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Simulation of orbital magnetism with neutral particles
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(7 — qA)?

Effective single particle Hamiltonian :  Hgpital = 5
m

Many patrticles: Quantum Hall physics

When a charged particle is placed in

a magnetic field and follows a closed
contour, it acquires a geometric phase @
(Aharonov-Bohm)

Any other process that creates a ‘geometrical’ phase can simulate magnetism
for example : Sagnac (rotation), Berry (adiabatic following)

Dalibard, Gerbier, Juzelilinas & (")hberg, Rev. Mod. Phys. 83, 1523 (2011)

Outline of the talk

1. A toy model : Berry’s phase in a bulk system

2. Optical lattices in the tight-binding regime

3. Flux lattices

Simulating orbital magnetism without rotation: toy model
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Using the Rotating-Wave Approximation, the coupling reads in the basis |g), |e):
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A toy model (Il): adiabatic following of a dressed state
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The atom follows adiabatically the dressed state X+
Adiabatic elimination of the dressed state X— —— — ih% =H'yy
’_ (13 - H)Q @ T = vector potential,
H = onmf g T w A= ih(x+[Vx+) Berry’s phase
-~ h - ]
A=—(1-cosf)Vop Berry connection
Magnetism ? 2 n
B=VxA4d = 3 V¢ x V(cos0) Berry curvature

One needs both a gradient of the mixing angle 8 and the phase ¢

A toy model (l11): effective magnetic field

¢ =ky
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Gaussian beam: tan A A e
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B = §V¢ x V(cos ) Vo ~1/w
R _ Wwaist w
7 < N —> typical scale: B ~ hk/w
Bow? .
Number of vortices in area w?: N, ~ o LY possibly > 1
2mh A

Spielman 2010

For reaching quantum Hall states, one needs filling factors of order unity:

Natorns ~ patw2
N, w/A

For degenerate atomic gases, one typically has : paiA® > 1

~ PatWA

Need to go to small w: optical lattice-like configuration
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Magnetism in a 2D square lattice

electron in a square lattice single particle energy spectrum
y tight binding, single band 1
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Implementation in an optical lattice Ruostekoski

Sorensen-Demler-Lukin
Muller, Dudarev et al.
Lim-Smith-Hemmerich
Zhang et al.

Goldman et al.

_._ e Gerbier-Dalibard
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With properly chosen laser standing waves, achieve a state-dependent lattice

Seminal paper: Jaksch-Zoller

For simplicity, consider again a two-level system e-g

Yy W ei(n+2)kd ei(n+2)kd
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standard tunnelling

along y o =kd laser assisted

tunnelling along x

Gauge fields in the tight-binding regime

Staggered field: 1.Bloch (2011)
Time dependent potentials: K. Sengstock (2012)
Use of radiofrequency fields: Spielman (2012)

Rectification is needed to reach the Hofstadter butterfly
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Among other proposals: Gerbier & Dalibard, use of a superlattice

For large filling factors (= 1), these lattices in the tight-binding
regime are quite different from the bulk Lowest Landau Level.

The are interesting in their own right, but one can look
for systems closer to bulk Quantum Hall systems.
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Cooper, PRL 106, 175301 (2011)

Cooper & Dalibard, EPL 95, 66004 (2011)
Cooper & Moessner, PRL 109, 215302 (2012)
Cooper & Dalibard, arXiv: 1212.3552

See also Juzeliunas & Spielman, NJP 14 123022 (2012)

Artificial magnetic field in a periodic optical lattice?
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&, 0, ¢ : periodic functions of x,y
X — g

A= g(l — cos#)V¢ is also periodic, hence 7{ A-dl=0 ?
c
//Bz(x,y) drdy =20 -

Correct only if /T has no singularity in the plaquette

Singularities of A can ocur at any point where sin @ vanishes: ¢ undefined




An example of flux lattice (Cooper 2011)

hE [ cos®  sinf e R
= — . 2
v 2 (sinGe"i) —cosf )
Consider a triangular geometry where : K1
cosf = cos [(R1 — Rz) - 7]
sinf €' = cos(R; - ) — i cos(Ry - 7) K1 — R
Vortex-type singularities in points where : cos(<1 - 7) = 0 cos(Ra - 7) =0

//B (@,y) dody = —h > sign(j)

singular j

= A4rh

How to operate a flux lattice?

