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OUTLINE OF THE TALK

¢ Finite range corrections in the fermionic gas:

— generalized relations a la Tan

— zero-temperature damping (collapse) of the breathing
mode

e How are Efimovian trimers born 7

—analytics on a narrow Feshbach resonance for the 241
fermionic problem



FINITE RANGE CORRECTIONS

IN THE FERMIONIC GAS



CONTEXT AND MOTIVATION
Real spin-1/2 fermions do not have a contact interaction:

e interaction potential V(r) with short range (here for
simplicity, compact support of radius b)

e repulsive hard-core part (to avoid collapse) and negative
parts so that s-wave interaction is resonant:

scattering length a, |a| > b

F kaT

How does this differ from the Wigner-Bethe-Peierls zero-
range model?
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FINITE 1/a CORRECTIONS TO UNITARY LIMIT
General relations for the zero-range model:

e Tan relation (generalizing a Lieb relation to 3D):

dE A,
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e Can be proved using Hellmann—Feynman theorem (as
Lieb did in 1D) for a lattice model

e The same derivative (contact) appears in short range
pair distribution function, or tail of momentum distri-
bution by properties of the Fourier transform, as in 1D

[Olshanii, Dunjko (2003)]
e Experimental checks, in particular by Deborah Jin.

e Morality: The unitary solution contains in itself infor-
mation on finite 1/a corrections.



FINITE RANGE CORRECTIONS TO ZERO-RANGE LIMIT

e Leading correction is universal: depends only on effec-
tive range r¢, not on details of V (r)

e The zero-range solution (V1/a) contains in itself infor-
mation on finite range corrections (Werner, Castin, 2012):
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with reduced Hamiltonian obtained by removing the rel-
ative particle 123:
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EXPERIMENTALLY RELEVANT CONSEQUENCES

1. Pair distribution function at short distances:
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e This improves Tan’s result [where O(1) is neglected].

2. Equation of state of homogeneous gas can be deduced
from the density profile of the trapped gas |[Nascimbene.
Navon, Jiang, Chevy, Salomon (2010)]

e Ku, Sommer, Cheuk, Zwierlein (2012): precise measure-
ment of £ on lithium [u(T = 0) = £Efp for the unpolar-
ized unitary gasj|

e Universality of finite-range correction + Bo (Gao formula
giving re(Rx, apg, Cg) + Carlson’s Monte Carlo calcula-
tions — impact on £ is = 0.5%.



WITHIN A SO(2,1) LADDER

e Reminder of ladder structure (unitary gas in an isotropic
harmonic trap):

Eq = Ecom + (s +1+2q)iw, ¢q€N
with ¢ quantum number for undamped breathing mode

e general N-body problem unsolved: 9F /9re unknown

e Separability of 1) in hyperspherical coordinates implies
separability of A;;, with known hyperradial part, and
with unknown hyperangular part common to a ladder.
This leads to explicit expressions (in terms of s and ¢
and the T' function) for

OF,/0re . 0Ey/d(1/a)
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Large IN, unpolarized case:

e One evaluates the derivatives of Fg using the local den-
sity approximation.

e Corrections to E4 linear in q: change of breathing fre-
quency 2w. Agrees with superfluid hydrodynamics

e Corrections to E4 quadratic in g: collapse (zero-temperature
damping) of breathing mode:
1/tcolla — Ow] | C1 + C2kpr
PSe ™ N2/3 |kpa €
where the mode was excited by the abrupt trap fre-
quency change ow, and C7 ~ 0.21, Cy ~ 0.048.

e There is a revival of the breathing mode. At half the re-
vival time, a Schrodinger cat state



SVISTUNOV’S QUESTION

Boris Svistunov (Amherst):

e Relevant parameters close to the zero-range limit are
the ones that appear in the deviation of the two-body
T-matrix from its zero-energy limit:

<k19k2|T(E =+ i0+)|k39k4>9 k19k29k39k49E — 0

e For the on-shell T-matrix, this is the effective range 7.

e For the off-shell T-matrix (F3 + E4 # E1+ E2), another
effective range pe appears.

e Why does this pe not show up in the first finite-range
correction to the energy ?



Answer: low-energy s-wave T-matrix
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P = / dr v[(1 — r/a) — rxo(r)]

where xo is the zero-energy scattering wavefunction.

¢ Reminiscent of the Landau-Smorodinski formula for 7,
(1944):

%re = /:oo dr {(1 —r/a)* — rixg(r)

e If V(r) has no deeply bound states, one can show that
0<r.<2b 0<p2<b?

and the contribution of pe to the energy correction is
O(b?), negligible as compared to the one of re.



