Table des matières

1	Introduction générale, concepts et outils de base : statistique quan-				
	tiqu	e et in	teractior	1	1
	1.1	Le gaz	z parfait (de bosons : rappels et mise en bouche	3
		1.1.1	Dans l'e	ensemble grand-canonique	4
			1.1.1.1	Condensation par saturation des modes excités	5
			1.1.1.2	Signatures à un corps : profil de densité, fonction g_1	8
			1.1.1.3	Signatures à deux corps : fonction g_2 , fluctuations	
				géantes de n_0 , bruit de partition symétrique	12
		1.1.2	Dans l'e	ensemble canonique puis microcanonique	14
			1.1.2.1	Motivation expérimentale	14
			1.1.2.2	Élimination du mode du condensat et approxima-	
				tion du condensat jamais vide	15
			1.1.2.3	Fluctuations canoniques de \hat{N}_0 : premiers moments	
				et distribution de probabilité	16
			1.1.2.4	Fluctuations microcanoniques de \hat{N}_0	20
	1.2	Quel	modèle p	our l'interaction	22
		1.2.1	Le prob	lème de la métastabilité, la solution par l'universa-	
			lité et la	discrétisation de l'espace	22
		1.2.2	Ce fil co	onducteur qu'est la matrice T	27
		1.2.3	La notio	on de longueur de diffusion dans l'onde <i>s</i>	29
			1.2.3.1	En dimension trois	29
			1.2.3.2	En dimensionalité réduite	31
	1.3	Ampli	itude de	diffusion, matrice <i>T</i> et lien avec les atomes froids	
		pourl	le modèle	e de Wigner-Bethe-Peierls d'une interaction de por-	
		tée ni	ılle		32
		1.3.1	En dim	ension trois	32
		1.3.2	En dim	ensionalité réduite	37
			1.3.2.1	Cas $d = 2$	37
			1.3.2.2	Cas $d = 1$	41
	1.4	L'inte	raction d	e contact la plus simple : le modèle sur réseau	43
		1.4.1	Dans l'e	espace réel discrétisé	43
		1.4.2	Dans l'e	espace des impulsions	45

		1.4.3	Matrice	T , constante de couplage nue et hamiltonien \ldots	46
2	Le r	égime	du conde	ensat pur : l'équation de Gross-Pitayevski	49
	2.1	Cas st	ationnai	re	52
		2.1.1	En dime	ension trois	52
			2.1.1.1	Une formulation variationnelle	52
			2.1.1.2	Cas $a > 0$ et longueur de relaxation ξ	53
			2.1.1.3	Cas $a < 0$ et instabilité par effondrement	54
			2.1.1.4	Cas piégé et limite de Thomas-Fermi	54
		2.1.2	En dime	ension deux	57
			2.1.2.1	Une invariance d'échelle critiquable	57
			2.1.2.2	Limite de Thomas-Fermi	59
		2.1.3	En dime	ension un : le soliton brillant	59
			2.1.3.1	Analyse critique de la constante de couplage	61
			2.1.3.2	Applications : équation d'état, limite de Thomas-	
				Fermi, soliton brillant et brisure d'invariance par	
				translation	62
			2.1.3.3	Ce que nous apprend l'ansatz de Bethe : forte ou	
				faible densité, condensat ou pas, soliton quantique,	
				chat de Schrödinger, transition liquide-gaz	64
		2.1.4	Complé	ment : condition de minimisation locale de l'énergie	69
	2.2	Applic	cations : o	condensats stationnaires avec des défauts de phase	73
		2.2.1	Une équ	ation enrichie par un terme de rotation	73
		2.2.2	En dime	ension un : soliton gris et seconde branche de Lieb	76
			2.2.2.1	Une formulation salvatrice	76
			2.2.2.2	Intégrabilité de l'équation de Schrödinger non li-	
				néaire	78
			2.2.2.3	À la limite thermodynamique	79
			2.2.2.4	Obtention de la seconde branche de Lieb par l'éner-	
				gie	80
			2.2.2.5	Obtention de la seconde branche de Lieb par le	
				déphasage	81
			2.2.2.6	Et dans le cas attractif?	83
		2.2.3	En dime	ension deux : condensats piégés tournants avec des	
			tourbill	ons quantiques	84
			2.2.3.1	Une fonction d'essai de Thomas-Fermi avec tour-	
				billons	85
			2.2.3.2	Énergie moyenne de <i>n</i> tourbillons	87
			2.2.3.3	Discussion physique à Ω fixé $\ldots \ldots \ldots \ldots$	89
			2.2.3.4	Discussion physique à L_z fixé pour $n = 1 \dots \dots$	92
			2.2.3.5	Ni des condensats au sens strict ni des superfluides	93
		2.2.4	En dime	ension trois : le tourbillon à ligne de cœur courbée .	95

		2.2.4.1	Un raisonnement simple par découpage en tran-	
			ches	95
		2.2.4.2	Des prédictions à l'épreuve du numérique	97
		2.2.4.3	À moment cinétique L_z fixé	98
2.3	Cas d	épendan	t du temps	99
	2.3.1	Forme of	de l'équation et de ses réductions dimensionnelles . 1	101
	2.3.2	Les équ	ations hydrodynamiques comme un équivalent de	
		l'approx	ximation de Thomas-Fermi dans le cas dépendant	
		du temj	ps, et comment les résoudre	102
		2.3.2.1	Obtention par passage en représentation phase-	
			module	102
		2.3.2.2	Solution des équations hydrodynamiques 1	104
		2.3.2.3	En point de vue de Lagrange 1	106
		2.3.2.4	Équations hydrodynamiques linéarisées 1	107
		2.3.2.5	Modes propres en l'absence de rotation 1	109
	2.3.3	Quelqu	es solutions exactes de l'équation de Gross-Pitayev-	
		ski		115
		2.3.3.1	Cas 1D : mettre en mouvement le soliton brillant . 1	115
		2.3.3.2	Cas 2D : se ramener à un piège de raideur cons-	
			tante par changement de jauge et d'échelle 1	117
		2.3.3.3	Cas général : modifier le mouvement d'ensemble	
			dans un piège	121
	2.3.4	Applica	tion : élucidation du mécanisme de formation des	
		réseaux	de tourbillons dans l'expérience de l'ENS 1	122
		2.3.4.1	La procédure expérimentale de l'ENS et l'échec	
			des scénarios thermodynamiques 1	122
		2.3.4.2	Un nouveau mécanisme en deux temps, résonance	
			et instabilité dynamique	125
		2.3.4.3	Une procédure vérificatoire : mise en rotation lente l	129
		2.3.4.4	Le scénario thermodynamique à la Landau, suite	
			et fin	134
		2.3.4.5	Moralité	136
		2.3.4.6	Complément : solutions stationnaires générales des	
			équations hydrodynamiques dans un piège har-	
			monique tournant autour d'un de ses axes propres 1	137
	2.3.5	Étude d	le la stabilité dynamique 1	40
		2.3.5.1	Un calcul très simple 1	141
		2.3.5.2	Une obtention plus rigoureuse de $\mathscr{L}(t)$ 1	143
		2.3.5.3	Cas indépendant du temps : modes propres nor-	
			maux et anormaux, transformation de Bogoliou-	
			bov, stabilité dynamique et thermodynamique 1	44
		2.3.5.4	Cas dépendant du temps 1	153

