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Bragg spectroscopy and pair-breaking-continuum
mode in a superfluid Fermi gas (translated from
arXiv:1911.10950)
Yvan Castin

Résumé : Les gaz superfluides de fermions de spin 1/2, condensés par paires, sont censés présenter à vecteur d’onde
non nul un mode d’excitation collectif encore inobservé dans leur continuum de paire brisée. À l’aide de la théorie BCS
à température nulle et dans la limite des grandes longueurs d’onde, nous prédisons que ce mode est quantitativement
observable (en fréquence, largeur et poids spectral) dans la réponse d’un gaz d’atomes froids à une excitation de Bragg par
laser, si l’on mesure la perturbation induite sur le module du paramètre d’ordre plutôt que sur la densité.

PACS No : 67.85.-d

Abstract: The superfluid, pair condensed spin-1/2 Fermi gases are supposed to exhibit at nonzero wave vector a still
unobserved collective excitation mode in their pair-breaking continuum. Using BCS theory at zero temperature and in the
long wavelength limit, we predict that this mode is quantitatively observable (in frequency, width and spectral weight)
in the response of a cold atom gas to a laser Bragg excitation, if one measures the perturbation induced on the order
parameter modulus rather than on the density.

PACS No.: 67.85.-d

1. Introduction
We now know how to prepare in the laboratory a gas of

fermionic cold atoms of spin 1/2 in a flat-bottom box poten-
tial [1], thus spatially homogeneous [2–4]. These atoms are
subjected to an attractive interaction in the s wave between
opposite spin states ↑ and ↓ of van der Waals type, of negligi-
ble range b and of scattering length a tunable with a magnetic
Feshbach resonance [5–10]. One can arrange for the gas to be
unpolarized, that is, it has the same number of particles in ↑
and ↓. At the very low temperatures experimentally attained,
we can then assume, as a first approximation, that all fermions
assemble in ↑↓ bound pairs, equivalent for our neutral system
to superconductor Cooper pairs, these pairs forming further-
more a condensate and a superfluid, as predicted by the BCS
theory.

At the thermodynamic limit, with the excitation vector q
fixed, the excitation spectrum of the zero temperature system
has a broken pair continuum of the form εq/2+k + εq/2−k,
where k 7→ εk is the dispersion relation of a broken pair frag-
ment and the relative wave vector k of the two fragments spans
the entire three-dimensional Fourier space. When bound pairs
have an asserted composite boson character, that is, k 7→ εk
reaches its minimum in k = k0 > 0, it is expected that this
continuum contains a pair-wise collective excitation branch of
complex energy zq, deviating quadratically with q from its
2∆ limit at q = 0, where ∆ is the order parameter of the
pair condensate, taken real at equilibrium. This is predicted
both in the weak coupling limit ∆ � εF [11], where εF is
the Fermi energy of the gas, and in the strong coupling limit
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Lhomond, 75231 Paris, France

∆ ≈ εF [12, 13]; according to the used time-dependent BCS
theory, it suffices that the chemical potential of the gas is pos-
itive, µ > 0. Note that the continuum mode is often called the
amplitude mode, or even the Higgs [14] mode, but the anal-
ogy with high energy physics is only approximate [15] and the
dispersion relation given in reference [14] is incorrect.

The question is how to get evidence for this branch of the
continuum, currently unobserved. Under certain conditions, the
χ linear response (or susceptibility) functions of the system to
an excitation of angular frequency ω and non-zero q wavevec-
tor must exhibit, as functions of the angular frequency, a peak
centered near ω = Re zq/~ and of approximate half-width
Im zq/~, above the wide continuum response background. This
is the case for the modulus-modulus response function χ|∆||∆|(q, ω),
where we look at the effect on the modulus of the order param-
eter of a modulus excitation of the order parameter via a spatial
and temporal modulation of the scattering length [12]; such ex-
citation is however difficult to implement. On the other hand,
the excitation in density of a gas of cold atoms by a Bragg
pulse, by means of two laser beams of angular frequency dif-
ference ω and of wave vector difference q, is a technique well
established in the laboratory, which gave rise to a real Bragg
spectroscopy [16–20]. Depending on whether we measure the
variation of the total density ρ of the gas (by absorption or dis-
persion of a laser beam [21]) or the modulus |∆| of its order
parameter (by interferometry [22] or bosonization of pairs ↑↓
by fast Feshbach ramp [21, 23]) as a result of the Bragg pulse,
we access the response functions χρρ(q, ω) and χ|∆|ρ(q, ω).
On the one hand, the density-density susceptibility of a super-
fluid fermion gas has been the subject of numerous theoreti-
cal [24–29] and experimental [18–20] studies, but without the
slightest attention being paid to the continuum mode; on the
other hand, the modulus-density susceptibility has rarely been
calculated, and to our knowledge never measured with cold
atoms. The purpose of this paper is to fill these two gaps, at
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least theoretically.

