BEYOND ZERO-RANGE CLOSE TO UNITARY LIMIT

Y. Castin, F. Werner, E. Tignone, C. Mora LKB and LPA, École normale supérieure, Paris L. Pricoupenko LPTMC, Université Pierre et Marie Curie, Paris

OUTLINE OF THE TALK

- Finite range corrections in the fermionic gas:
 - -generalized relations à la Tan
 - -zero-temperature damping (collapse) of the breathing mode
- How are Efimovian trimers born ?
 - analytics on a narrow Feshbach resonance for the 2+1 fermionic problem

FINITE RANGE CORRECTIONS IN THE FERMIONIC GAS

CONTEXT AND MOTIVATION

Real spin-1/2 fermions do not have a contact interaction:

- interaction potential V(r) with short range (here for simplicity, compact support of radius b)
- repulsive hard-core part (to avoid collapse) and negative parts so that *s*-wave interaction is resonant:

scattering length $a, |a| \gg b$

• cold and dilute gas:
$$b \ll rac{1}{k_F}, \lambda_{
m dB} = \left(rac{2\pi\hbar^2}{mk_BT}
ight)^{1/2}$$

How does this differ from the Wigner-Bethe-Peierls zerorange model?

$$\psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = \left(rac{1}{r_{ij}} - rac{1}{a}
ight) A_{ij}\left(\mathbf{R}_{ij}, (\mathbf{r}_k)_{k \neq i, j}
ight) + O(r_{ij})$$

FINITE 1/a CORRECTIONS TO UNITARY LIMIT General relations for the zero-range model:

• Tan relation (generalizing a Lieb relation to 3D):

$$rac{dE}{d(-1/a)} = rac{\hbar^2}{4\pi m} \sum_{i < j} \langle A_{ij} | A_{ij}
angle$$

- Can be proved using Hellmann-Feynman theorem (as Lieb did in 1D) for a lattice model
- The same derivative (contact) appears in short range pair distribution function, or tail of momentum distribution by properties of the Fourier transform, as in 1D [Olshanii, Dunjko (2003)]
- Experimental checks, in particular by Deborah Jin.
- Morality: The unitary solution contains in itself information on finite 1/a corrections.

FINITE RANGE CORRECTIONS TO ZERO-RANGE LIMIT

- Leading correction is universal: depends only on effective range r_e , not on details of V(r)
- The zero-range solution $(\forall 1/a)$ contains in itself information on finite range corrections (Werner, Castin, 2012):

$$\left(rac{\partial E}{\partial r_e}
ight)_a \stackrel{3D}{=} 2\pi \sum_{i < j} \langle A_{ij} | [E-H_{ij}] | A_{ij}
angle$$

with reduced Hamiltonian obtained by removing the relative particle ij:

$$\begin{split} H_{ij} &= \left(H - \frac{p_{ij}^2}{m}\right)_{\vec{r}_i, \vec{r}_j \to \vec{R}_{ij}} \\ H_{ij} &= -\frac{\hbar^2}{4m} \Delta_{\mathbf{R}_{ij}} - \frac{\hbar^2}{2m} \sum_{k \neq i, j} \Delta_{\mathbf{r}_k} + 2U(\mathbf{R}_{ij}) + \sum_{k \neq i, j} U(\mathbf{r}_k) \end{split}$$

EXPERIMENTALLY RELEVANT CONSEQUENCES 1. Pair distribution function at short distances:

$$ar{g}^{(2)}_{\uparrow\downarrow}(ec{r}) = rac{m}{4\pi\hbar^2} \left[rac{\partial E}{\partial (-1/a)} \left(rac{1}{r} - rac{1}{a}
ight)^2 - 2 rac{\partial E}{\partial r_e} + O(r)
ight]$$

- This improves Tan's result [where O(1) is neglected].
- 2. Equation of state of homogeneous gas can be deduced from the density profile of the trapped gas [Nascimbène, Navon, Jiang, Chevy, Salomon (2010)]
 - Ku, Sommer, Cheuk, Zwierlein (2012): precise measurement of ξ on lithium $[\mu(T=0) = \xi E_F$ for the unpolarized unitary gas]
 - Universality of finite-range correction + Bo Gao formula giving $r_e(R_*, a_{\mathrm{bg}}, C_6)$ + Carlson's Monte Carlo calculations \longrightarrow impact on ξ is $\approx 0.5\%$.