l'évolution temporelle1542.4.1Évolution d'un soliton brillant « au repos »
 2.4.1 Évolution d'un soliton brillant « au repos »
2.4.1.1 Par équations de Heisenberg pour le champ quantique 156 2.4.1.2 Par étude linéaire de stabilité pour le champ classique 157 2.4.2 Un mécanisme de brouillage de phase omis par l'équation de Gross-Pitayevski 159 2.4.2.1 Modèle à deux modes 159 2.4.2.2 Champ classique contre champ quantique 160 2.4.2.3 Amélioration du champ classique par ajout d'un bruit de Wigner dans l'état initial 163 2.4.3 Généralité de ce mécanisme de brouillage : mode pulsant dans un piège harmonique isotrope 164 2.4.3.1 Excitation par changement de raideur du piège 164 2.4.3.3 Stabilité du mode pulsant : effet des fluctuations du facteur d'échelle 166 2.4.3.3 Stabilité des autres modes 169 2.4.4 Absence du mécanisme d'émission spontanée dans l'équation de Gross-Pitayevski 170 2.4.4.1 Une analogie avec le rayonnement quantique 170 170
tique1562.4.1.2Par étude linéaire de stabilité pour le champ classiquesique1572.4.2Un mécanisme de brouillage de phase omis par l'équationde Gross-Pitayevski1592.4.2.1Modèle à deux modes1592.4.2.2Champ classique contre champ quantique1602.4.2.3Amélioration du champ classique par ajout d'un bruit de Wigner dans l'état initial1632.4.3Généralité de ce mécanisme de brouillage : mode pulsant dans un piège harmonique isotrope1642.4.3.1Excitation par changement de raideur du piège1642.4.3.2Stabilité du mode pulsant : effet des fluctuations du facteur d'échelle1662.4.3.3Stabilité des autres modes1692.4.4Absence du mécanisme d'émission spontanée dans l'équa- tion de Gross-Pitayevski1702.4.4.1Une analogie avec le rayonnement quantique1702.4.4.2Déplétion quantique rapide dans un modèle à deux
 2.4.1.2 Par étude linéaire de stabilité pour le champ classique
sique
 2.4.2 Un mécanisme de brouillage de phase omis par l'équation de Gross-Pitayevski
de Gross-Pitayevski1592.4.2.1Modèle à deux modes1592.4.2.2Champ classique contre champ quantique1602.4.2.3Amélioration du champ classique par ajout d'un bruit de Wigner dans l'état initial1632.4.3Généralité de ce mécanisme de brouillage : mode pulsant dans un piège harmonique isotrope1642.4.3.1Excitation par changement de raideur du piège1642.4.3.2Stabilité du mode pulsant : effet des fluctuations du facteur d'échelle1662.4.3.3Stabilité des autres modes1692.4.4Absence du mécanisme d'émission spontanée dans l'équa- tion de Gross-Pitayevski1702.4.4.1Une analogie avec le rayonnement quantique1702.4.4.2Déplétion quantique rapide dans un modèle à deux
 2.4.2.1 Modèle à deux modes
 2.4.2.2 Champ classique contre champ quantique 160 2.4.2.3 Amélioration du champ classique par ajout d'un bruit de Wigner dans l'état initial
 2.4.2.3 Amélioration du champ classique par ajout d'un bruit de Wigner dans l'état initial
bruit de Wigner dans l'état initial
 2.4.3 Généralité de ce mécanisme de brouillage : mode pulsant dans un piège harmonique isotrope
 dans un piège harmonique isotrope
 2.4.3.1 Excitation par changement de raideur du piège 164 2.4.3.2 Stabilité du mode pulsant : effet des fluctuations du facteur d'échelle
 2.4.3.2 Stabilité du mode pulsant : effet des fluctuations du facteur d'échelle
du facteur d'échelle1662.4.3.3Stabilité des autres modes1692.4.4Absence du mécanisme d'émission spontanée dans l'équa- tion de Gross-Pitayevski1702.4.4.1Une analogie avec le rayonnement quantique1702.4.4.2Déplétion quantique rapide dans un modèle à deux
 2.4.3.3 Stabilité des autres modes
 2.4.4 Absence du mécanisme d'émission spontanée dans l'équation de Gross-Pitayevski
tion de Gross-Pitayevski
2.4.4.1 Une analogie avec le rayonnement quantique 1702.4.4.2 Déplétion quantique rapide dans un modèle à deux
2.4.4.2 Déplétion quantique rapide dans un modèle à deux
modes
2.4.4.3 En champ classique amélioré par bruit de Wigner 175
2.4.5 Un autre exemple, multimode, dominé par l'émission spon-
tanée de paires : les faisceaux jumeaux
2.4.5.1 Modèle 1D avec constante de couplage modulée
en temps
2.4.5.2 Analyse linéaire de stabilité en champ classique . 178
2.4.5.3 Propriétés statistiques des faisceaux jumeaux 181
2.4.6 Moralité de la discussion sur la validité de Gross-Pitayevski 182
La théorie de Bogoliouboy : premières corrections au condensat pur en
dimension trois et opérateur phase du condensat 183
3.1 Idée générale de la méthode de Bogolioubov
3.1.1 Le champ non condensé $\hat{\psi}_{\perp}$ comme perturbation
3.1.2 Mise en œuvre : développement de l'hamiltonien, élimina-
tion du mode du condensat, opérateur phase $\hat{\theta}$ et champ
non condensé redéfini $\hat{\Lambda}$, correction à Gross-Pitavevski 185
3.1.3 Une percée historique
3.2 Cas stationnaire spatialement homogène

3.2.1	Cas du	modèle sur réseau	190
	3.2.1.1	Mise en œuvre de la méthode de Bogolioubov et	
		premières interprétations physiques	190
	3.2.1.2	Un développement caché	193
	3.2.1.3	Forme finale de l'hamiltonien de Bogolioubov; spec	C-
		tre d'excitation, énergie de l'état fondamental	195
3.2.2	Pour un	n vrai potentiel d'interaction $V(\mathbf{r})$	199
3.2.3	Applica	tions simples : statistique de n_0 , densité non conden	-
	sée ano	rmale, équation d'état, distribution et corrélations	
	en impı	ulsion, fonctions g_1 et g_2 , cohérence temporelle du	
	champ	non condensé	202
	3.2.3.1	Statistique de n_0 à l'équilibre	202
	3.2.3.2	La densité non condensée anormale ρ_{an}	210
	3.2.3.3	L'équation d'état du gaz de bosons en interaction	
		faible à l'approximation de Bogolioubov	211
	3.2.3.4	Fonction de cohérence du premier ordre g_1 et dis-	
		tribution en vecteur d'onde $n_{\mathbf{k}}^{\text{cin}}$ du gaz; fonction	
		de corrélation dans l'espace des impulsions	221
	3.2.3.5	Fonction de distribution de paires $g_2 \ldots \ldots$	225
	3.2.3.6	Fonction de cohérence spatio-temporelle g_1 dans	
		l'approximation de Bogolioubov	229
3.2.4	Le cas à	a part de la superfluidité	237
	3.2.4.1	Superfluidité n'est pas condensation	237
	3.2.4.2	La vitesse critique de Landau et au-delà	238
	3.2.4.3	Les courants métastables et leur analyse de Bogo-	
		lioubov	242
	3.2.4.4	Définition thermodynamique de la fraction nor-	
		male	249
	3.2.4.5	Variante énergétique et borne de Leggett	252
3.2.5	Complé	ément I : exposé et mise en œuvre sur la densité non	
	conden	sée normale et anormale d'une méthode générale	
	de déve	eloppement à haute et à basse température, et mise	
	en diffic	culté de la théorie de Hartree-Fock	256
	3.2.5.1	La densité non condensée	256
	3.2.5.2	A l'ordre dominant en température	258
	3.2.5.3	Comment aller au-delà de l'ordre dominant	259
	3.2.5.4	La densité non condensée anormale	262
	3.2.5.5	Quel est l'intérêt du développement à haute tem-	a -
		pérature?	264
0 -	3.2.5.6	Application : mise de Hartree-Fock en difficulté	264
3.2.6	Complé	ément II : adiabaticité quantique et adiabaticité ther-	_
	modyna	amique	267