2. Response Functions in BCS Theory
Our pairwise condensed fermion gas, initially prepared at

equilibrium at zero temperature, is subjected to density excita-
tion, that is, to a perturbation of its Hamiltonian of the form

Ŵ (t) =

∫
d3r U(r, t)

∑
σ=↑,↓

ψ̂†σ(r)ψ̂σ(r) (1)

where the real potentialU(r, t) depends on time and space, and
the ψ̂σ(r) and ψ̂†σ(r) field operators, written in Schrödinger’s
picture, annihilate and create a fermion in the spin state σ at
the point r and obey the usual fermionic anticommutation re-
lations. When U(r, t) is weak enough or applied for a short
enough time, the system’s response to an observable Ô is lin-
ear, ie the deviation δ〈Ô〉 from the average value of Ô to its
equilibrium value is a linear functional of U , described by a
susceptibility χOρ. We limit ourselves here to two observables,
the total density ρ and the modulus |∆| of the complex order
parameter ∆ defined in reference [30]:

δρ(r, t) =

∫
d3r′

∫
dt′χρρ(r− r′, t− t′)U(r′, t′) (2)

δ|∆|(r, t) =

∫
d3r′

∫
dt′χ|∆|ρ(r− r′, t− t′)U(r′, t′) (3)

As the initial state of the system is stationary and spatially
homogeneous, the susceptibilities depend only on the differ-
ence of time and position; they are also causal and therefore
retarded (zero if t < t′). In practice, the Bragg excitation men-
tioned in the introduction corresponds to the lightshift potential
U(r, t) = U0ei(q·r−ωt) + cc, where the amplitude U0 is com-
plex. It gives access, as shown by the insertion of U(r, t) in (2)
and (3), to the spatiotemporal Fourier transform of susceptibil-
ities:

χ(q, ω) ≡
∫

d3r

∫
dt ei[(ω+iη)t−q·r]χ(r, t) (η → 0+)

(4)

The factor e−ηt ensuring the convergence of the integral over
time is usual for retarded Green functions [31].

To obtain an approximate expression of susceptibilities us-
ing time-dependent BCS variational theory, it is convenient to
use a cubic lattice model of steps b in the quantization volume
[0, L]3 with periodic boundary conditions, by making b tend
to zero and L tend to infinity at the end of the calculations.
The fermions of mass m have the free space dispersion rela-
tion k 7→ Ek = ~2k2/2m on the first Brillouin zone D =
[−π/b, π/b[3, and it is extended by periodicity beyond. They
interact by the contact binary potential V (ri, rj) = g0δri,rj/b

3,
with a bare coupling constant g0 adjusted to reproduce the scat-
tering length a of the experiment [32, 33]: 1/g0 = 1/g −∫
D

d3k
(2π)3

1
2Ek

where g = 4π~2a/m is the effective coupling
constant. The grand canonical ground state of the gas of chem-
ical potential µ is approximated by the usual state |ψ0〉, a co-
herent state of pairs breaking U(1) symmetry: this is the vac-
uum of the fermionic quasi-particle annihilation operators γ̂kσ

defined below. The BCS variational ansatz extends to the time-
dependent case [34], and the order parameter is simply

∆(r, t) = g0〈ψ(t)|ψ̂↓(r)ψ̂↑(r)|ψ(t)〉 (5)

To obtain χ(q, ω), the simplest is to consider a percussive exci-
tation in time with a well-defined non-zero wave vector,U(r, t) =
~ε cos(q ·r)δ(t), with ε→ 0. The time-dependent perturbation
theory gives the state vector just after the perturbation to first
order in ε:

|ψ(0+)〉 '

[
1−iε

∫
d3r cos(q · r)

∑
σ

ψ̂†σ(r)ψ̂σ(r)

]
|ψ(0−)〉

'

[
1+

iε

2

∑
k

(U+V−+U−V+)(γ̂†+↑γ̂
†
−↓+q↔−q)

]
|ψ0〉 (6)

Here, the indices + and − refer to the wave numbers q/2 +
k and q/2 − k, the coefficients Uk = [ 1

2 (1 + ξk/εk)]1/2

and Vk = [ 1
2 (1 − ξk/εk)]1/2 are the amplitudes of the quasi-

particle modes on particles and holes, and k 7→ εk = (ξ2
k +

∆2)1/2 is their BCS dispersion relation, with ξk = Ek − µ +
g0ρ/2. 1 The evolution of density and order parameter for a
very weak coherent state of quasiparticle pairs as (6) was cal-
culated with time-dependent BCS theory [35, 36]; by particu-
larizing the general expressions of reference [13], we find for
t > 0:(

2i∆(δθ)q(t)
2(δ|∆|)q(t)

(δρ)q(t)

)
= (−iε)

∫ iη−∞

iη+∞

dz

2iπ

e−izt/~

M(z,q)

(
Σ13(z,q)
Σ23(z,q)
Σ33(z,q)

)
(7)

where θ(r, t) = arg ∆(r, t) is the phase of the order param-
eter and Xq is the Fourier coefficient of X(r) on the plane
wave eiq·r. We had to introduce the 3 × 3 matrix, function of
the complex energy z in the upper half-plane and of the wave
number,

M(z,q) =

(
Σ11(z,q) Σ12(z,q) − g0Σ13(z,q)
Σ12(z,q) Σ22(z,q) − g0Σ23(z,q)
Σ13(z,q) Σ23(z,q) 1− g0Σ33(z,q)

)
(8)

described by the six independent coefficients:

Σ11(z,q) =

∫
D

d3k

(2π)3

(ε+ + ε−)(ε+ε− + ξ+ξ− + ∆2)

2ε+ε−[z2 − (ε+ + ε−)2]
+

1

2εk

Σ22(z,q) =

∫
D

d3k

(2π)3

(ε+ + ε−)(ε+ε− + ξ+ξ− −∆2)