WITHIN A SO(2,1) LADDER

• Reminder of ladder structure (unitary gas in an isotropic harmonic trap):

 $E_q = E_{ ext{CoM}} + (s+1+2q)\hbar\omega, \quad q\in\mathbb{N}$

with q quantum number for undamped breathing mode

- general N-body problem unsolved: $\partial E/\partial r_e$ unknown
- Separability of ψ in hyperspherical coordinates implies separability of A_{ij} , with known hyperradial part, and with unknown hyperangular part common to a ladder. This leads to explicit expressions (in terms of s and qand the Γ function) for

$$\frac{\partial E_q/\partial r_e}{\partial E_0/\partial r_e} \quad \text{and} \quad \frac{\partial E_q/\partial (1/a)}{\partial E_0/\partial (1/a)}$$

[(Werner, Castin, 2012). See also Moroz (2012).]

Large N, unpolarized case:

- One evaluates the derivatives of E_0 using the local density approximation.
- Corrections to E_q linear in q: change of breathing frequency 2ω . Agrees with superfluid hydrodynamics (Bulgac, Bertsch)
- Corrections to E_q quadratic in q: collapse (zero-temperature damping) of breathing mode:

$$1/t_{
m collapse} = rac{|\delta \omega|}{N^{2/3}} \left| rac{C_1}{k_F a} + C_2 k_F r_e
ight|$$

where the mode was excited by the abrupt trap frequency change $\delta\omega$, and $C_1 \simeq 0.21$, $C_2 \simeq 0.048$.

• There is a revival of the breathing mode. At half the revival time, a Schrödinger cat state [Yurke, Stoler (1986)].

SVISTUNOV'S QUESTION

Boris Svistunov (Amherst):

• Relevant parameters close to the zero-range limit are the ones that appear in the deviation of the two-body T-matrix from its zero-energy limit:

 $\langle \mathbf{k}_1, \mathbf{k}_2 | T(E+i0^+) | \mathbf{k}_3, \mathbf{k}_4 \rangle, \quad k_1, k_2, k_3, k_4, E \to 0$

- For the on-shell T-matrix, this is the effective range r_e .
- For the off-shell *T*-matrix $(E_3 + E_4 \neq E_1 + E_2)$, another effective range ρ_e appears.
- Why does this ρ_e not show up in the first finite-range correction to the energy ?

Answer: low-energy s-wave T-matrix [Gibson (1972)]:

$$egin{aligned} rac{t_0(k,k';E)}{t_0(E)} &-1 \mathop{\sim}\limits_{k,k',E o 0} \left(rac{2mE}{\hbar^2} - k^2 - k'^2
ight)rac{1}{2}
ho_e^2 \ &rac{1}{2}
ho_e^2 = \int_0^{+\infty} dr \, r[(1-r/a) - r\chi_0(r)] \end{aligned}$$

where χ_0 is the zero-energy scattering wavefunction.

• Reminiscent of the Landau-Smorodinski formula for r_e (1944):

$$rac{1}{2}r_e = \int_0^{+\infty} dr \left[(1-r/a)^2 - r^2 \chi_0^2(r)
ight]$$

• If V(r) has no deeply bound states, one can show that

$$0 \le r_e \le 2b$$
 $0 \le
ho_e^2 \le b^2$

and the contribution of ρ_e to the energy correction is $O(b^2)$, negligible as compared to the one of r_e .

Warning! Case of lattice models (of spacing b):

• Galilean invariance is broken. T-matrix depends on relative wavenumber k and on center-of-mass wavevector K [Burovski, Prokof'ev, Svistunov, Troyer (2006)]:

$$\frac{1}{t(\mathbf{K},k)} = \frac{m}{4\pi\hbar^2} \left(\frac{1}{a} + ik - \frac{1}{2}r_ek^2 - \frac{1}{2}R_eK^2 \right) + \dots$$

• Then energy correction to first order in lattice spacing b:

$$\delta E = rac{\partial E}{\partial r_e} r_e + rac{\partial E}{\partial R_e} R_e$$