3.3	Cas st	ationnai	re dans un piège	271
	3.3.1	Motivat	ion et spécificités	271
		3.3.1.1	Quel mode spatial du condensat?	271
		3.3.1.2	Quels modes de Bogolioubov? Limite semi-classi-	
			que	272
	3.3.2	Un cas s	simplifié pour comprendre pourquoi les termes d'or-	
		dre 3 er	n $f_{\rm nc}^{1/2}$ dans l'hamiltonien peuvent influer sur des	
		valeurs	moyennes à l'ordre 2	274
		3.3.2.1	Calcul de Bogolioubov pour un degré de liberté	274
		3.3.2.2	Moralité	277
	3.3.3	Approxi	mation cubique de l'hamiltonien	277
		3.3.3.1	Première étape de la cubisation	277
		3.3.3.2	Deuxième étape de la cubisation	278
		3.3.3.3	Le résultat final et son interprétation	279
	3.3.4	Lien ent	tre $\hat{\Lambda}^{(2)}$, $\langle \hat{\Lambda}^{(1)} \rangle$ et $\phi_{\perp}^{(2)}$	282
	3.3.5	Dévelop	ppement explicite de la théorie à l'ordre 3 en $f_{ m nc}^{1/2}$.	283
		3.3.5.1	Vue d'ensemble sur la suite du développement en	
			$f_{\rm nc}^{1/2}$	283
		3.3.5.2	Å l'ordre 0 en $f_{\rm nc}^{1/2}$	283
		3.3.5.3	Å l'ordre 1 en $f_{\rm nc}^{1/2}$	284
		3.3.5.4	À l'ordre 2 en $f_{\rm nc}^{1/2}$: l'hamiltonien de Bogolioubov	
			discret et sa forme réduite	284
		3.3.5.5	A l'ordre 3 en $f_{\rm nc}^{1/2}$: fonction d'onde du condensat	
			au-delà de Gross-Pitayevski \dots	290
		3.3.5.6	Calcul de $\langle \Lambda^{(1)}(\mathbf{r}) \rangle_{\hat{H}^{(0-2)} + \hat{H}^{(3)}}^{(2)}$ et interprétation phy-	
			sique par déplétion-interaction	292
	3.3.6	Dévelop	opement de g_0 à l'ordre un en a/b et passage à la li-	
		mite coi	ntinue (ou d'une interaction de portée négligeable)	000
		$b/\xi \to 0$		296
		3.3.6.1		296
		3.3.6.2	Geometrie consideree pour le passage à la limite	207
		2262	Continue	297
		3.3.0.3	Cas de le fenergie de l'état fondamental	298
	227	5.5.0.4	Cas de la fonction d'une du condensat	501
	3.3.7	Synthes	de Regelieubeu indénendante du temps	202
			Metivation at obtantion	202
		3.3.7.1	Motivation et obtention \ldots \ldots \ldots \ldots \ldots	303
		5.5.7.2	Cas de $\varphi^{(2)}$, premiere correction à Gross-Pitayevski sur la mode spatial du condensat	205
		2272	Cas de l'hamiltonion de Regelieubeu et de son ni	303
		J.J.7.J	veau d'énergie fondamental	308
		3371	Cas d'une observable plus générale	310
		5.5.7.4	Cas a une observable plus generale	210

		3.3.7.5	Récapitulatif en espace continu : principales étapes	
			et équations	310
3.4	La thé	orie de B	Bogolioubov dans le cas dépendant du temps	312
	3.4.1	Motivat	ions physiques et vue d'ensemble	312
		3.4.1.1	Une question utile et un problème fondamental .	312
		3.4.1.2	Un premier progrès sur Gross-Pitayevski	313
		3.4.1.3	Un second progrès sur Gross-Pitayevski	314
		3.4.1.4	Vue d'ensemble de la méthode	315
	3.4.2	Équatio	n du mouvement pour le champ $\hat{\Lambda}$ à l'ordre 2 en $f_{ m nc}^{1/2}$	² 315
	3.4.3	Fonction	n d'onde du condensat à l'ordre 0 en $f_{\rm nc}^{1/2}$	321
	3.4.4	Évolutio	on du champ non condensé et correction à $\phi^{(0)}$ à	
		l'ordre 1	$h = n f_{\rm nc}^{1/2} \dots \dots$	323
	3.4.5	Contrib	ution d'ordre 2 en $f_{ m nc}^{1/2}$ à la fonction d'onde du con-	
		densat		325
	3.4.6	Dévelop	ppement de g_0 au premier ordre en a/b et limite	
		continu	e (ou de portée négligeable) $b/\xi \rightarrow 0$	327
	3.4.7	Synthès	e : formulation directe de la théorie de Bogoliou-	
		bov dép	endant du temps dans l'espace continu	331
		3.4.7.1	Quel petit paramètre?	332
		3.4.7.2	Ordre 0 : l'équation de Gross-Pitayevski retrouvée	332
		3.4.7.3	Ordre 1 : des modes de quasi-particules sans in-	
			teraction	332
		3.4.7.4	Ordre 2 : première correction à Gross-Pitayevski .	335
		3.4.7.5	De l'importance de $\phi_{\perp}^{(2)}$ dans les observables \ldots	336
		3.4.7.6	Et si N fluctue?	338
	3.4.8	Lien ave	ec la physique de champ classique et l'approxima-	
		tion de l	la troncature de Wigner	339
	3.4.9	Les diffé	érents scénarios de sortie du régime de validité de	
		l'équation	on de Gross-Pitayevski dépendant du temps	344
		3.4.9.1	Mise en échec par divergence de la déplétion	345
		3.4.9.2	Mise en échec au niveau de $\phi^{(2)}$	348
3.5	Ľopér	ateur ph	ase du condensat	349
	3.5.1	Introdu	ction de l'opérateur phase θ_{ϕ}	350
	3.5.2	Equatio	n d'évolution de θ_{ϕ} lorsque $\partial_t \phi \equiv 0$	352
	3.5.3	Lissage	temporel $\overline{d\hat{\theta}_{\phi}/dt}^{t}$ de l'équation d'évolution	354
		3.5.3.1	Motivation et mise en œuvre	354
		3.5.3.2	Lissage des termes quadratiques dans d $\hat{ heta}_{\phi}/\mathrm{d}t$	356
		3.5.3.3	Lissage des termes linéaires dans $d\hat{\theta}_{\phi}/dt$: il faut	
			connaître les termes quadratiques $\hat{S}^{(2)}$ de d $\hat{\Lambda}_{\phi^{(0)}}/\mathrm{d} t$	357
		3.5.3.4	Lissage de l'opérateur source $\hat{S}^{(2)}$ et d'un opéra-	
			teur $\hat{\phi}^{(2)}$	359