2ε+ε−[z2 − (ε+ + ε−)2]
+

1

2εk

Σ33(z,q) =

∫
D

d3k

(2π)3

(ε+ + ε−)(ε+ε− − ξ+ξ− + ∆2)

2ε+ε−[z2 − (ε+ + ε−)2]

Σ12(z,q) =

∫
D

d3k

(2π)3

z(ξ+ε− + ξ−ε+)

2ε+ε−[z2 − (ε+ + ε−)2]

Σ13(z,q) =

∫
D

d3k

(2π)3

z∆(ε+ + ε−)

2ε+ε−[z2 − (ε+ + ε−)2]

Σ23(z,q) =

∫
D

d3k

(2π)3

∆(ε+ + ε−)(ξ+ + ξ−)

2ε+ε−[z2 − (ε+ + ε−)2]

1. It was necessary to use the modal expansions of the field opera-
tors, ψ̂↑(r) = L−3/2 ∑

k(γ̂k↑Uk − γ̂†−k↓Vk)eik·r and ψ̂↓(r) =

L−3/2 ∑
k(γ̂k↓Uk + γ̂†−k↑Vk)eik·r.
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Specializing (2) and (3) to the percussive excitation consid-
ered, it comes easily for our lattice model:

χρρ(q, ω) = (0, 0, 1) · 2

M(z,q)

(
Σ13(z,q)
Σ23(z,q)
Σ33(z,q)

)∣∣∣∣∣
z=~ω+iη

(9)

χ|∆|ρ(q, ω) = (0, 1, 0) · 1

M(z,q)

(
Σ13(z,q)
Σ23(z,q)
Σ33(z,q)

)∣∣∣∣∣
z=~ω+iη

(10)

This we will use for a continuous space in what follows.

3. In the BEC-BCS crossover
In the one-parameter space measuring the strength of the

interactions, what we call the BEC-BCS crossover is the in-
termediate zone between the strong attraction limit kFa →
0+, where the ground state of the system is a Bose-Einstein
condensate (BEC) of ↑↓ dimers of size a small compared to
the mean distance between particles, and the limit of low at-
traction kFa → 0−, where the ground state is a BCS state
of bound pairs ↑↓ of size ξ ≈ ~2kF /m∆ much larger than
the interatomic distance. Here kF = (3π2ρ)1/3 is the Fermi
wave number of the gas. The crossover thus corresponds to
the regime 1 . kF |a|, which is also the one in which the su-
perfluid fermionic cold atomic gases are prepared in practice,
to avoid high losses of particles by three-body collision in the
BEC limit and too low critical temperatures in the BCS limit.

However, our lattice model must always have a lattice spac-
ing b � 1/kF to reproduce the physics of continuous space.
So we also have b� |a|, and we are led to make b tend to zero
at fixed scattering length. We then replace the first Brillouin
zone D with the whole Fourier space R3. In the definition of
Σij , this does not lead to any ultraviolet divergence; this trig-
gers one in the expression of 1/g0, which makes g0 tend to
zero in the matrix (8):

g0 → 0 (11)

The dispersion relation of BCS excitations is reduced to εk =
[(Ek − µ)2 + ∆2]1/2; it has a minimum ∆ at a wave num-
ber k0 > 0, and the gas has a continuum collective excitation
branch starting at 2∆ [12, 13], when the chemical potential µ
is > 0, which we will assume now. Similarly, the expressions
(9) and (10) of susceptibilities are simplified as follows:

χρρ =

2

∣∣∣∣∣ Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

∣∣∣∣∣∣∣∣∣ Σ11 Σ12

Σ12 Σ22

∣∣∣∣ , χ|∆|ρ =

∣∣∣∣ Σ11 Σ13

Σ12 Σ23

∣∣∣∣∣∣∣∣ Σ11 Σ12

Σ12 Σ22

∣∣∣∣
(12)

where |A| is the determinant of the matrix A, and where we
have made implicit the dependence of χ on (q, ω) and Σij on
(z,q) to lighten the notations. 2

2. Indeed, the vector x = M−1s is the solution of the systemMx =
s, which one solves by the method of Cramer, with s the column
vector of (9) and (10), to obtain its coordinates x2 and x3.

Let’s look for the possible signature of the continuum mode
in the low-wavenumber response functions, q → 0, where the
imaginary part of the complex energy zq is the lowest. This
is where the mode has a priori the best chance of emerging
from the wide response background of the continuum as a nar-
row peak in the ω domain. In this limit, under the condition
q � k0 min(∆/µ, (µ/∆)1/2) [13], the continuum branch has
a quadratic dispersion in q:

zq =
q→0

2∆ + ζ0
~2q2

2m

µ

∆
+O(q3) (13)

The coefficient ζ0 is a solution in the lower complex half-plane
of a transcendental equation given in reference [12] (generaliz-
ing that of [11] to the BEC-BCS crossover); its real part is pos-
itive for ∆/µ < 1.21, and negative otherwise. Let’s calculate
the response functions on the real axis of angular frequencies
near the continuum mode, by imposing the same wave number
scale law as in (13):

~ω ≡ 2∆ + ν
~2q2

2m

µ

∆
(ν ∈ R) (14)

that is, by making q tend to zero at an arbitrary fixed reduced
frequency ν. In the following, it will be convenient to set

