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OUTLINE OF THE LECTURE

• Introduction and physical motivation

• An exactly solvable toy model

• The multimode case

• Comparison to numerical simulations



INTRODUCTION AND PHYSICAL MOTIVATION



MOTIVATION FOR SPIN SQUEEZING

What are the atomic condensates good for ?

• Main application of cold atoms: Atomic clocks (Salomon,
Clairon, 1999)

• With interactions, prepare quantum correlations that
are useful for metrology

• They can increase the signal-to-noise ratio in atomic
clocks for a given interrogation time (Kitagawa, Ueda,
1993; Wineland, 1994)

• Proof-of-principle experiments with condensates (Ober-
thaler, 2008; Treutlein, 2010): A gain of a factor 3 on
the signal-to-noise ratio



ATOMIC CLOCKS IN BRIEF

What an atomic clock does:

• Measures the transition frequency ωab of two-level atoms

• Formally, a two-level atom is a spin 1/2

• Collective spin S =
∑N
i=1 Si, free Hamiltonian:

H0 = ~ωabSz

• At time 0, prepare the collective spin along x. At time
τ , measurement of the spin precession angle ωabτ gives
transition frequency ωab (Ramsey method).

Transverse quantum fluctuations: ∆Sy∆Sz ≥ 1
2|〈Sx〉|

• Standard quantum limit: All spins along x, 〈Sx〉 = N/2:

∆Sst
y = ∆Sst

z =
√
N/2 −→ ∆ωab =

1

N1/2τ
• This is larger than technical noise in good clocks



ONE CAN GAIN WITH SPIN SQUEEZED STATES

• With respect to standard quantum limit, one can in prin-
ciple reduce a lot ∆Sy, at the expense of increasing ∆Sz

• . . . and of decreasing |〈Sx〉|
• Gain 1/ξ on the Ramsey signal-to-noise ratio:

ξ2 =
N∆S2

⊥,min

|〈S〉|2
< 1 −→ ∆ωab =

ξ

N1/2τ

Kitagawa-Ueda spin squeezing: H = ~ωabSz + ~χS2
z

• Spin-dependent Larmor frequency: Evolution turns the
fluctuation circle into a tilted ellipse. At best time:

ξ2min ∼
N→∞

32/3

2N2/3

• Realisable with two-mode condensates (Cirac, 2001):

Sx + iSy = a†b, Sz = (a†a− b†b)/2, χ =
g

~V



ON THE BLOCH SPHERE

In practice, squeezed axis is tilted (rotation required):

∆S2
⊥,min =

1

2

[

〈S2
y〉 + 〈S2

z〉 − |〈(Sy + iSz)
2〉|
]



WHAT HAPPENS IN REAL LIFE ?
There is decoherence in atomic gases:

• Mainly due to the coexistence of one-body and three-
body losses

• Yun Li, Castin, Sinatra, 2008 : Loss events lead to a
random dephasing among the two modes

ξ2min →
N→∞

(

5
√

3

28π

m

~a

)2/3(
7

2
K1K3

)1/3

An atomic gas is a multimode system:

• At finite temperature, the non-condensed modes consti-
tute a dephasing environment for the condensate mode

• Cf. previous lecture: This leads to phase spreading of
the condensate and a finite coherence time

• What is the effect on spin squeezing ?



AN EXACTLY SOLVABLE TOY MODEL



A TWO-MODE MODEL WITH A RANDOM ELEMENT

H = ~ωabSz + ~χ(S2
z +DSz) [Minguzzi, 2011]

•D is a Gaussian random real variable of zero mean

• To mimick a random potential (having opposite effects
on a and b) with uniform variance and short range cor-
relations, take scaling in thermodynamic limit:

〈D2〉
N

= ǫ = constant

•D is time independent, but it varies randomly from one
experimental realisation to the other

• The model is integrable, Sz being a constant of motion:

iȧ =
χ

2

(

2Sz +D +
1

2

)

a



MAIN RESULTS OF THE TOY MODEL

• Best squeezing is in thermodynamic limit and finite:

ξ2min
lim.therm.

=
ǫ

1 + ǫ
+

1

N1/2

2ǫ1/2

(1 + ǫ)3/2
+ O(1/N)

• The corresponding optimal time is divergent:

ρgtmin

~

lim.therm.∼
[

N

ǫ(1 + ǫ)3

]1/4

• In practice, close-to-best-squeezing time:

ξ2(tη) = (1 + η)ξ2min =⇒
ρgtη

~

lim.therm.→
1 − ηǫ

(1 + ǫ)(ηǫ)1/2

taking for example η = 0.1



ξ2(t) FOR THE TOY MODEL
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FAST DERIVATION IN THERMODYNAMIC LIMIT
Modulus-phase representation for strongly occupied modes:

a = eiθaN
1/2
a , [Na, θa] = i

• Much before the phase collapse time, ρgt/~ ≪ N1/2:

Sx ≃
N

2
, Sy ≃ −

N

2
(θa − θb), Sz =

Na −Nb

2
• From the Heisenberg equations for the phase operators:

(θa − θb)(t) = (θa − θb)(0) − χt[2Sz +D]

• Taking first the large N then the large time limit:

Sy ∼
ρgt

~
σy, σy = Sz +

1

2
D

ξ2min →
〈σ2
y〉〈S2

z〉 − 〈σySz〉2

〈σ2
y〉〈S2

z〉
=

〈D2〉
N + 〈D2〉

=
ǫ

1 + ǫ

• Also close-to-best-squeezing time can be recovered



THE MULTIMODE CASE



EXPERIMENTAL SEQUENCE

• Start with N atoms in internal state a at thermal equi-
librium, no atoms in internal state b

• Spatially homogeneous system, periodic boundary con-
ditions

• At time 0, a π/2 pulse to prepare spin N/2 along x:

ψ̂a(0
+) =

1
√

2

[

ψ̂a(0
−) − ψ̂b(0

−)
]

• Evolution with interactions among each internal state:
gaa = gbb = g. No crossed interactions: gab = 0

• Mean spin remains aligned along x: one can still use

∆S2
⊥,min =

1

2

[

〈S2
y〉 + 〈S2

z〉 − |〈(Sy + iSz)
2〉|
]



NUMBER-CONSERVING BOGOLIUBOV THEORY

• Modulus-phase representation for a0, b0

• Number conserving non-condensed fields:

Λ̂a(r) = e−iθaψ̂a⊥(r) =
∑

k6=0

(Ukbak + Vkb
†
a−k)

eik·r

V 1/2

• The quasiparticle annihilation operators evolve with phase
factors e−iǫkt/~

• Evolution of phase operators (previous lecture):

(θa − θb)(t) = (θa − θb)(0
+) − gt

~V
[2Sz + D]

D secular≃
approx.

∑

k6=0

(Uk + Vk)
2(n̂ak − n̂bk)

where n̂σk is a number of Bogoliubov quasi-particles.



BOGOLIUBOV RESULTS
Calculate with a double expansion technique:

• Up to first order in ǫBog= non-condensed fraction

• To leading order in 1/N in thermodynamic limit:

D ≈ (NǫBog)
1/2, θa − θb ≈ 1

N1/2

Central result:

ξ2(t) =
1 − O(ǫBog)

(τ +
√

1 + τ2)2
+

2[
〈D2〉
N τ2 + O(ǫBog)]

(τ +
√

1 + τ2)
√

1 + τ2

with renormalized time τ = [ρgt/(2~)][1 +O(ǫBog)]

• First term [without O(ǫBog)] is Kitagawa-Ueda model

• Second term saturates to minimal squeezing:

ξ2min =
〈D2〉
N

= (ρa3)1/2f(kBT/ρg)



ξ2(t) FOR BOGOLIUBOV THEORY

(ρa3)1/2 = 10−3, kBT/ρg = 1
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MINIMAL ξ2 FOR BOGOLIUBOV THEORY
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VALIDITY CONDITIONS

• System out-of-equilibrium after pulse

• Will thermalize, this is neglected in Bogoliubov theory

• Have the close-to-best-squeezing time

ρgtη

~
≃ 1

η1/2ξmin

smaller than thermalisation time, estimated by Beliaev-
Landau damping rates of modes of energy kBT or ρg:

ρgttherm

~
∝ 1

(ρa3)1/2

• Validity condition satisifed in weakly interacting limit:

tη

ttherm
∝ (ρa3)1/4 ≪ 1



COMPARISON TO CLASSICAL FIELD SIMULATIONS



ξ2(t) FOR SIMULATIONS
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MINIMAL ξ2 FOR SIMULATIONS
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CLOSE-TO-BEST-SQUEEZING TIME FOR
SIMULATIONS (filled symbols)

0,1 1 10
k

B
T/ρg

10
-1

10
0

10
1

10
2

ρg
t η(ρ

a3 )1/
4 // h

Empty symbols: thermalisation time.



THERMALISATION TIME FOR
SIMULATIONS
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Summary of results for spin squeezing:

• For atoms with two internal states a and b, apply a π/2
pulse on a condensate initially in a. Due to interactions,
phase state transformed into spin squeezing state

• If injected in an atomic clock, statistical uncertainty on
clock frequency after interrogation time τ :

∆ωab =
∆S⊥,min

〈Sx〉τ
≡

ξ

N1/2τ

• Spin dynamics is a phase dynamics: Sz =const, Sx ≈const,

Sy ∝ θa − θb ∝ (Na −Nb +D)t∂Nµ/~

where D due to multimode nature of the fields (random
dephasing environment). Best squeezing in weakly in-
teracting, thermodynamic limit does not vanish:

ξ2min ≃ 〈D2〉
N



• We have extended the theory to the harmonically trapped
case: for kBT ≃ µ ≃ 10~ω and N = 106, ξ ≈ 1/30 vs
ξ ≈ 1/100 for Kitagawa-Ueda model.

• Reaching such squeezing levels requires reduction of tech-
nical noise in experiments.
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