		3.5.3.5	Lissage des termes linéaires dans d $\hat{\theta}_{\phi}$ /dt : suite et	
			fin	360
	3.5.4	Reconn	aître dans $\overline{d\hat{\theta}_{\phi}/dt}^{t}$ un opérateur potentiel chimique	362
		3.5.4.1	Reconnaître des dérivées par rapport à N	362
		3.5.4.2	Triturer les dérivées en trois étapes	364
		3.5.4.3	Regroupement, résultat final et interprétation	366
	3.5.5	Au-delà	de l'approximation de Bogolioubov : le cas homo-	
		gène sp	atialement	367
		3.5.5.1	Intérêt, idée et mise en œuvre du calcul	367
		3.5.5.2	Le résultat; ses termes diagonaux; ses termes non	
			diagonaux, diffusion de phase et lissage temporel	369
	3.5.6	Cas où l	e nombre de particules fluctue	371
		3.5.6.1	Motivation	371
		3.5.6.2	Extension du calcul de $\overline{d\hat{\theta}_{\phi}/dt}^{t}$ des sections pré-	
			cédentes	372
		3.5.6.3	Simplification supplémentaire pour un grand sys-	
			tème	374
		3.5.6.4	Le résultat et son application à un mélange statis-	
			tique d'ensembles canoniques	375
	3.5.7	Dans le	cas spatialement homogène, sans lissage temporel	
		(avec le	s termes oscillants)	376
		3.5.7.1	À N fixé	376
		3.5.7.2	Lorsque <i>N</i> fluctue	378
	3.5.8	Complé	ment : les paradoxes de l'opérateur phase	379
	1	. .		
App	licatio	n I : Amo	rtissement et deplacement d'energie des modes d'e	X-
			ensat spatialement nomogene	381
4.1	Ubten	tion par	analyse d'une excitation de Bragg de faible ampli-	202
	1110e e	 Uno ovr	·····	202 202
	4.1.1	Solution	de l'équation de Cross Ditevoyaki au promier ordre	303
	4.1.2	Solution	rde requation de Gross-Pitayevski au prenner ordre	295
	112	Évolutio	and as modes de Bogelieubeu au premier ordre en	305
	4.1.5	c et amr	plitudes \mathcal{A}^{k_3} \mathcal{A}_{k_3} , \mathcal{A}_{k_3}	387
			$\sum_{k_1,k_2} (2) \sum_{k_1,k_2} $	507
	4.1.4	Correct	Ion $\phi^{(2)}$ a la fonction d'onde de Gross-Pitayevski au	200
		premier		390
		4.1.4.1	Structure du resultat et considerations generales .	390
	415	4.1.4.2	Calcul explicite de $\varphi^{-\gamma}$ aux temps longs	393
	4.1.5	Resultat	i : la preiniere correction à Gross-Pitayevski sur les	200
				399
		4.1.5.1	rois expressions equivalentes	400

		4.1.5.2	Survol de la littérature sur ce sujet	402
		4.1.5.3	Conditions d'applicabilité du résultat (4.84)	403
4.2	Obten	tion et ir	nterprétation physique en termes d'interaction entre	
	les qu	asi-parti	cules de Bogolioubov	405
	4.2.1	Signal d	e Bragg et fonctions de corrélation du système non	
		perturb	é	405
	4.2.2	Calcul p	par équation pilote et théorème de régression quan-	
		tique .		407
		4.2.2.1	Processus d'interaction entre quasi-particules et	
			amplitudes \mathcal{A} retrouvées	408
		4.2.2.2	L'équation pilote dans l'approximation de Born-	
			Markov	410
		4.2.2.3	Le théorème de régression quantique	412
	4.2.3	Retrouv	rer le résultat de la section 4.1.5	414
		4.2.3.1	Un désaccord apparent	414
		4.2.3.2	Résolution par inclusion de \hat{H}_4	415
	4.2.4	Une cor	ndition de validité du résultat : celle de la règle d'or	417
4.3	Ouela	ues résu	ltats explicites sur $\omega_{\alpha}^{(2)}$	419
	431	Synthès	$x_{\rm e}$: ensemble des résultats analytiques sur $\omega^{(2)}$ et	
	1.0.1	illustrat	ions numériques	419
		4 3 1 1	Classement par variable fuvante (tendant vers 0	115
		4.5.1.1	Chassement par variable hypante (tendant vers 0	420
		1312	Illustrations numériques après réduction à une in-	720
		4.5.1.2	tégrale simple	123
		1313	Complément : calcul des intégrales sur l dans les	423
		4.5.1.5	$\dot{a}_{\text{dustions}}$ (4.160) (4.162) et (4.167)	120
	122	Cas T -	$0: développement de \omega^{(2)}$ aux faibles <i>a</i> à l'ordro 4:	423
	4.3.2	$\log r = \log r$	to the veloppement de ω_q aux faibles q a l'ordre 4,	
		tiácholl	at est reel mais necessite un developpement mui-	120
		4 2 2 1	∇	423
		4.3.2.1	In développement trop païf sous le signe intégral	423
		4.3.2.2	La honna máthada ast multiáshalla	431
		4.3.2.3	La bonne methode est municipale	432
		4.3.2.4	Un faccoldement vermatione	435
	122	4.5.2.3	Le resultat final à l'ordre 4 \dots	455
	4.3.3	Cas I =	$v_{\mathbf{q}}$ aux lables q al olde 5,	425
			La devient complexe et un logarithme de q apparait	433
		4.3.3.1	Une intégrale modèle nour c'average qui montre	455
		4.3.3.2	Viene antegrale modele pour s'exercer, qui montre	
			i importance de la courdure de la relation de dis-	400
		4000		430
		4.3.3.3	Ketour au vrai probleme	442
		4.3.3.4	Le resultat à l'ordre 5	447

		4.3.4	Cas $T \neq 0$: linéarisation de $\omega_{\mathbf{q}}^{(2)}$ aux faibles q	447
			4.3.4.1 Motivations et vue d'ensemble	447
			4.3.4.2 Développement dans la zone $k < Aq$	450
			4.3.4.3 Développement dans la zone $k > Aq$	452
			4.3.4.4 Une forme finale plus agréable	453
			4.3.4.5 À basse température	454
			4.3.4.6 À haute température	455
			4.3.4.7 À température quelconque	457
		4.3.5	Que vaut $\omega_{\mathbf{q}}^{(2)}$ aux grands q ?	458
			4.3.5.1 Motivation physique	458
			4.3.5.2 Ce que l'intuition suggère sur la partie réelle	459
			4.3.5.3 Ce que l'intuition suggère sur la partie imaginaire	461
			4.3.5.4 Développement de $\omega_{\mathbf{q}}^{(2)}$ aux grands q à $T = 0$	463
			4.3.5.5 À $T > 0$: développement aux grands q de la partie	
			thermique de $\hbar \omega_{\mathbf{q}}^{(2)}$	468
		4.3.6	Étude de la partie thermique $\omega_{\mathbf{q}}^{(2)\text{th}}$ de $\omega_{\mathbf{q}}^{(2)}$ à basse et à haute	
			température	471
			4.3.6.1 Limite de basse <i>T</i> à nombre d'onde <i>q</i> fixé \ldots	472
			4.3.6.2 Limite de basse <i>T</i> à rapport $\hbar c_{\text{GP}} q / k_{\text{B}} T$ fixé	473
			4.3.6.3 Limite de haute <i>T</i> à nombre d'onde <i>q</i> fixé \ldots	476
			4.3.6.4 Limite de haute <i>T</i> à rapport $\hbar^2 q^2 / m k_{\rm B} T$ fixé	479
		4.3.7	Complément I : sectorisation des processus de Belyaev et	
			de Landau dans l'espace des vecteurs d'onde	482
		4.3.8	Complément II : les singularités aux frontières de l'inté-	
			grande de $\int dk dans \omega_{\mathbf{q}}^{(2)} \dots \dots \dots \dots \dots \dots$	485
	4.4	Moral	e de notre calcul de $\omega_{\mathbf{q}}^{(2)}$	490
Pr	incin	ales no	otations	493
	morp	uico iii		100
Ine	dex			499
Bil	bliog	raphie		511
5	App	licatio	n II : La compression de spin et ses limites, et les états chats	5
	de S	chrödi	nger	537
	5.1	Introd	uction	537
		5.1.1	Principe d'une horloge atomique	537
		5.1.2	Le bruit quantique standard	538
		5.1.3	Les états comprimés	540
		5.1.4	Quelques points à approfondir	540
		5.1.5	Objectifs du présent chapitre	541
			5.1.5.1 Un spin géant grâce aux condensats	541