ζ = ν + iη (η → 0+) (15)

by analogy with z = ~ω + iη in (9) and (10). The method
for expanding the quantities Σij in powers of q at fixed ν is
known [12]: it is not enough to naively expand the integrals on
k under the sign sum in powers of q, but it is necessary to treat
separately the wave vector shell k of thickness ∝ q around the
sphere k = k0, which gives in general the dominant contribu-
tion: the energy denominators take extremely low values there,
of the order of q2. 3 The forms (12) would lead to rather long
calculations because, at the dominant order in q, the first and
the last column of determinants at the numerators are equiva-
lent (Σi3 ∼ Σ1i, 1 ≤ i ≤ 3), which gives a zero result and
forces us to get the subdominant orders of Σij . We can for-
tunately perform clever linear combinations without changing
the value of these determinants, subtracting the first column
from the last one and then, only in χρρ, subtracting the first
line from the third one:

χρρ=

2

∣∣∣∣∣ Σ11 Σ12 δΣ13

Σ12 Σ22 δΣ23

δΣ13 δΣ23 δΣ33

∣∣∣∣∣∣∣∣∣ Σ11 Σ12

Σ12 Σ22

∣∣∣∣ , χ|∆|ρ=

∣∣∣∣ Σ11 δΣ13

Σ12 δΣ23

∣∣∣∣∣∣∣∣ Σ11 Σ12

Σ12 Σ22

∣∣∣∣ (16)

3. After passing in spherical coordinates of axis q, one separates the
domain of integration on the modulus k in the two components
I = [1−Aq, 1 +Aq] and J = R+ \ I , where A� 1 is fixed. On
J , we expand directly the integral in powers of q at fixed k. On I ,
we make the change of variable k = k0 + qK then we expand the
integral in powers of q at fixed K. We collect the contributions of
I and J order by order in q, then we makeA tend to +∞ in the co-
efficients of the monomials qn. In the results (18), the contribution
of J is negligible except in δΣ[2]

23 and δΣ[2,3]
33 .
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with

δΣ13≡Σ13−Σ11, δΣ23≡Σ23−Σ12, δΣ33≡Σ33+Σ11−2Σ13

(17)

We then expand these δΣ after recalculation of their integrand
by linear combination of the integrands of Σij . It suffices here
to know the dominant order of δΣ and of the remaining Σij ,
except for δΣ33 where the subleading order is required:

Σ̌
[−1]
11 =

∆̌

8iπ
asin

1√
ζ
, Σ̌

[1]
22 =

ζ asin 1√
ζ

+
√
ζ − 1

16iπ∆̌
,

Σ̌
[0]
12 =

√
e2τ−1

−(2π)2

[
Re Π(eτ , ieτ )−Π(−eτ , ieτ )+

K(ieτ )

sh τ

]
,

δΣ̌
[1]
13 =

i
√
ζ − 1

16π∆̌
, δΣ̌

[2]
23 =

(2/3− ζ)

2∆̌2
Σ̌

[0]
12 −

√
1−e−2τ

24π2
×

[E(ieτ )−eτ ch τK(ieτ )] , δΣ̌
[2]
33 =

√
1−e−2τ

24π2∆̌
× [E(ieτ )

+ coth τ K(ieτ )] , δΣ̌
[3]
33 =

(ζ−2)
√
ζ−1 + ζ2 asin 1√

ζ

64iπ∆̌3
(18)

where Σ̌
[n]
ij (δΣ̌[n]

ij ) is the coefficient of q̌n in the Taylor ex-
pansion of Σ̌ij (δΣ̌ij). The first three identities are already
in [12, 13]. The Czech accent indicates the rescaling of ener-
gies by µ (∆̌ = ∆/µ), wave numbers by k0 (q̌ = q/k0) and
Σij by k3

0/µ. The expressions of several integrals on k have
been used in terms of complete elliptic integrals K, E and Π
of first, second and third kinds [37], in particular those given
in reference [38], after putting sh τ = 1/∆̌ to abbreviate. 4 We
finally get the low q behavior of response functions:

χ̌ρρ
ν fixed

=
q→0

2q̌2δΣ̌
[2]
33 + 2q̌3

[
δΣ̌

[3]
33

+
2Σ̌

[0]
12δΣ̌

[1]
13δΣ̌

[2]
23 − Σ̌

[1]
22δΣ̌

[1]2
13 − Σ̌

[−1]
11 δΣ̌

[2]2
23

Σ̌
[−1]
11 Σ̌

[1]
22 − Σ̌

[0]2
12

]
+O(q̌4)(19)

χ|∆|ρ
ν fixed

=
q→0

q̌
Σ̌

[−1]
11 δΣ̌

[2]
23 − Σ̌

[0]
12δΣ̌

[1]
13

Σ̌
[−1]
11 Σ̌

[1]
22 − Σ̌

[0]2
12

+O(q̌2) (20)

where χρρ is expressed in units of k3
0/µ and χ|∆|ρ is naturally

dimensionless. A more explicit dependence on the reduced fre-
quency ν is obtained by passing to the limit η → 0+ as in
equation (15):

asin
1√
ζ

=
η→0+


−i argsh 1√

−ν if ν < 0
π
2 − i argch 1√

ν
if 0 < ν < 1

asin 1√
ν

if 1 < ν

(21)

√
ζ − 1 =

η→0+

{
i
√

1− ν if ν < 1√
ν − 1 if ν > 1

(22)