• One can zero both r_e et R_e with taylored dispersion relation [Werner, Castin (2012)]

DERIVATION OF $\partial E / \partial r_e$

• D'après le théorème de Hellmann-Feynman :

$$rac{dE}{db} = \sum_{i=1}^{N_{\uparrow}} \sum_{j=N_{\uparrow}+1}^{N} \int d^3r_1 \dots d^3r_N |\psi(\mathbf{r}_1,\dots,\mathbf{r}_N)|^2 \partial_b V(r_{ij};b)$$

• Ansatz pour deux particules proches :

$$\psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) \simeq \chi(r_{ij}) A_{ij}(\mathbf{R}_{ij},(\mathbf{r}_k)_{k\neq i,j})$$

avec χ invariant par rotation car interaction résonnante dans l'onde s seulement.

$$egin{split} rac{dE}{db} &\simeq \sum_{i < j} \int d^3 R_{ij} \prod_{k
eq i,j} \int d^3 r_k \; A_{ij}^2 (\mathrm{R}_{ij}, (\mathrm{r}_k)_{k
eq i,j}) \ & imes \int d^3 r_{ij} \; \chi^2(r_{ij}) \partial_b V(r_{ij};b) \end{split}$$

• On injecte l'ansatz dans l'équation de Schrödinger et on néglige le potentiel de piégeage :

$$\mathcal{E}\chi(r_{ij}) \simeq [-rac{\hbar^2}{m} \Delta_{\mathbf{r}_{ij}} + V(r_{ij};b)]\chi(r_{ij})$$

$$\hbar^2 k^2$$

$$\mathcal{E} = E - \frac{1}{A_{ij}(\mathbf{R}_{ij}, (\mathbf{r}_k)_{k \neq i, j})} H_{ij} A_{ij}(\mathbf{R}_{ij}, (\mathbf{r}_k)_{k \neq i, j}) \equiv \frac{h^{-k^{-1}}}{m}$$

• Normalisation de χ tendant vers $r^{-1} - a^{-1}$ si $k \to 0$:

$$\chi(r) \stackrel{=}{\underset{r o \infty}{=}} rac{1}{f_k} rac{\sin(kr)}{kr} + rac{e^{ikr}}{r} \in \mathbb{R}$$

• Amplitude de diffusion d'après le théorème optique :

$$f_k = -rac{1}{ik+u(k)} ~~ {
m et} ~~ u(k) \in \mathbb{R}$$

• Développement à faible k :

$$u(k) = rac{1}{a} - rac{1}{2}k^2r_e + O(k^4)$$

• Relation obtenue par l'astuce du wronskien :

$$\int d^3r \ \chi^2(r) \partial_b V(r;b) = -rac{4\pi\hbar^2}{m} \partial_b u(k) \simeq 2\pi \mathcal{E} rac{dr_e}{db}$$

à reporter dans l'expression précédemment obtenue :

$$egin{split} rac{dE}{db} &\simeq \sum\limits_{i < j} \int d^3 R_{ij} \prod\limits_{k
eq i,j} \int d^3 r_k \; A_{ij}^2(\mathbf{R}_{ij}, (\mathbf{r}_k)_{k
eq i,j}) \ & imes \int d^3 r_{ij} \; \chi^2(r_{ij}) \partial_b V(r_{ij};b) \end{split}$$

HOW ARE EFIMOVIAN TRIMERS BORN ?

THE BIRTH OF EFIMOV TRIMERS Most interesting case: a control parameter to switch on/off the Efimov effect [here, 1/a = 0]:

Is it a phase transition ? Critical exponents ?

• For s_3 : critical exponent $1/2, |s_3| \propto (\alpha - \alpha_c)^{1/2}$

 $\Lambda(s, \alpha) = 0, \ s = 0 \text{ double root for } \alpha = \alpha_c$

• What about κ_3 , i.e. global energy scale in trimer spectrum ? Efimov's theory gives the function $\Lambda(s, \alpha)$ but not κ_3 ...