		5.1.5.2	mais un problème multimode	542
5.2	Comp	pression o	lans le modèle de Kitagawa-Ueda	543
	5.2.1	Positior	ı du problème	543
	5.2.2	Solution	n des équations du mouvement opératorielles	544
	5.2.3	Représe	entation bosonique et états de phase	545
	5.2.4	Spin mo	oyen, brouillage et résurgence, chat de Schrödinger	547
	5.2.5	Varianc	es et covariances de spin	548
	5.2.6	Optimis	sation de $\Delta S_{\perp,\min}$ sur le temps $\ldots \ldots \ldots \ldots \ldots$	550
		5.2.6.1	Une première échelle de temps	551
		5.2.6.2	Une seconde échelle de temps	552
	5.2.7	Optimis	sation de $\xi^2(t)$ sur le temps	553
5.3	Effet o	l'un envi	ronnement aléatoire stationnaire déphasant	556
	5.3.1	Motivat	ion et présentation du modèle	556
	5.3.2	Fluctua	tions de Larmor et facteur de compression du spin	557
	5.3.3	Quelle	loi d'échelle pour les fluctuations de Larmor aux	
		grands.	N?	559
	5.3.4	Optimis	sation de la compression sur le temps	559
		5.3.4.1	Ce à quoi on peut s'attendre	559
		5.3.4.2	Analyse à la première échelle de temps	560
		5.3.4.3	Analyse à la seconde échelle de temps	561
		5.3.4.4	D'un régime à l'autre : compétition entre bruit et	
			limite thermodynamique	563
5.4	Mise	en œuvre	e dans des condensats atomiques gazeux dans l'ap-	
	proxin	nation à	deux modes	564
	5.4.1	Dynam	ique non linéaire dans le cas homogène	566
	5.4.2	Dynam	ique non linéaire dans le cas piègé	568
		5.4.2.1	Modes ϕ_{σ} stationnaires	568
		5.4.2.2	Modes ϕ_{σ} instationnaires, difficultes et echappa-	F7 1
	E 4 2	Concéa	toire	571
	5.4.5	ot (5.12)	uences physiques des flamintomens modèles (5.114)	572
55	Étudo	ráalisto	t) et des inditions de la compression de spin	572
5.5	dans	des cond	ensats atomiques gazeux	575
	5 5 1	Consid <i>á</i>	érations simples et effet des pertes	575
	5.5.1	5 5 1 1	Motivations et un calcul heuristique de la limite	575
		5.5.1.1	de compression avec les opérateurs phases \hat{H}_{-}	575
		5512	Effet des pertes de particules dans le cas $\sigma_{gas} = \sigma_{hh}$	010
		5.0.1.2	et $g_{ab} = 0$	578
	5.5.2	L'étude	multimode par Bogolioubov proprement dite	584
		5.5.2.1	Description de la configuration et de la procédure	
			expérimentale	584
			• · · · · · · · · · · · · · · · · · · ·	

1a methode de Bogonoubov, equation d evolution des variables $\hat{b}_{\sigma k}$, $\hat{b}_{\sigma k}^{\dagger}$ et $\hat{\theta}_{\sigma b}^{\dagger}$ et leurs valeurs à $t = 0^+587$ 5.5.2.3Les observables à $t > 0$ participant de la compression de spin			5.5.2.2	Comment mener le calcul : contextualisation de
des variables $\beta_{\sigma k}$, $b_{\sigma k}$ et $\theta_{\sigma \phi}$ et leurs valeurs at $t = 0.587$ 5.5.2.3 Les observables à $t > 0$ participant de la compres- sion de spin				la méthode de Bogolioubov, équation d'évolution
5.5.2.3 Les observables a $t > 0$ participant de la compression de spin				des variables $b_{\sigma k}$, $b_{\sigma k}^{\dagger}$ et $\theta_{\sigma \bar{\phi}}$ et leurs valeurs a $t = 0^{+}587$
sion de spin5935.5.2.4Le résultat final sur le facteur de compression de spin6035.5.2.5Que se passe-t-il aux temps longs $t > 1/\gamma_{coll}$? Li- mite ergodique6055.5.3Complément : effet du branchement de l'interaction sur un gaz condensé6115.5.4Application de la théorie multimode au cas spatialement homogène6135.5.4.1L'optimum de compression6135.5.4.2La dépendance temporelle du facteur de compres- sion6165.5.5Application de la théorie multimode au cas piégé : la limite de la compression de spin dans un piège harmonique iso- 			5.5.2.3	Les observables à $t > 0$ participant de la compres-
5.5.2.4 Le résultat final sur le facteur de compression de spin				sion de spin
spin			5.5.2.4	Le résultat final sur le facteur de compression de
5.5.2.5 Que se passe-t-il aux temps longs $t > 1/\gamma_{coll}$? Limite ergodique				spin
mite ergodique			5.5.2.5	Que se passe-t-il aux temps longs $t > 1/\gamma_{coll}$? Li-
5.5.3 Complement : effet du branchement de l'interaction sur un gaz condensé			a 14	mite ergodique
un gaz condensé		5.5.3	Complé	ment : effet du branchement de l'interaction sur
5.5.4 Application de la théorie multimode au cas spatialement homogène			un gaz c	condensé
homogène		5.5.4	Applicat	tion de la théorie multimode au cas spatialement
5.5.4.1 L'optimum de compression			homogè	ene
5.5.4.2 La dépendance temporelle du facteur de compression			5.5.4.1	L'optimum de compression 613
sion			5.5.4.2	La dépendance temporelle du facteur de compres-
5.5.5 Application de la théorie multimode au cas piégé : la limite de la compression de spin dans un piège harmonique iso- trope par BKW				sion
de la compression de spin dans un piège harmonique iso- trope par BKW		5.5.5	Applicat	tion de la théorie multimode au cas piégé : la limite
trope par BKW			de la co	mpression de spin dans un piège harmonique iso-
5.5.5.1 Motivation, formulation du problème, limite ma- croscopique			trope pa	ar BKW
$\begin{array}{c} \text{croscopique} \dots \dots$			5.5.5.1	Motivation, formulation du problème, limite ma-
5.5.2 Approximation BKW pour les modes de Bogoliou- bov				croscopique
bov			5.5.5.2	Approximation BKW pour les modes de Bogoliou-
5.5.5.3 Interprétation classique				bov
5.5.5.4 La condition de quantification BKW des niveaux d'énergie			5.5.5.3	Interprétation classique
d'énergie			5.5.5.4	La condition de quantification BKW des niveaux
5.5.5.5 Justification du coefficient de réflexion (-i) des ondes BKW aux points de rebroussement				d'énergie
BKW aux points de rebroussement6335.5.5.6Mise en œuvre de BKW dans le calcul de ξ_{opt}^2 6375.5.6Complément : calcul des intégrales semi-classiques I, J, K 6415.5.6.1Cas $1 < 2j - 1 < \check{\epsilon} < j^2$: trajectoires externes6425.5.6.2Cas $0 < j^2 < \check{\epsilon}$: trajectoires hybrides6435.5.7Complément : calcul de χ_{Bog} , valeurs de \hat{D} et de sa variance, expression de $\hat{C}_{osc}(t)$ dans le cas homogène6445.5.7.1Calcul de χ_{Bog} 6455.5.7.2Une retembée : valeur de l'enéreteur \hat{D} et de sa			5.5.5.5	Justification du coefficient de réflexion (-i) des ondes
5.5.6 Mise en œuvre de BKW dans le calcul de ξ_{opt}^2 637 5.5.6 Complément : calcul des intégrales semi-classiques <i>I</i> , <i>J</i> , <i>K</i> 641 5.5.6.1 Cas $1 < 2j - 1 < \check{\epsilon} < j^2$: trajectoires externes 642 5.5.6.2 Cas $0 < j^2 < \check{\epsilon}$: trajectoires hybrides 643 5.5.7 Complément : calcul de χ_{Bog} , valeurs de \hat{D} et de sa variance, expression de $\hat{C}_{osc}(t)$ dans le cas homogène 644 5.5.7.1 Calcul de χ_{Bog} 645 5.5.7 Lupe retembée : valeur de l'enéreteur \hat{D} et de se				BKW aux points de rebroussement 633
5.5.6 Complément : calcul des intégrales semi-classiques I , J , K 641 5.5.6.1 Cas $1 < 2j - 1 < \check{\epsilon} < j^2$: trajectoires externes 642 5.5.6.2 Cas $0 < j^2 < \check{\epsilon}$: trajectoires hybrides			5.5.5.6	Mise en œuvre de BKW dans le calcul de ξ_{opt}^2 637
5.5.6.1 Cas $1 < 2j - 1 < \check{\epsilon} < j^2$: trajectoires externes 642 5.5.6.2 Cas $0 < j^2 < \check{\epsilon}$: trajectoires hybrides 643 5.5.7 Complément : calcul de χ_{Bog} , valeurs de \hat{D} et de sa variance, expression de $\hat{C}_{osc}(t)$ dans le cas homogène 644 5.5.7.1 Calcul de χ_{Bog}		5.5.6	Complé	ment : calcul des intégrales semi-classiques <i>I</i> , <i>J</i> , <i>K</i> 641
5.5.6.2 Cas $0 < j^2 < \check{\epsilon}$: trajectoires hybrides			5.5.6.1	Cas $1 < 2j - 1 < \check{\varepsilon} < j^2$: trajectoires externes 642
5.5.7 Complément : calcul de χ_{Bog} , valeurs de \hat{D} et de sa variance, expression de $\hat{C}_{osc}(t)$ dans le cas homogène 644 5.5.7.1 Calcul de χ_{Bog}			5.5.6.2	Cas $0 < j^2 < \check{\varepsilon}$: trajectoires hybrides
riance, expression de $\hat{C}_{osc}(t)$ dans le cas homogène 644 5.5.7.1 Calcul de χ_{Bog}		5.5.7	Complé	ment : calcul de χ_{Bog} , valeurs de \hat{D} et de sa va-
5.5.7.1 Calcul de χ_{Bog}			riance, e	expression de $\hat{C}_{osc}(t)$ dans le cas homogène 644
5572 Une retembée : velour de l'enéroteur \hat{D} et de se			5.5.7.1	Calcul de γ_{Bog}
5.5.7.2 one recombed value to perateur D et de Sa			5.5.7.2	Une retombée : valeur de l'opérateur \hat{D} et de sa
variance				variance
5.5.7.3 Une autre retombée : expression de l'opérateur $\hat{C}_{osc}(t)$			5.5.7.3	Une autre retombée : expression de l'opérateur $\hat{C}_{osc}(t)$
dans le cas spatialement homogène				dans le cas spatialement homogène
5.6 États chats de Schrödinger et résurgence de phase	5.6	États o	chats de S	Schrödinger et résurgence de phase
5.6.1 À la mi-temps entre brouillage et résurgence	-	5.6.1	À la mi-	temps entre brouillage et résurgence
5.6.2 Les prédictions du modèle à deux modes de Kitagawa-Ueda 652		5.6.2	Les préc	lictions du modèle à deux modes de Kitagawa-Ueda 652