It allows to check that the coefficient χ̌[3]
ρρ of the contribution

of order q̌3 in (19) and that χ[1]
|∆|ρ of the contribution of order q̌

4. We also used, for x ≥ 0, E(ix) =
√

1+x2E(x/
√

1+x2)

and K(ix) = K(x/
√

1+X2)/
√

1+X2 [37]. For example,∫ +∞
0

dǩ ǩ
2ξ̌k
ε̌3
k

= K(ieτ )
√

e2τ−1/2.

in (20) have a zero imaginary part for ν < 0 (as it should be,
the density of states of the broken pair continuum being then
zero) and a zero real part for ν > 1. These coefficients have a
finite and real limit at ν = 0, reached slowly (logarithmically,
with a deviation varying as 1/ ln |ν|),

lim
ν→0

χ̌[3]
ρρ(ν) = − 1

16π∆̌3
− 32π∆̌[δΣ̌

[2]
23(ν = 0)]2 (23)

lim
ν→0

χ
[1]
|∆|ρ(ν) = 16π∆̌ δΣ̌

[2]
23(ν = 0) (24)

which gives rise to a sharp spike, with a vertical tangent, in
the ν dependency, as in reference [12]; they have at ν = 1
a singularity |ν − 1|1/2, on the real part for ν → 1−, on the
imaginary part for ν → 1+, which gives rise to an ordinary
kink with a vertical tangent (see figure 2 to come).

Let’s physically analyze the results (19, 20). First, the domi-
nant term (of order q2) in the density-density response function
is of little interest for our study: it is insensitive to the contin-
uum mode since the functions Σij(z,q), even after continu-
ation to the lower half complex plane, have no poles. Fortu-
nately, it constitutes a background independent of the reduced
frequency ν, as can be verified on equation (18); it is there-
fore possible to get rid of it experimentally by considering the
difference

χ̌ρρ(q̌, ν)− χ̌ρρ(q̌, ν0) (25)

where ν is the running variable and ν0, the reduced reference
frequency, is fixed. We also note that this background of order
q2 is real, so that it does not contribute to the imaginary part
of χ|∆|ρ, which is often what we measure really in the experi-
ment [20]. On the other hand, the subdominant term (of order
q3) in χρρ is sensitive to the continuum mode: as it contains
functions Σij in the denominator, its analytic continuation to
the lower half complex plane through the interval ν ∈ [0, 1]
has a pole at ζ = ζ0, where the complex number ζ0 is that
of equation (13), with a nonzero residue, see figure 1 (a). The
same conclusion applies for the dominant term (of order q) in
the modulus-density response function, see figure 1 (b). 5 6

5. The analytic continuation of ζ 7→ χ̌
[3]
ρρ and ζ 7→ χ

[1]

|∆|ρ from the
upper half-plane to the lower half-plane is done by passing through
the interval [0, 1] (connecting their singularities in ν = 0 and
ν = 1 on the real axis) by the substitutions asin 1√

ζ
→ π−asin 1√

ζ

and
√
ζ − 1→ −

√
ζ − 1 as in reference [12]. The analytic contin-

uation of the denominator in the right-hand side of equations (19)
and (20) gives precisely the function of [12] whose ζ0 is a root.
There is no other continuation interval to consider because the de-
nominator of χ̌[3]

ρρ and χ[1]

|∆|ρ (continuated to C \R by the identities
Σij(z) = [Σij(z

∗)]∗) has no branching cut for ν ∈]−∞, 0] (due
to a vanishing density of states of the broken pair continuum) nor
for ν ∈ [1,+∞[ (due to a compensation of the discontinuities of
Σ̌

[−1]
11 and Σ̌

[1]
22 on this half-line, which are simply sign changes).

6. The analytic continuation of the functions Σij(z) from Im z > 0
to Im z < 0 is given by Σij ↓ (z) = Σij(z) − 2iπ

(2π)3
ρij(z)

in terms of the spectral densities defined on R+ by Im Σij(ε +
i0+) = − π

(2π)3
ρij(ε) [39], which it suffices to know on the con-

tinuation interval between the first two branching points 2∆ and
ε2(q) [12]. Then ρ13(ε) = ( 2m

~2 )2 πε
2q
K(i sh Ω), ρ23(ε) = 0,

ρ33(ε) = ( 2m
~2 )2 π∆

q
E(i sh Ω), with Ω = argch ε

2∆
. The other

ρij(ε) are in references [12, 13].
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Fig. 1. Complex spectral weight of the continuum mode in
the density-density (column a) and modulus-density (column
b) response functions, that is the residue Zρρ or Z|∆|ρ of the
analytic continuation of χρρ(q, z/~) or of χ|∆|ρ(q, z/~) from
Im z > 0 to Im z < 0 (through the interval between their first
two singularities on R+) at the pole zq (complex energy of the
mode), as functions of the wave number q, on the µ > 0 side of
the BEC-BCS crossover (11), for ∆̌ = 1/2 (line 1) and ∆̌ = 2
(line 2). The residues were divided by the power of q ensuring
the existence of a finite and non-zero limit at q = 0. In black:
real part; in red: imaginary part. Circles connected by a dotted
line: numerical results from general forms (12); the analytic
continuation is carried out as in [12, 13] by the method of the
spectral densities of reference [39], see our footnote 6. Horizontal
dashes: limit at q = 0, taken from the analytical results (19, 20)
continuated as in footnote 5. Czech accent: ∆ rescaled by µ
(∆̌ = ∆/µ), q rescaled by k0 = (2mµ)1/2/~, Zρρ rescaled by k3

0

and Z|∆|ρ rescaled by µ.