Warning! Case of lattice models (of spacing b):

e Galilean invariance is broken. T-matrix depends on rel-
ative wavenumber k and on center-of-mass wavevector
K [Burovski, Prokof’ev, Svistunov, Troyer (2006)]:
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e Then energy correction to first order in lattice spacing

b:
OF OF

or. ¢ T R,

¢ One can zero both r. et R, with taylored dispersion
relation [Werner, Castin (2012)]
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DERIVATION OF OFE/07re

e D’apres le théoreme de Hellmann-Feynman :
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e Ansatz pour deux particules proches :
Y(r1y---5TN) = X(755)Aij (Rijs (Tk)k£i,5)

avec x invariant par rotation car interaction résonnante
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e On injecte ’ansatz dans I’équation de Schrodinger et on
néglige le potentiel de piégeage :
h2
Ex(rij) = [=—Ar; + V(73 b)[x(rij)
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e Amplitude de diffusion d’apres le théoreme optique :

1
e = ik ¥ a(k)

et u(k) e R



e Développement a faible k :
1 1
u(k) = = — —k?re + O(k%)
a 2
e Relation obtenue par I’astuce du wronskien :
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a reporter dans ’expression précédemment obtenue :

o Z/dSR@J I1 /d?’rk ?j(Rij,(I‘k)k;éi,j)

k#1,J

X /d3"°7:j x*(ri;) OV (rij; b)




HOW ARE EFIMOVIAN TRIMERS BORN ?



THE BIRTH OF EFIMOV TRIMERS
Most interesting case: a control parameter to switch on/off
the Efimov effect [here, 1/a = 0]:

finite nber of trimers Infinite nber of trimers

i >
0 0
C
Is it a phase transition ? Critical exponents 7
e For s3 : critical exponent 1/2, |s3| x (@ — oac)l/2
A(s,a) =0, s = 0 double root for a = a,
e What about k3, i.e. global energy scale in trimer spec-

trum ? Efimov’s theory gives the function A(s,a) but
not Kg3...



AN EXACTLY SOLVABLE MODEL
Here 2 4+ 1 fermionic system. From zero range theory:

e Control parameter a: fermion-to-impurity mass ratio.
e Lecture 3: Efimov effect for a > a. = 13.6069....

e Why ? Born-Oppenheimer picture for very light impu-
rity: Effective long range attraction among fermions,

h2
VBO(T) X — 2
Mimpur”
that beats the necessarily odd-l centrifugal barrier
RAL(L+1)
vaugal(r) — 5
mr

when myy 5y — 0.

e For increasing «, one has successively apparition of infi-
nite number of Efimov trimers with angular momentum

1=1,1=3,...



Resonant impurity-fermion interaction on a narrow Fesh-
bach resonance:

e Apart from scattering length, interaction characterized
by Feshbach length R, > true potential range b (Petrov)

e Large Feshbach length due to very weak coupling A be-
tween closed and open channel:

_ wht/p?
e Corresponds to scattering amplitude with re = —2R,:
1
Je = —
I+ ik + k2R,
e The parameter k3 was then calculated exactly for three
bosons [Gogolin, Mora, Egger (2008)]

® We have extended this calculation to the 2+ 1 fermionic
problem Y. Castin, E. Tignone (2011)]




MAIN RESULT (a_1 = 0): NO NEW CRITICAL EXPONENT
For any fixed odd angular momentum I:

e For & < g, there is no trimer [if ] = 1, Kartavtsev-
Malykh trimers expected for large but finite a

e For &« > (., there is an infinite number of trimers.
Ground state labeled with quantum number n = 1.

e If one tends from above to the critical mass ratio:
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with ¥ (x) = I'/(z)/T'(x) is digamma function, and xz

are the real positive roots of A(x,a¢c) = 0




A GLIMPSE ON THE METHOD

range of appllcabl lity of
solution E=-(hq) /2u, R, O

<

5 its asymptotic range_
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. matching interval :

0 g 1R,
< =

: Its asymptotic range
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< range of applicability of
solution E=0, R, >0



HOW TO GET ZERO ENERGY SOLUTION

0 = (1+kR )D(k)—l—/ D(k )/ Py(w)k”
- * kT cos v 1 k2—|—k’2—|—2kk’usm1/

where mass angle v = arcsin — +

o’

e The red term is scaling invariant: Unchanged if function
D(K') is replaced by D(AE’) and k replaced by A~ k.

e In X = In(kRy) variable, becomes translationally invari-
ant — perform a Fourier transform.

X

e Then multiplication by kR, = e** gives a translation by

¢ in Fourier space:
0=F(S+1)+ArS,a)F(S)
that can be solved in terms of the I' function [I'(z + 1) =
zI'(2)]
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