Sub-Doppler cooling of ⁴⁰K in three-dimensional gray optical molasses Diogo Rio Fernandes

Friday, October 19, 12

Outline

- Experimental apparatus
- Motivation for sub-Doppler cooling
- Gray molasses in a nutshell
- Discussion of experimental results
- Final remarks

Experimental Apparatus

Typical flux for ⁶Li and ⁴⁰K: $\sim 10^9$ at/s Best number of atoms achieved in MOT: $\sim 8 \times 10^9$ at for each species

Ridinger, A. et al. EPJ D 242, 223–242 (2011)

Experimental Apparatus

Magnetic Transport of ⁴⁰K

Heating ~10/2=5%

	Δt (s)	τ (s)
Injection	0.62	3
To Elbow	0.85	30
2 nd arm	2.5	30
Total	4	

Efficiency ≥40%

Runaway evaporation not yet observed in the Science cell

Improving the initial conditions

Sub-Doppler cooling

Narrow transition MOT

 λ (nm)

323

405

T_D (μK)

18

24

0.6 MHz

2.89 MH;

 $\Gamma = (2\pi)754 \,\mathrm{kHz}$

 $\Gamma = (2\pi) 5.9 \text{ MHz}$

 $T_{\rm D} = 140 \, \mu {\rm K}$

 $T_{\rm R} = 3.5 \, \mu {\rm K}$

 $T_{\rm D} = 18\,\mu{\rm K}$

 $T_{\mathsf{R}} = 15 \,\mu \mathsf{K}$

3P_{3/2}

2P

= 3/2

F = 5/2

F = 5/2

Modugno, G. et al. PRA **60**, R3373 (1999)

⁶Li: Duarte, P. et al. PRA **84**, 061406 (2011) ⁴⁰K: McKay, D. et al. PRA **84**, 063420 (2011)

671 nm

F = 3/2

- F=1/2

228 MHz

323 nm

Gray molasses: a simple picture

3. Optical pumping back to the dark manifold

Ol'shani M. and Minogin V. Opt. Commun. **89**, 393 (1992) Grynberg, G. and Courtois, J.-Y. EPL **27**, 41 (1994) Cohen-Tannoudji, C. - Collège de France

Numerical solving of the OBE

Experimental Sequence

MOT

 $I_{\text{cool}} = 13I_{\text{sat}} \qquad N_0 = 5 - 7 \times 10^8$ $I_{\text{repump}} = I_{\text{cool}}/20 \qquad T \approx 200 \,\mu\text{K}$ $b' = 9 \,\text{G} \cdot \text{cm}^{-1} \qquad I_{\text{sat}} = 1.75 \,\text{mW/cm}^2$

C-MOT $b' = 9 \xrightarrow{5 \text{ ms}} 60 \text{ G} \cdot \text{cm}^{-1}$ $T \sim 1-4 \text{ mK}$ $\sigma_{\text{rms}} = 1.4 \text{ mm}$

D₁ Molasses $I_{cool} = 14I_{sat}$ $I_{repump} = I_{cool}/8$

 $\vec{B} = 0$

3D gray molasses in Cesium: Boiron, D. et al. (Y.C. & C.S.) PRA 53, R3734 (1996)

Fast cooling dynamics

Fast cooling dynamics

Temperature determination

TOF=3.5ms T≈3mK no molasses 4 $T \approx I 20 \mu K$ 3 $\sigma_{\rm vert}$ (mm) s TOF=17ms T≈36µK $\tau_{\rm M} = 1.5$ ms 0 10 15 5 20 0 Time of flight (ms) $\tau_{\rm M}$ = 6.0 ms \approx I.5 cm

Friday, October 19, 12

Light intensity dependence

Varying light intensity

Optimal parameters

Temperature limit of this scheme?

- ambient magnetic field bias compensated
- no atomic density dependence observed
- what is the limiting factor?
- role of the off-resonant excitation?

	duration (ms)	$I_{\rm cool}(I_{\rm sat})$		
capture phase	6	14		
cooling phase	2	$14 \rightarrow 1$		
$\delta_{\rm cool} = \delta_{\rm repump} = +2.3\Gamma$				

$$I_{\rm repump} = I_{\rm cool}/8$$

 $T_{\rm final} \approx 20 \,\mu{\rm K}$

Loading into a Quadrupole Trap

	D_2 molasses [1]	Blue MOT [2]
Ν	$\sim 10^7$	1.5×10^8
$T(\mu K)$	15	45
$n_0 ({\rm cm}^{-3})$	$\sim 10^{10}$	$1.2 imes 10^{10}$
PSD (× 10^{-5})	0.4	0.04

[1] Modugno, G. et al. PRA 60, R3373 (1999)
[2] McKay, D. et al., PRA 84, 063420 (2011)

Future Steps

- Test the improvement on transport efficiency to the science cell
- Evaporation in a hybrid trap

Loading into a ID optical lattice
Study of a system with mixed dimensions

Lin, Y.-J. et al. PRA **79**, 063631 (2009)

Nishida, Y. and Tan, S. PRL **101**, 170401 (2008) Nishida, Y. PRA **82**, 011605(R) (2010)

Thanks to Ulrich E. and Andrea B. for powerful laser source

Fermix-Termodynamix team

Christophe S.

Norman K.

Franz S.

Frédéric C. DRF

Saijun W.

Lev K.

Thanks for listening

arXiv:1210.1310 [cond-mat.quant-gas]

Friday, October 19, 12