AN EXACTLY SOLVABLE MODEL

Here 2 + 1 fermionic system. From zero range theory:

- Control parameter α : fermion-to-impurity mass ratio.
- Lecture 3: Efimov effect for $\alpha > \alpha_c = 13.6069...$
- Why ? Born-Oppenheimer picture for very light impurity: Effective long range attraction among fermions,

$$V_{
m BO}(r) \propto -rac{\hbar^2}{m_{
m impur}r^2}$$

that beats the necessarily odd-*l* centrifugal barrier

$$V_{
m fugal}(r) = rac{\hbar^2 l(l+1)}{mr^2}$$

when $m_{\mathrm{impur}} \rightarrow 0$.

• For increasing α , one has successively apparition of infinite number of Efimov trimers with angular momentum $l = 1, l = 3, \ldots$

Resonant impurity-fermion interaction on a narrow Feshbach resonance:

- Apart from scattering length, interaction characterized by Feshbach length $R_* \gg$ true potential range b (Petrov)
- Large Feshbach length due to very weak coupling Λ between closed and open channel:

$$R_*=rac{\pi\hbar^4/\mu^2}{\Lambda^2}$$

• Corresponds to scattering amplitude with $r_e = -2R_*$:

$$f_k = -rac{1}{rac{1}{a}+ik+k^2R_*}$$

- The parameter κ_3 was then calculated exactly for three bosons [Gogolin, Mora, Egger (2008)]
- We have extended this calculation to the 2+1 fermionic problem [Y. Castin, E. Tignone (2011)]

MAIN RESULT $(a^{-1} = 0)$: NO NEW CRITICAL EXPONENT For any fixed odd angular momentum *l*:

- For $\alpha < \alpha_c$, there is no trimer [if l = 1, Kartavtsev-Malykh trimers expected for large but finite a]
- For $\alpha > \alpha_c$, there is an infinite number of trimers. Ground state labeled with quantum number n = 1.
- If one tends from above to the critical mass ratio:

$$E_n \mathop{\sim}\limits_{lpha
ightarrow lpha^+} - rac{2\hbar^2}{\mu R_*^2} e^{2A} e^{-2\pi n/|s_3|}$$

$$egin{aligned} &A = 3\psi(1) - 2\psi(l+1) - \psi(l+2) \ &+ \sum_{k \geq 1} \psi(x_k) + \psi(1+x_k) - \psi(l+1+2k) - \psi(l+2+2k) \end{aligned}$$

with $\psi(x) = \Gamma'(x)/\Gamma(x)$ is digamma function, and x_k are the real positive roots of $\Lambda(x, \alpha_c) = 0$

A GLIMPSE ON THE METHOD

HOW TO GET ZERO ENERGY SOLUTION

$$0 = (1+kR_*)D(k) + \int_0^\infty \frac{dk'}{k\pi \cos\nu} D(k') \int_{-1}^1 \frac{P_l(u)k'^2}{k^2 + k'^2 + 2kk'u \sin\nu}$$

where mass angle $\nu = \arcsin \frac{\alpha}{1+\alpha}$.

- The red term is scaling invariant: Unchanged if function D(k') is replaced by $D(\lambda k')$ and k replaced by $\lambda^{-1}k$.
- In $X = \ln(kR_*)$ variable, becomes translationally invariant \longrightarrow perform a Fourier transform.
- Then multiplication by $kR_* = e^X$ gives a translation by i in Fourier space:

$$0 = F(S+i) + \Lambda(iS,lpha)F(S)$$

that can be solved in terms of the Γ function $[\Gamma(z+1) = z\Gamma(z)]$

Our publications on the subject

- F.Werner, L. Tarruell, Y. Castin, Number of closedchannel molecules in the BEC-BCS crossover, Eur. Phys. J. B 68, 401 (2009).
- Y. Castin, F. Werner, Single-particle momentum distribution of an Efimov trimer, Phys. Rev. A 83, 063614 (2011).
- Y. Castin, E. Tignone, Trimers in the resonant (2+1)fermion problem on a narrow Feshbach resonance: Crossover from Efimovian to hydrogenoid spectrum, Phys. Rev. A 84, 062704 (2011).
- F. Werner, Y. Castin, General relations for quantum gases in two and three dimensions: Two-component fermions, Phys. Rev. A 86, 013626 (2012), and "II. Bosons and mixtures", Phys. Rev. A 86, 053633 (2012).