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OUTLINE OF THE LECTURE

e Introduction and physical motivation
e An exactly solvable toy model
e The multimode case

e Comparison to numerical simulations



INTRODUCTION AND PHYSICAL MOTIVATION



MOTIVATION FOR SPIN SQUEEZING

What are the atomic condensates good for 7

e Main application of cold atoms: Atomic clocks (Salomon,
Clairon, 1999)

e With interactions, prepare quantum correlations that
are useful for metrology

e They can increase the signal-to-noise ratio in atomic
clocks for a given interrogation time (Kitagawa, Ueda,.

1993; Wineland, 1994)

e Proof-of-principle experiments with condensates (Ober-
thaler, 2008; Treutlein, 2010): A gain of a factor 3 on
the signal-to-noise ratio



ATOMIC CLOCKS IN BRIEF

What an atomic clock does:

e Measures the transition frequency w,p of two-level atoms

e Formally, a two-level atom is a spin 1/2

e Collective spin S = Z,fil S;, free Hamiltonian:
H() — hwabSZ
e At time 0, prepare the collective spin along x. At time

7, measurement of the spin precession angle w,,T gives
transition frequency w,p (Ramsey method).

Transverse quantum fluctuations: ASyAS, > 2|(Sa;)|
e Standard quantum limit: All spins along x, (Sz) = IN/2:

1
st st . /

e This is larger than technical noise in good clocks




ONE CAN GAIN WITH SPIN SQUEEZED STATES

e With respect to standard quantum limit, one can in prin-
ciple reduce a lot ASy, at the expense of increasing AS,

e ... and of decreasing |{Sg)]
e Gain 1/£ on the Ramsey signal-to-noise ratio:
NAS?
2 1 ,min 3
— : <1— Aw,p =
O = N1/,

Kitagawa-Ueda spin squeezing: H = hw,p,S> + hxsg
e Spin-dependent Larmor frequency: Evolution turns the

fluctuation circle into a tilted ellipse. At best time:
32/3
gmm N—>oo 2N2/3

e Realisable with two-mode condensates (Cirac, 2001 ):



ON THE BLOCH SPHERE
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uncorrelated atoms squeezed

In practice, squeezed axis is tilted (rotation required):

A i = 5 [(82) +(82) — 1((Sy +i82)%)]



WHAT HAPPENS IN REAL LIFE ?
There is decoherence in atomic gases:

e Mainly due to the coexistence of one-body and three-
body losses

e Yun Li, Castin, Sinatra, 2008 : Loss events lead to a
random dephasing among the two modes

2/3 1/3
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min o\ 287 hia 2

An atomic gas is a multimode system:

e At finite temperature, the non-condensed modes consti-
tute a dephasing environment for the condensate mode

e Cf. previous lecture: This leads to phase spreading of
the condensate and a finite coherence time

e What is the effect on spin squeezing ?



AN EXACTLY SOLVABLE TOY MODEL



A TWO-MODE MODEL WITH A RANDOM ELEMENT

H = hwgpS» + hix (8% + DS;) [Minguzzi, 2011

e D is a Gaussian random real variable of zero mean

e To mimick a random potential (having opposite effects
on a and b) with uniform variance and short range cor-
relations, take scaling in thermodynamic limit:

(D?)
N
e D is time independent, but it varies randomly from one

experimental realisation to the other

— € = constant

e The model is integrable, S, being a constant of motion:

=X (25, + D2
za—g z 5 a



MAIN RESULTS OF THE TOY MODEL

e Best squeezing is in thermodynamic limit and finite:

lim.therm. € 4 1 261/2
14+e N2 4 €)3/2

e The corresponding optimal time is divergent:

PItmin lim.therm. [ N ]1/4

2
Smin

+ O(1/N)

h e(1 + €)3
e In practice, close-to-best-squeezing time:
Pgty lim.therm. 1 —mne
E(ty) = 1+l — — =
( 77) ( 77) min A (1 + E)(,'76)1/2

taking for example n = 0.1
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FAST DERIVATION IN THERMODYNAMIC LIMIT
Modulus-phase representation for strongly occupied modes:

a = e®aNy/?, [N, 04 =i
e Much before the phase collapse time, pgt/h << N 1/2,
N N Ng — Np

e From the Heisenberg equations for the phase operators:
(6a — 0p)(t) = (0a — 6p)(0) — xt[2S: + D]
e Taking first the large IN then the large time limit:

t 1
2 (oS —(oyS)? | (D) e
i (02)(S2) N +(D2) 1+4e

e Also close-to-best-squeezing time can be recovered



THE MULTIMODE CASE



EXPERIMENTAL SEQUENCE

e Start with [N atoms in internal state a at thermal equi-
librium, no atoms in internal state b

e Spatially homogeneous system, periodic boundary con-
ditions

e At time 0, a /2 pulse to prepare spin IN/2 along x:

$a(0h) = = [#a(07) = $4(07)

e Evolution with interactions among each internal state:
daa = gpp = g. No crossed interactions: g,p = 0

e Mean spin remains aligned along x: one can still use

A i = 5 [(82) +(S2) — 1((Sy +i82)7)]



NUMBER-CONSERVING BOGOLIUBOV THEORY

e Modulus-phase representation for ag, bg

e Number conserving non-condensed fields:

e The quasiparticle annihilation operators evolve with phase
factors e text/h

e Evolution of phase operators (previous lecture):
gt

(0a — 0b)(t) = (6a — 05)(0T) — - 7[2S> + D]
secular _ _
ApBTOX. > (Ui + Vi) *(Prak — frpi)
k+£0

where 751 is a number of Bogoliubov quasi-particles.



BOGOLIUBOV RESULTS
Calculate with a double expansion technique:

e Up to first order in egoe= non-condensed fraction

e To leading order in 1/IN in thermodynamic limit:

1
D= (NeBOg)1/2, Og — Op ~ ~Ni/2
Central result:
DZ
1 — O(epog) 20 RA72+ O(epoy)]

2 _
S = TR Y e W
with renormalized time T = [pgt/(2h)][1 + O(eBog)]

e First term [without O(epyg)] is Kitagawa-Ueda model

e Second term saturates to minimal squeezing:
(D?)

bmin =~ = (pa®)/2f (kBT /pg)




¢%(t) FOR BOGOLIUBOV THEORY
(pa®)1/2 = 1073,kpT/pg = 1

<D*>/ N

] IIIIIIII ] IIIIIIII ] IIIIIIII ] IIIIIIII L LIt

10™ ¢ /
- Two-mode model
10-5 i . | . | . | . | |
0 20 40 60 80 100



MINIMAL £¢2 FOR BOGOLIUBOV THEORY
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VALIDITY CONDITIONS

e System out-of-equilibrium after pulse
e Will thermalize, this is neglected in Bogoliubov theory
e Have the close-to-best-squeezing time
pgtny N 1
h 771/2€mi1r1
smaller than thermalisation time, estimated by Beliaev-
Landau damping rates of modes of energy kT or pg:

PItiherm ~ 1
h (pa3)t/2

e Validity condition satisifed in weakly interacting limit:

t
ttherm




COMPARISON TO CLASSICAL FIELD SIMULATIONS



¢%(t) FOR SIMULATIONS
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CLOSE-TO-BEST-SQUEEZING TIME FOR
SIMULATIONS (filled symbols)
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Empty symbols: thermalisation time.



THERMALISATION TIME FOR

SIMULATIONS
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Summary of results for spin squeezing:

e For atoms with two internal states a and b, apply a 7w /2
pulse on a condensate initially in a. Due to interactions,
phase state transformed into spin squeezing state

e If injected in an atomic clock, statistical uncertainty on
clock frequency after interrogation time 7:

ASJ_,mi]a _ 3
S\ N2y
e Spin dynamics is a phase dynamics: S, =const, S, ~const,
Sy x 04 — 0y x (Na — Np + D)taN/L/h
where D due to multimode nature of the fields (random

dephasing environment). Best squeezing in weakly in-
teracting, thermodynamic limit does not vanish:

(D?%)
N

Awab —

2~
Smin —



e We have extended the theory to the harmonically trapped
case: for kT ~ p ~ 10hw and N = 109, ¢ ~ 1/30 vs
£ =~ 1/100 for Kitagawa-Ueda model.

e Reaching such squeezing levels requires reduction of tech-
nical noise in experiments.
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