		5.6.3	Comment tirer parti de l'état chat de Schrödinger dans une			
0.0.0			expérience d'horloge?	1		
5.6.4			Effet des pertes de particules	3		
			5.6.4.1 Fidélité au chat de Schrödinger	7		
			5.6.4.2 Résurgence du spin moyen)		
		5.6.5	Effet d'une température initiale non nulle : analyse multi-			
			mode dans l'approximation de Bogolioubov	2		
			5.6.5.1 Motivation	2		
			5.6.5.2 Protocole multimode proposé	2		
			5.6.5.3 Évolution sur une réalisation de l'expérience 663	3		
			5.6.5.4 Fidélité au chat de Schrödinger spinoriel 667	7		
			5.6.5.5 Contrainte sur la température dans une expérience 671	L		
			5.6.5.6 Une belle estimation-minoration 672	2		
			5.6.5.7 Fidélité au chat de Schrödinger orbito-spinoriel . 675	5		
			5.6.5.8 Résurgences du spin moyen à $T \neq 0$ 675	5		
6	Coh	óronco	tomporalla d'un condensat dans un gaz isalé i brauillaga			
U	de n	base d	$\hat{\mathbf{u}}$ aux fluctuations des quantités conservées et diffusion de			
	nha	se due	aux interactions entre les quasi-particules 681			
	6.1 Introduction motivations vue d'ensemble et mesurabilité					
		6.1.1	.1.1 Un parallèle entre cohérence spatiale et cohérence tempo-			
		relle : condensation dans l'espace-temps				
		6.1.2	Objectif et vue d'ensemble; brouillage contre diffusion 683	3		
		6.1.3	Un problème peu étudié	3		
	6.1.4 Une fonction de cohérence $g_1(t)$ mesurable			7		
6.2 Définition du problème, sa réduction à la dynamique de phase et			tion du problème, sa réduction à la dynamique de phase et			
	les résultats centraux sur $g_1(t)$			3		
		6.2.1	L'état du système	3		
		6.2.2	Quelques simplifications : omission des fluctuations de \hat{n}_{ϕ} ,			
			approximation gaussienne)		
		6.2.3	Réduction à l'ensemble microcanonique : fonction de cor-			
			rélation de $d\hat{\theta}/dt$, variance du déphasage, coefficient de			
			diffusion D et temps de retard t_0	Ĺ		
		6.2.4	Fonction $g_1(t)$ dans l'ensemble statistique généralisé; éta-			
	lement balistique de coefficient A		lement balistique de coefficient A	ł		
		6.2.5	Résultats explicites sur A , D , t_0 et la variance du déphasage 696	3		
			$6.2.5.1 \text{Résultats sur } A \dots \dots \dots \dots \dots \dots 696$	3		
		_	6.2.5.2 Résultats sur D et t_0	3		
		6.2.6	Conséquences sur l'étalement du déphasage $\theta(t) - \theta(0)$ 701	L		
	6.3	Calcul	de la tonction de corrélation $C(t)$ de $d\theta/dt$	2		
		6.3.1	Vue d'ensemble	2		
			6.3.1.1 Tout repose sur $C(t)$	2		