Tight binding limit ? Because of the relation //B z,y) dvdy = —7h Z sign(j
singular j

there is an integer number of flux quanta per plaquette: not so interesting

Leaving the tight binding limit: 7k ~ Frecoil
The adiabatic approximation becomes questionable and one has to

2 ~ . —i¢
calculate the band structure of p hj ( cos § sinf e )
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How to operate a flux lattice (Il) ?

Look e.g. at the lowest band n = 0:

|uE) : periodic part of the Bloch functions of this band

* The band should be as flat as possible:

Mimics the degeneracy of Landau levels, increase the role of interactions

 The band should possess “magnetic properties”, characterized by the Chern index ¢,

2
e
Thouless et al. 1982: Hall conductivity (filled band) — op = ——cq
A(k) = < Ui |V,; E> “vector potential” and “magnetic field”
B(E) V x A(k ) in momentum space
1 -
¢ B k) d*k
0= 2w (k)

Realistic example for a spin1/2 atom
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Cooper & Dalibard 2011 _ g +
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Raman coupling between A
two ground states
wp+0
o_ pol.
' ); 1/10 I Lattice <|iepth 2 recoil energies

0=m/4

DosS (arb.)

E/Erecoil

Lowest band : Chern index=+1, width=0.01 recoil energy

Gap above the lowest band: 0.4 recoil energy

Which ground state in the presence of interactions? Quantum Hall physics?




. . Cooper & Moessner
A guide line to progress

View optical lattices as a tight-binding model in momentum space

Consider again the two-state model {|g),|e)} in a triangular configuration:

v _ hk [ cosf  sind e i
AL= 9 \sinfe®  —cosd

cosf = cos (R — Ra) - 7]

sinf e'® = cos(R; - 7) — i cos(Rg - 7)

. . Cooper & Moessner
A guide line to progress

View optical lattices as a tight-binding model in momentum space

Consider an atom with N >> 1 internal states |¥1),...,|?¥~) and assume a laser
scheme (non trivial!) that provides the following coupling in momentum state:

2N triangles,
with flux /N
per triangle

K2
Ry S
|1, 5+ hE3) |, P+ hia)
For N > 1 one recovers magnetic
. properties identical to those of the lowest
FL = he phase /2 for each of the four Landau level with a uniform Berry curvature
triangles of the unit cell [t1, P) —s |12, D'+ hR1)
. .. . . Cooper & Dalibard
How to implement this idea in practice arXiv: 1212.3552

Three-level atom (typically 8’Rb, J=1 ground state) + 3 beams at 120° in the xy-plane
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|X)=|J=1,mx =0),...
The degeneracy between | X), |Y), |Z)is lifted e.g. by micro-wave dressing

Z,p— ks)
Momentum space: ﬁ :b\
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|X,p — k1)——>|Y,p — ks) q =k — ko

How to implement this idea in practice (I1)

Z
Use three triplets of waves (same optical modes) / wx
generated by acousto-optic modulators X Y
R - X
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- Y Z X Y The control of the nine phases
/ \ / \ / \ / \ @5, ¢}, ¢ allows one to adjust
/ the phases of the triangles in
X Y Z X -
/7 \ /7 \ /\ /\

momentum space

Quasi-flat band in position space: 0.015 recoil energy, Gap/50




Cooper & Dalibard
Is it good for reaching quantum Hall state? arXiv: 1212.3552

Exact diagonalization for various filling factors; calculate the gap :
1
Ap = N [E(N+1)+ E(N —1)—2E(N)]

A non-zero gap signals an incompressible, strongly correlated ground state

—e V=1/2 (N¢=6x3)

Filling factors %2 and 1

0.03- 4
002+ 4 Very good news!
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z Incompressible states
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Cooper & Dalibard
What are these incompressible states? arXiv: 1212.3552

Low energy spectra + adiabatic continuity confirm that these states are

—> Laughlin-like state for filling factor %2

—> Non-Abelian Moore-Read phase (Pfaffian) for filling factor 1

Our 3-level atom LLL (fictitious 12-level atom)
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Summary
Optical flux lattices offer the possibility to simulate bulk
fractional quantum Hall effect, with large filling factors. ws |w2 w1
P3 |2 | L1
They do not operate in the tight-binding regime |Z)
(relatively weak laser intensity is needed) [v)
—|X)

The more internal states are included, the better...
Here a realistic 3-level configuration, where all needed frequencies (9)
can be derived from the same laser source with programmable devices

. . e v=1/2 (N,=6x3)
Characterization of many-body groundstates 003 IR
of bosons in an OFL

002
~

AWE,

Robust quantum Hall states, including
Laughlin and non-Abelian Moore-Read,
for relatively weak interaction strength
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