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FIG. 2: Temperature dependence of the three-body
loss rate L3. Filled circles: experimental data; green
dashed line: best fit to the data L3(T )=λ3/T

2 with
λ3 =2.5(3)stat(6)sys × 10−20(µK)2cm6s−1; the green band
shows the 1σ quadrature sum of uncertainties. Solid line:
prediction from Eq. (5), λ3 =1.52× 10−20(µK)2cm6s−1 with
η∗ =0.21 from [29, 30].

while keeping the temperature within 10% of 5.9 µK,
see Fig. 3. The excess heat δ entering in the correction
now depends on the value of ka. The correction is ap-
plied to all data points (filled circles) except in the range
1500 a0 <a< 5000 a0 (open circles), where the assump-
tions of our model are not applicable [36]. In the limit
|a|�λth, we observe that L3(a) saturates to the same
value on both sides of the resonance. In the opposite
limit |a|�λth, our data connect to the zero temperature
behavior [18] studied experimentally in [20–24]. On the
a< 0 side, the dashed line is the zero-temperature predic-
tion for L3 from [18]. We clearly see that finite tempera-
ture reduces the three-body loss rate. On the a> 0 side,
temperature effects become negligible for a< 2000 a0 as
testified by our measurements performed on a low tem-
perature Bose-Einstein condensate (green squares) which
agree with the total recombination rate to shallow and
deep dimers calculated at T =0 in [18] (dashed line). The
data around unitarity and on the a< 0 side are seen to be
in excellent agreement with our theory Eq. (4) described
below.

In order to understand the dependence L3(a, T ) theo-
retically, we employ the S-matrix formalism developed
in [18, 31, 32]. According to the method, at hyper-
radii R� |a| one defines three-atom scattering channels
(i=3, 4, ...) for which the wavefunction factorizes into a
normalized hyperangular part, Φi(R̂), and a linear su-
perposition of the incoming, R−5/2e−ikR, and outgoing,
R−5/2e+ikR, hyperradial waves. The channel i=2 is
defined for a> 0 and describes the motion of an atom
relative to a shallow dimer. The recombination or re-
laxation to deep molecular states (with a size of order
the van der Waals range Re) requires inclusion of other
atom-dimer channels. In the zero-range approximation,

FIG. 3: a) Scattering-length dependence of the three-body
rate constant L3(a) for constant T =5.9(6) µK (filled and
open circles). For small positive a, L3(a) for a low temper-
ature condensate is also shown (green squares). The solid
blue line corresponds to our theoretical prediction Eq. (4)
for T =5.9 µK. The blue range is the same theory for 5.3
to 6.5 µK. The dashed lines represent the zero-temperature
prediction for L3(a) [18]. All theory curves are for the 7Li
parameters η∗ =0.21 and R0 =270 a0 measured in [29, 30].
The vertical dotted lines correspond to |a|/λth =1. The open
circles in the range 1500 a0 <a< 5000 a0 are not corrected for
residual evaporation as our model is not applicable. b) Loga-
rithmic plot of the a< 0 side, displaying the two Efimov loss
resonances.

valid when Re �Rm ≡Min (1/k, |a|), the overall effect
of these channels and all short-range physics in general
can be taken into account by introducing a single Efimov
channel (i=1) defined for Re �R�Rm: the wavefunc-
tion at these distances is a linear superposition of the
incoming, Φ1(R̂)R−2+is0 , and outgoing, Φ1(R̂)R−2−is0 ,
Efimov radial waves. Here s0 ≈ 1.00624. The notion “in-
coming” or “outgoing” is defined with respect to the
long-distance region Rm

<∼R<∼ |a|, so that, for exam-
ple, the incoming Efimov wave actually propagates to-
wards larger R whereas incoming waves in all other chan-
nels propagate towards smaller hyperradii. The ma-
trix sij relates the incoming amplitude in the ith chan-
nel with the outgoing one in the jth channel and de-