		6.3.1.2	Tout se ramène au microcanonique	704
		6.3.1.3	Une décorrélation évidente mais fausse!	705
	6.3.2	Dans l'e	ensemble microcanonique par équations cinétiques	706
		6.3.2.1	Position du problème	706
		6.3.2.2	Les équations cinétiques	708
		6.3.2.3	Leur linéarisation, leur solution stationnaire	709
		6.3.2.4	L'expression formelle de $C_{\rm mc}(\tau)$	711
		6.3.2.5	Dans le sous-espace des fluctuations de moment	
			cinétique nul	717
		6.3.2.6	Dépendance en temps de $C_{\rm mc}$	718
		6.3.2.7	Complément : comportement de $C_{\rm mc}(\tau)$ lorsque	
			$\tau \to +\infty$	720
	6.3.3	Dans ur	a ensemble statistique généralisé à N fixé $\ldots \ldots$	723
		6.3.3.1	Ce qui ressemble au cas microcanonique	723
		6.3.3.2	Ce qui diffère du cas microcanonique	724
	6.3.4	La valeu	tr de $C(+\infty)$: ergodicité quantique contre équation	
		pilote m	narkovienne	727
		6.3.4.1	Par ergodicité quantique c'est-à-dire microcano-	
			nicité des états propres	727
		6.3.4.2	Echec de l'approximation de Bogolioubov sur les	
			états propres	729
	<u> </u>	6.3.4.3	Echec de l'équation pilote markovienne	731
6.4	Etude	s complé	mentaires et vérificatoires de la fonction $g_1(t)$ dans	
	l'ense	mble mic	crocanonique	733
	6.4.1	Simulat	ions numeriques de champ classique	734
	6.4.2	Method	e de la résolvante	736
		6.4.2.1	Position du probleme	736
		6.4.2.2	Lien de $g_{\theta,\lambda}(t)$ avec une amplitude de probabilite	707
		C 4 D D	de presence dans $ \psi_{\lambda}\rangle$	131
		6.4.2.3	Un raisonnement simple par regie d'or de Fermi .	738
		6.4.2.4	Au-dela de la regie d'or de Fermi : la methode de	741
		6425	La diffusion de phase résulte de l'evistence d'un	741
		0.4.2.3	nôle	745
	613	Complé	ment : égalité des coefficients de diffusion issus de	745
	0.4.5	la règle	d'or et de la résolvante aux temps extensivement	
		longs .		745
				. 10
Une	formu	lation g	rand-canonique de la méthode de Bogolioubov e	t
calc	ul de l'	énergie o	le l'état fondamental à l'ordre de Wu	747
7.1	Introd	luction, r	notivation et avantages grand-canoniques	747
7.2	Hamiltonien modèle et méthode de développement			

	7.2.1	L'hamilt	tonien grand-canonique du modèle sur réseau	750
	7.2.2	Élimina	tion du mode du condensat	751
		7.2.2.1	Une procédure bien rôdée	751
		7.2.2.2	mais que vaut <i>N</i> ?	752
7.3	Àl'or	dre deux	en $f_{\rm nc}^{1/2}$: l'ordre de Bogolioubov	754
	7.3.1	L'hamilt	tonien quadratique et sa forme réduite	754
	7.3.2	Ľéquati	ion d'état grand-canonique et la fraction non conden	-
		sée		756
7.4	À l'or	dre quatr	e en $f_{\rm nc}^{1/2}$: l'ordre de Wu pour le niveau d'énergie	
	fonda	mental .		760
	7.4.1	Motivat	ion	760
	7.4.2	Correcti	ion de portée effective de l'interaction à l'ordre de	
		Bogolio	ubov	761
	7.4.3	L'hamilt	tonien grand-canonique à l'ordre $(f_{nc}^{1/2})^4$	763
	7.4.4	Correcti	ion au grand potentiel de Bogolioubov à $T = 0$	764
		7.4.4.1	Une application de la théorie des perturbations	764
		7.4.4.2	Passage à la limite continue $b/\xi \rightarrow 0$	768
		7.4.4.3	Introduction de l'hypervolume de diffusion à trois	
			corps	769
		7.4.4.4	Résultat final à l'ordre f_{nc}^2	772
		7.4.4.5	Discussion critique du résultat	773
	7.4.5	Complé	ement I : Correction $\Omega^{(4)}(\mu)$ au grand potentiel de	
		Bogolio	ubov à la limite continue $b/\xi \rightarrow 0$ du modèle sur	
		réseau		775
		7.4.5.1	Partie convergente C_{conv}^{Ω} , partie divergente $J_{\mathcal{V}}(\epsilon)$.	775
		7.4.5.2	Étude de $J_{\mathcal{V}}^{(1)}(\epsilon)$ pour $\epsilon \to 0$	777
		7.4.5.3	Étude de $J_{\mathcal{V}}^{(2)}(\epsilon)$ pour $\epsilon \to 0$	779
		7.4.5.4	Conclusion sur $\Omega^{(4)}(\mu)$	782
	7.4.6	Complé	ement II : Hypervolume de diffusion à trois corps D	
		du mod	èle sur réseau dans le régime de Born	782
		7.4.6.1	L'hamiltonien modèle	783
		7.4.6.2	Forme de l'état de diffusion : seule fonction in-	
			connue $f(\mathbf{r})$	783
		7.4.6.3	Une équation fermée sur $f(\mathbf{k})$	785
		7.4.6.4	Développement de Born de la partie régulière $\phi(\mathbf{k})$	
			$de f(\mathbf{k}) \dots \dots$	786
		7.4.6.5	Le résultat cherché	789
	7.4.7	Append	ice au complément II de la section 7.4.6	789
		7.4.7.1	Développement de $A(\mathbf{k}_1)$	789
		7.4.7.2	Développement de $B(\mathbf{k}_1)$	790
		7.4.7.3	Développement de $J(\mathbf{k}_1)$	790
		7.4.7.4	Développement de $K(\mathbf{k}_1)$	792

8	Cas	de la c	dimensionalité réduite : étude des quasi-condensats par la	l		
	mét	hode d	le Bogolioubov en représentation phase-module	795		
	8.1	Brève	présentation et vue d'ensemble	795		
		8.1.1	Plus qu'un pâle reflet des condensats, les quasi-condensats	795		
		8.1.2	Quel angle d'attaque théorique?	796		
		8.1.3	En prise directe sur les expériences	797		
	8.2	Position du problème et régime considéré				
		8.2.1	À l'équilibre thermique grand-canonique	799		
		8.2.2	Les quasi-condensats en six conditions	800		
	8.3	Défrichage de la dimensionalité réduite avec la méthode de Bo-				
		golioubov ordinaire				
		8.3.1	La densité non condensée	803		
			8.3.1.1 Discussion selon la dimensionalité	804		
			8.3.1.2 À propos du tableau 8.1	805		
			8.3.1.3 Moralité sur la longueur de cohérence	806		
		8.3.2	La fonction de distribution de paires	806		
			8.3.2.1 Contribution quantique, contribution thermique .	807		
			8.3.2.2 Moralité sur les fluctuations de densité	808		
		8.3.3	En conclusion du défrichage	809		
	8.4	Construction de l'hamiltonien modèle				
		8.4.1 Longueur de diffusion et matrice <i>T</i> à basse énergie en di-				
			mension quelconque	809		
			8.4.1.1 Motivation et définition opérationnelle	809		
			8.4.1.2 Modèle de portée nulle à basse énergie	811		
			8.4.1.3 Quelques particularités de la dimension un	814		
		8.4.2	Modèle sur réseau : pas, constante de couplage et hamilto-			
			nien	816		
			8.4.2.1 Le modèle	816		
			8.4.2.2 La constante de couplage nue g_0 via la matrice T .	817		
			8.4.2.3 Constante g_0 , longueur de diffusion et portée ef-			
			fective à 3D	819		
			8.4.2.4 Constante g_0 , longueur de diffusion et portée ef-			
			fective à 2D	820		
			8.4.2.5 Constante g_0 , longueur de diffusion et portée ef-			
			fective à 1D	822		
			8.4.2.6 L'hamiltonien en seconde quantification	823		
			8.4.2.7 Comment choisir le pas du réseau	825		
	8.5	Mise en œuvre de la méthode de Bogolioubov phase-module				
		8.5.1	Passage en représentation phase-module et idée de la mé-			
			thode	826		
		8.5.2	Développement de l'hamiltonien \hat{H}_{GC} ordre par ordre en			
			$\delta \hat{\rho} / \rho \approx b \mathbf{grad} \hat{\theta} \approx \epsilon$	829		

