there are oscillations connected to **C**

For large distances the value of $T_{\rm eff}$ depends on the interplay between δ and z.

The position of T_{eff} in the interval $[T_{min}, T_{max}]$ is governed by the value of **B**

Analysis of transition rates

For both panels: $\omega = 0.5 \omega_r$ $T_W = T_M = 470 \text{ K} \text{ (red continuous)}$ $T_W = 470 \text{ K}; T_M = 170 \text{ K} \text{ (purple dot-dashed)}$ $T_W = 170 \text{ K}; T_M = 470 \text{ K} \text{ (blue dotted)}$ $T_W = T_M = 170 \text{ K} \text{ (green dashed)}$ $\leftarrow \text{indicate the asymptotic values}$ Panel a) asymptotic curves for small z

(black continuous) for $T_W = T_M = 470$ K and $T_W = T_M = 170$ K ($\propto z^{-3}$)

For small *z*, slab thickness regulates the distances from the slab at which the evanescent field emitted by the slab dominates the atomic dynamics

For large z, both temperatures may contribute (for large δ) depending on the value of **B**

Crossing point delimits the two zones of influence.

Decay time two level system $\tau_R = \left[\Gamma(-\omega_{nm}) + \Gamma(\omega_{nm})\right]^{-1}$ $\operatorname{At} \omega_r: [10^{-7}, 10^{-3}] \text{ s}$ dipole momentum $\operatorname{At} \omega_p: [10^{-10}, 10^{-4}] \text{ s}$ $\approx 10^{-29} \text{ Cm}$

Steady populations

Out equilibrium, steady populations depend on atomic and slab properties (z, δ , $\epsilon(\omega)$)

Steady populations of |1> and |2> can go outside their values at equilibrium and be inverted in order

For small z, slab temperature T_M dominates. For large z, both temperatures may contribute

Purity

$$\Pi(\rho) = \operatorname{Tr}[\rho^2] = \sum_{i} \rho_{ii}^2 + 2\left(|\rho_{12}|^2 + |\rho_{13}|^2 + |\rho_{23}|^2\right)$$

Figure 9: (color online). Steady populations (red solid line for $\rho_{11}(\infty)$, green dashed line for $\rho_{22}(\infty)$, purple dot-dashed line for $\rho_{33}(\infty)$) as a function of z for $\delta = 0.01 \,\mu\text{m}$ (a) and $\delta = 2 \,\mu\text{m}$ (b), being $(T_{\rm W}, T_{\rm M}) = (300, 50) \,\text{K}$, $\omega_{32} = 1.02 \,\omega_r$ and $\omega_{31} = \omega_p$. Density plot of purity as a function of the two frequencies ω_{32} and ω_{31} for $z = 0.47 \,\mu\text{m}$, $\delta = 0.01 \,\mu\text{m}$ (c) and $\delta = 2 \,\mu\text{m}$ (d). The black dotted lines correspond to ω_r and ω_p and highlight the zones where high values of purity are obtainable.

Atomic cooling out of thermal equilibrium

Remarkable effect: starting from equilibrium configuration, by increasing the environmental temperature the atomic temperature can be decreased

Non-thermal states out of thermal-equilibrium

One can exploit out of equilibrium configurations to obtain values for the steady populations very far from the ones at equilibrium We have investigated dynamics, lifetimes and thermalization mechanism of an elementary quantum system (real or artificial atoms) interacting with a radiation field out of thermal equilibrium

We have shown that configurations out of thermal equilibrium can be exploited to obtain a **large variety of steady states, both thermal and non-thermal**, with populations that **can significantly differ** from their corresponding values at thermal equilibrium. Strong dependence on **atom-body distance, body geometry, dielectric response of the body and temperatures**

<u>Three-levels:</u> Unexpected behaviors such as ordering inversion of the population of the two lowest-energy atomic states can occur. We also predict a new atomic-cooling mechanism based on steady configurations without any additional external laser source

Our predictions suggest a mechanism to produce and control, through the modification of external parameters, a variety of atomic states which are stationary and obtained without any external laser source

Possible experimental tests ?