However, the physical measurements take place on the real
axis of angular frequencies. So we have plotted χ̌[3]

ρρ and χ[1]
|∆|ρ

as functions of the reduced frequency ν on figure 2, for two
values of the strength of the interactions. The expected narrow
structures should be on the analytic continuation interval ν ∈
[0, 1], above the pole ζ0 so close to the vertical green solid line.
For ∆̌ = 1/2, we are in the favorable case Re ζ0 ∈ [0, 1]; now,
χ̌

[3]
ρρ exhibits, on the interval [0, 1], a shoulder-shaped structure

with a maximum and a minimum, as well on its real part as on
its imaginary part; even better, χ̌[1]

|∆|ρ has a fairly visible peak
on its real part over the same interval, even if it is quite far
from the line green, and a fairly visible dip on its imaginary
part, close to the line. For ∆̌ = 2, we are in the disadvanta-
geous case Re ζ0 < 0; the response functions should therefore
keep track of the continuum mode over the interval ν ∈ [0, 1]
only through the associated complex resonance wing, and no
longer as extrema; unfortunately, the structures observed re-
main essentially the same as for ∆̌ = 1/2, which casts doubt
on their link with the continuum mode. 7

7. When Re ζ0 < 0 in general, one should not expect to see any peak
or dip associated with the continuum mode in the response func-
tions on the interval ν ∈]−∞, 0[. Indeed, this physical interval is
separated from the pole by the end of the [0, 1] cut-off line that had
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Fig. 2. First coefficient sensitive to the continuum mode in the
low-wavenumber expansion q (19, 20) of the density-density
(column a, order q3) and modulus-density (column b, order q)
response functions, as a function of the reduced frequency ν of
equation (14), on the µ > 0 side of the BEC-BCS crossover (11),
for ∆̌ = 1/2 (line 1) and ∆̌ = 2 (line 2). Black full line: real
part; red full line: imaginary part. Vertical dots: positions ν = 0
and ν = 1 of the singularities. Green vertical line: reduced real
part Re ζ0 of the energy of the continuum mode. The extrema
indicated by an arrow are a physical mark of the continuum mode
on the real frequency axis (see text and figure 3). Czech accent:
∆ rescaled by µ, q rescaled by k0 = (2mµ)1/2/~, χρρ(q, ω)
rescaled by k3

0/µ; χ|∆|ρ(q, ω) is already dimensionless.

To see what really happens, we perform an analytic con-
tinuation of the coefficients χ̌[3]

ρρ(ζ) and χ[1]
|∆|ρ(ζ) to the lower

complex plane Im ζ < 0 as in footnote 5, then we find the po-
sition of the extrema of the real part or the imaginary part of
these coefficients, that is, their abscissa νR, on the horizon-
tal line ζ = νR + iνI of fixed ordinate νI , and we finally
plot the locus of these extrema when νI varies in the inter-
val ] Im ζ0, 0], see figure 3. This locus is the union of con-
tinuous lines (its connected components); some, but not all 8,
converge to the pole ζ0. 9 Any extremum of χ̌[3]

ρρ or χ[1]
|∆|ρ on

to be folded back to ]−∞, 0] to carry out the analytic continuation,
the other end being folded back on [1,+∞[.

8. A line of maxima and a line of minima of Reχ (Imχ) can converge
to a terminal point where Re ∂2

νRχ=0 (Im ∂2
νRχ=0).

9. At ζ0, we generally expect to see a line of minima and a line of
maxima of the real part and of the imaginary part converge, ie four
lines in total. Indeed a meromorphic function f(ζ) in the neigh-
borhood of its pole ζ0 is equivalent to Z/(ζ − ζ0), where Z is the
residue. From real and imaginary part decompositions Z = a+ ib,
ζ − ζ0 = x+ iy, and the change of scale x = yX , where y > 0 is
the distance from the horizontal line ζ = νR + iνI to the pole, we
get f(ζ) ∼ y−1( aX+b

X2+1
+i bX−a

X2+1
). Now, for all u ∈ R, the function

X 7→ (X + u)/(X2 + 1) has on R a minimum at −u−
√

1 + u2

and a maximum at −u +
√

1 + u2. So, if a 6= 0 (b 6= 0), we see
converge to ζ0 two lines of extrema of the real (imaginary) part. For
∆̌ = 1/2, the line of minima of Re χ̌

[3]
ρρ comes almost horizontally

(from the right, with a slope ' −a/2b) because the residue is al-
most purely imaginary, Žρρ ∼ (−0.003 + 0.04i)q̌5 as we see in
figure 1 (a1).
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Fig. 3. Locus of the extrema of the functions of the real
part νR 7→ Reχ[n]↓ (ζ = νR + iνI) (in black) and
νR 7→ Imχ[n]↓(ζ = νR + iνI) (in red) when the imaginary
part νI of ζ varies. Here χ[n]↓(ζ) is the coefficient of qn in the
low q expansion of the susceptibility χ(q, ω) at fixed ν in (14),
see equations (19, 20), analytically continuated from Im ζ > 0
to Im ζ < 0 through ν ∈ [0, 1] as indicated by the arrow ↓ in
the notation χ↓. Column (a): χ = χρρ and n = 3; column (b):
χ = χ|∆|ρ and n = 1. The fermion gas is in the BEC-BCS
crossover on the µ > 0 side: ∆/µ = 1/2 (line 1) and ∆/µ = 2
(line 2). Full line: the extremum is a maximum. Dashed line: the
extremum is a minimum. Blue cross: reduced complex energy ζ0
of the continuum mode. Vertical dots: positions ν = 0 and ν = 1
of the singularities of χ[n](ν) on the real axis.