		8.5.2.1	Ordre 0 en <i>c</i>	830
		8.5.2.2	Ordre 1 en <i>c</i>	831
		8.5.2.3	Ordre 2 en <i>c</i>	831
		8.5.2.4	Ordre 3 en <i>c</i>	832
	8.5.3	Résolut	ion itérative jusqu'à l'ordre ϵ^2 et diagonalisation de	
		\hat{H}_2		833
		8.5.3.1	Ordre ϵ^0 : fonction d'onde macroscopique et équa-	
			tion de Schrödinger non linéaire	833
		8.5.3.2	Ordre ϵ^1 : rien	834
		8.5.3.3	Ordre ϵ^2 : champs $\hat{B}(\mathbf{r})$ et $\hat{\Lambda}_{QC}(\mathbf{r})$, variables collec-	
			tives \hat{P} et \hat{Q}	835
		8.5.3.4	Ordre ϵ^2 : transformation de Bogolioubov, déve-	
			loppement modal, spectre d'excitation, interpré-	
			tation de \hat{P} et \hat{Q}	837
		8.5.3.5	En conclusion	841
8.6	Applic	cations d	e la théorie des quasi-condensats	841
	8.6.1	Le gran	d potentiel Ω	841
	8.6.2	Densité	moyenne et équation d'état du gaz	844
		8.6.2.1	De la nécessité d'inclure une correction cubique .	844
		8.6.2.2	Calcul direct de $\langle \delta \hat{\rho} \rangle_3$	845
		8.6.2.3	Une autre méthode, plus belle	847
		8.6.2.4	Une troisième voie, plus directe	848
		8.6.2.5	Équation d'état : les résultats, leur comportement	
			à haute et à basse température	848
		8.6.2.6	Approximation de Thomas-Fermi à 2D	851
	8.6.3	Fonctio	n de distribution de paires g_2 : expression formelle	
		à l'ordre	$e\epsilon^2$	851
		8.6.3.1	En termes du champ $\hat{\rho}(\mathbf{r})$	852
		8.6.3.2	Transformations habiles et résultat	852
		8.6.3.3	Quelle variance de N ?	853
		8.6.3.4	Lien avec la théorie de Bogolioubov ordinaire	854
	8.6.4	Fonctio	n de cohérence du premier ordre g_1 : expression	
		formelle	e à l'ordre ϵ^2	854
		8.6.4.1	En termes des champs $\hat{\rho}(\mathbf{r})$ et $\hat{\theta}(\mathbf{r})$	855
		8.6.4.2	Dans l'état thermique de \hat{H}_2	855
		8.6.4.3	Correction due à \hat{H}_3	856
		8.6.4.4	Synthèse et forme provisoire	859
		8.6.4.5	Un facteur $1/\rho_0$ embarrassant; forme finale	861
		8.6.4.6	Vue d'ensemble des résultats; comportement à gran	1-
			de distance	862
		8.6.4.7	Formulaire de Wick	865

	8.6.5	À quelle	condition les fluctuations de densité et le gradient	
		de phas	e sont-ils faibles?	866
		8.6.5.1	Les fluctuations de densité	867
		8.6.5.2	Le gradient de phase	867
8.7	Analys	se détaill	ée des fonctions de corrélation g_1 et g_2	868
	8.7.1	À la limi	te thermodynamique pour un espace continu	868
	8.7.2	Étude à	grande distance à $T = 0$	870
		8.7.2.1	Obtention des développements asymptotiques	871
		8.7.2.2	Une application physique simple : fluctuations du	
			nombre de particules dans une boule	875
	8.7.3	Étude à	grande distance à $T > 0$	877
		8.7.3.1	Cas de $g_1^{\text{BOg}}(\mathbf{r})$	877
		8.7.3.2	Cas de $g_2^{\rm QC}(\mathbf{r})$	882
	8.7.4	Étude à	courte distance	887
		8.7.4.1	Cas de $g_2^{QC}(\mathbf{r})$; coefficient de contact \mathscr{C} et théo-	
			rème de Hellmann-Feynman	887
		8.7.4.2	Cas de $g_1^{\text{Bog}}(\mathbf{r})$; distribution en impulsion; lien avec	
			\mathscr{C} et avec l'énergie moyenne $\ldots \ldots \ldots \ldots$	893
8.8	Densi	té norma	le, transition BKT, superfluidité locale ou globale .	898
	8.8.1	La densi	ité normale	898
		8.8.1.1	Définition	898
		8.8.1.2	Expression à l'ordre de Bogolioubov	899
		8.8.1.3	Comportement aux limites en température	900
		8.8.1.4	Une densité normale locale	901
	8.8.2	La trans	ition BKT	902
		8.8.2.1	Présentation sommaire : discontinuité universelle	
			de $\rho_s(T)$, tourbillons quantiques et énergie d'acti-	
			vation	902
		8.8.2.2	Température de transition à l'ordre de Bogoliou-	
		o .	bov : une estimation grossiere?	904
	8.8.3	Quasi-c	ondensats en mouvement et superfluidite globale.	906
		8.8.3.1	Du cas immobile au cas en mouvement	906
		8.8.3.2	Probabilité d'un mouvement d'ensemble spontane	000
		0 0 0 0	$\operatorname{et} \rho_{n}$ glob	909
		8.8.3.3	De nouvelles densites normales : globale ρ_n° , ef-	010
			The function $\rho_n^{cm}(v)$ et differentielle $\rho_n^{cm}(v)$	910
		8.8.3.4	Expression utile de ρ_n^{o} et discussion physique .	912
0.0	ŕ	8.8.3.5	voir les mouvements d'ensemble	915
8.9	Energi	ie de l'éta	at iondamental a 2D au-dela de Bogolioubov-Popov	916
	8.9.1	Une sim	ple application du chapitre 7	916
	8.9.2	Forme f	inale du resultat et comparaison au numérique	918

8.9.3	Application à la limite de Thomas-Fermi	920
8.9.4	Effet de la portée de l'interaction	920
8.10 Comp	lément : apparition de la densité superfluide ρ_s dans le com-	
porter	nent asymptotique de $g_1(\mathbf{r}, \mathbf{r}')$ à $T > 0$	921
8.10.1	Position du problème et motivation	921
8.10.2	Comment procéder	923
	8.10.2.1 Logarithme, fonction génératrice et cumulants	923
	8.10.2.2 Des remarques simplificatrices	924
	8.10.2.3 Coefficient <i>B</i> dans $\phi(\mathbf{q})$ et forme du résultat	926
8.10.3	Un calcul négligeant les fluctuations de densité dans la fonc-	
	tion g_1	927
	8.10.3.1 Une motivation physique claire, une fonction $\phi_{\theta}(\mathbf{q})$	
	simple	927
	8.10.3.2 Calcul au second ordre en \hat{H}_3	929
	8.10.3.3 Calcul au premier ordre en \hat{H}_4	932
	8.10.3.4 Synthèse et coefficient B_{θ}	938
8.10.4	Calcul asymptotique sur la forme complète de $g_1 \ldots \ldots$	938
	8.10.4.1 Expression formelle de $\ln(g_1/\rho)$ à l'ordre ϵ^4	938
	8.10.4.2 Calcul des moyennes dans $\ln(g_1/\rho)$	940
	8.10.4.3 Conclusion	945
Principales no	otations	947
Index		953
Bibliographie		965