the real axis ν ∈]0, 1[ connected continuously to the pole by
one of these lines is undoubtedly a physical mark of the con-
tinuum mode, observable in the associated response function;
the other extrema on the real axis are not. Hence the verdict
on figure 2: for ∆̌ = 1/2, only the maximum of Re χ̌

[3]
ρρ, the

maximum of Im χ̌
[3]
ρρ, the maximum of Reχ

[1]
|∆|ρ and the mini-

mum of Imχ
[1]
|∆|ρ on ν ∈]0, 1[ are physical marks of the contin-

uum mode; for ∆̌ = 2, this is the case only for the maximum
of Re χ̌

[3]
ρρ, for the maximum of Im χ̌

[3]
ρρ and the maximum of

Reχ
[1]
|∆|ρ on ν ∈]0, 1[.

Ultimately, it remains to be seen how well we can extract the
position and the spectral weight of the continuum mode from
measures of response functions on the reduced frequency inter-
val ν ∈ [0, 1]. To this end, we propose a very simple fit of the
susceptibilities χ(q, ω) by the sum of the contribution of the
collective mode pole and a slowly variable affine background
describing the broad response of the continuum:

χ
[1]
|∆|ρ(ν)|fit =

A

ν −B
+ C +Dν (A,B,C,D ∈ C) (26)

taking the example of the modulus-density response limited
to its dominant order in q. The fit function is balanced in its
search for precision, since it describes the background with
the same number of complex adjustable parameters (C and
D) as the resonance (A and B), that is one parameter more
than in reference [12]. The fit is performed on a sub-interval
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Fig. 4. Extraction of the complex energy of the continuum mode
and its spectral weight by a fit with four complex parameters
(26) of the response functions χ(q, ω) in the BEC-BCS crossover
(on the µ > 0 side). (a) By fitting the coefficient χ̌[1]

|∆|ρ(ν) of q̌
in the expansion (20) of the modulus-density response function.
(b) Idem for the coefficient χ̌[3]

ρρ(ν) of q̌3 in (19). In black (red):
real (imaginary) part of the coefficient ζ0 in the quadratic start
(13) of the complex energy. In green: spectral weight Π0 of the
mode in the considered response function (this is the residue
modulus of the analytic continuation of χ̌[n] at ζ0, so that
Π0 = limq̌→0 ∆̌|Ž|∆|ρ|/q̌3 in (a) and Π0 = limq̌→0 ∆̌|Žρρ|/q̌5

in (b), where the Ž are those of figure 1). Full line: exact values.
Dashed line: values taken from the fit on the reduced frequency
interval ν ∈ [1/10, 9/10]. Dotted line: same for ν ∈ [1/5, 4/5].
The fit interval was discretized at 60 equally spaced points. Note
the factor 100 on Π0 in (b).

[ν1, ν2] of [0, 1] in order to avoid the singularities at the bound-
aries. The result is very encouraging for the modulus-density
response, see figure 4 (a): we obtain a good approximation of
the complex energy and the spectral weight of the mode, even
for ∆̌ > 1.21 where Re ζ0 < 0 and where the pole is no longer
below the analytic continuation (and measurement) interval
ν ∈ [0, 1]. On the other hand, the result is bad for the density-
density response, see figure 4 (b), except perhaps for the width
of the resonance. To understand this difference in success ac-
cording to the observable |∆| or ρ, we have calculated the rel-
ative height hrel of the contribution of the resonance above
the background. 10 For ∆̌ < 2, we always find that hrel > 1
for the modulus of the order parameter, but that hrel < 1 for
the density. For example, for ∆̌ = 1/2, h|∆|ρrel ' 1.8 while
hρρrel ' 0.37. The problem is that the complex resonance does
not emerge from the background enough in the density-density
response. This problem becomes prohibitive in the low inter-
action limit, where hρρrel → 0, while it does not arise for the
modulus, since h|∆|ρrel → 2.338 . . . for ν1 < Re ζ0, see section
4.

4. In the BCS limit of weak interaction

The weakly attractive regime kFa→ 0−, although not very
relevant for cold atom experiments, has some theoretical inter-
est: it is indeed there that the used BCS theory is most quan-
titative and most reliable. A clever way to take the continuous

10. For a given function χ(ν), we define the background by F (ν) =
χ(ν) − Z0/(ν − ζ0), ζ0 being the pole of the analytic con-
tinuation of χ to the lower complex half-plane and Z0 the as-
sociated residue. Then hrel = |Z0/(ν0 − ζ0)|/|F (ν0)| with
ν0 = max(ν1,Re ζ0).

c©2019 CNRC Canada
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limit of our lattice model corresponds to the chain of inequal-
ities 0 < −a � b � 1/kF : we can continue to replace the
integration domain D by R3 in the definition of Σij , but as
|a|/b � 1, the interaction between fermions is now in Born’s
regime of scattering theory, so that g0 can be approximated by
g in the matrix (8),

g0 → g (27)

and the mean-field Hartree shift does not vanish in the BCS
spectrum, with ξk = Ek − µ + ρg/2. At order one in kFa,
the equation of state of the gas at zero temperature contains
precisely this Hartree term, µ = εF + ρg/2; the correspond-
ing BCS spectrum is simply εk = [(Ek − εF )2 + ∆2]1/2, in
agreement with reference [11], and reaches its minimum at the
wave number k0 = kF .

The expressions (12) of the response functions obtained for
g0 = 0 are no longer sufficient. We recalculate them starting
from the general expressions (9, 10) and by doing the substitu-
tion (27). Proceeding as in footnote 2, we get 11

χρρ =

2

∣∣∣∣∣ Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

∣∣∣∣∣
detM

, χ|∆|ρ =

∣∣∣∣ Σ11 Σ13

Σ12 Σ23

∣∣∣∣
detM

(28)

implying that the χ are taken at (q, ω) and the Σij are taken
at (z = ~ω + i0+,q). Now, the determinant detM is a linear
function of the third column vector of M , so that

detM =

∣∣∣∣ Σ11 Σ12

Σ12 Σ22

∣∣∣∣− g
∣∣∣∣∣ Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

∣∣∣∣∣ (29)

By dividing (28) up and down by the first term in the right-
hand side of (29), we recover the susceptibilities (12) obtained
for g0 = 0, which we note χg0=0, and which therefore allow
us to write very simply the sought susceptibilities at nonzero
g0 = g:

χρρ =
χg0=0
ρρ

1− g
2χ

g0=0
ρρ

, χ|∆|ρ =
χg0=0
|∆|ρ

1− g
2χ

g0=0
ρρ

(30)

The forms (30) are typical of the theory of the RPA [40], to
which our linearized time-dependent BCS theory is equivalent
up to incoming quantum fluctuations [35]. Such forms (but not
the explicit expressions we give) already appear in references
[25, 26].

It is therefore easy to resume the study of the response func-
tions in the vicinity of the continuum mode at low-wavenumber,
by making q tend to zero at fixed reduced frequency ν as in
(14). Since χg0=0

ρρ (q, ω) then changes to second order in q, the
denominators in (30) can be approximated by 1 and the results
(19, 20) are transposed directly. Remarkably, the whole dis-
cussion at low q in the section 3 is actually independent of the

11. In Cramer’s 3× 3 determinant in the numerator of χ|∆|ρ, we add
to the third column the second column multiplied by g to reduce
it to a 2× 2 determinant.

precise value of g0 and also applies to the case g0 = g, ex-
cepted of course for the value of the function ξk and the BCS
spectrum εk, as well as the position k0 of its minimum.

In this limit kFa → 0−, the equilibrium order parameter
tends exponentially to zero, ∆/εF ∼ 8e−2 exp(−π/2kF |a|)
according to the BCS theory [41]. This greatly simplifies our
results. Let us give the coefficient of q̌3 and q̌ in the Taylor
expansions (19, 20) of the response functions to the dominant
order in ∆: 12

χ̌[3]
ρρ(ν) ∼

∆̌→0

(ζ − 2)
√
ζ − 1 + ζ2 asin 1√

ζ
− 2(ζ−1)

asin 1√
ζ

32iπ∆̌3
(31)

χ̌
[1]
|∆|ρ(ν) ∼

∆̌→0

2

iπ

[
1 + ζ ln ∆̌

8e

ζ asin 1√
ζ

+
√
ζ − 1

−
1
2 ln ∆̌

8e

asin 1√
ζ

]
(32)

where the energies are this time in units of εF (∆̌ = ∆/εF )
and the wave numbers in units of k0 = kF (q̌ = q/kF ). At
this order, unlike the modulus response, the density response
no longer has a pole in its analytic continuation, so it bears no
trace of the continuum mode 13; moreover, on the open inter-
val ν ∈]0, 1[, its real (imaginary) part is a purely increasing
(decreasing) function of ν, with no extremum, in contrast with
figure 2 (a1).

5. Conclusion

At zero temperature, in the time-dependent BCS approxi-
mation, we calculated the linear response of a superfluid gas
of spin 1/2 fermions to a Bragg excitation of wave vector q
and angular frequency ω, which is a well known excitation
technique in cold atom experiments. For a chemical poten-
tial µ > 0, we investigated this response analytically within
the low wavenumber limit q → 0, the deviation of ~ω from
the edge 2∆ of the broken pair continuum being scaled ∝ q2

as the one of the complex energy zq of the still unobserved
continuum mode. In the BEC-BCS crossover where the order
parameter ∆ is comparable to µ, the continuum mode causes
frequency peaks or dips in the density and modulus response
functions of the order parameter. A simple fit of these func-
tions by the sum of a complex resonance and a frequency-affine
background makes it possible to estimate the complex energy
zq and the spectral weight of the mode, with a good precision
for the response in modulus, even when Re zq < 2∆ so that
the mode is not below the interval of analytic continuation (in
the theory) and measurement (in the experiment). This augurs
an upcoming observation.

12. We use section 4.6.3 of reference [13] for Σ12 and the known
expansion of elliptic integrals for the rest. Expansions (19, 20)
assume that qξ � 1 so q̌ � ∆̌, hence the order of the limits
q → 0 then ∆→ 0.

13. We must expand χ̌
[3]
ρρ(ζ) to the order ∆̌−1 to find a

pole in its analytic continuation, of residue ζ
(0)
0 (1 +

ζ
(0)
0 ln ∆̌

8e
)2/(2iπ3∆̌

√
ζ

(0)
0 − 1) with ζ(0)

0 ' 0.2369− 0.2956i.
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