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OUTLINE

e Description of the problem
e Framework: Bogoliubov theory
e Spatial coherence

e Temporal coherence

— IN fluctuates
— NN fixed, E fluctuates: Canonical ensemble

— N fixed, F fixed: Microcanonical ensemble



DESCRIPTION OF THE PROBLEM



A single-spin state Bose gas prepared at equilibrium:

e Spatially homogeneous, periodic boundary conditions.

e Prepared with IN atoms, in the regime T' < T, of an
almost pure condensate.

e Interactions with a s-wave scattering length a > 0.
e Weakly interacting regime (pa3)1/ 2 & 1.

e The gas is totally isolated in its evolution.

Spatial coherence of the gas:

e Determined by the measured first-order coherence func-
tion, g1(r) = (PT(r)¥(0)) (Esslinger, Bloch, Hinsch,
2000).

e Expected: In thermodynamic limit, g; tends to conden-
sate density pg > 0 at infinity.

e This is long-range order.



Coherence time of the condensate:

e Defined as the decay time of the measurable condensate

mode coherence function, (ag(t)aO(O)), where ag is the
annihilation operator in mode k = 0.

e At zero temperature, no decay, (a,(];(t)a,o(O)) ~ (No)ei“ot/h,
coherence time is infinite

e What happens at finite temperature T' > 07 To our
knowledge, the problem was still open in 1995.

e One expects infinite coherence time in thermodynamic
limit.

e For finite size: By analogy with laser, one expects finite
coherence time due to condensate phase diffusion.



FRAMEWORK: BOGOLIUBOV THEORY



Bogoliubov theory

e Lattice model Hamiltonian:
~ ~ gO AL AL A A
H = Z b° [¢Th0’¢ + E¢T¢T¢¢
r

e Spatially homogeneous case: hg = —5—-Ay.

—1

3
e Bare coupling constant g, = = g—l _ fFBZ (d E m

27)3 1i2k2’ g —
Arh?a/m. Gives gg = g/(1 — C3a/b). Here 0 < a < b.
e Expansion of Hamiltonian around pure condensate:
P(r) = p(r)ag + P (r)
with ¢(r) = 1/L3/2. Key point: Eliminate amplitude ag
in condensate mode:
fg=N — N|
with g = alag and N = 3, 631 | .




Elimination of the condensate phase

e Modulus-phase representation (Girardeau, Arnowitt, 1959):
dg = ean(l)/z
with hermitian operator 0, [fig, 0] = i.
e Cf. position £ and momentum p operator of a particle:
2, p) = ih => eP¥"z) = |z — a)

[0, 0] = i => e®|ng: §) = |ng — 1: ¢)
then ag has the right matrix elements.

e This fails when the condensate mode is empty:

0 71
el0: ¢) = | —1: ¢)
e Redefinition of non-condensed field (Castin, Dum; Gar-
diner, 1996) ; remains bosonic, but conserves IN :

Ar) = e 4 (r)



e Expansion of H to second order in ¢ :

b> |A'(hg — A —A —A 2ATA
T3 —I—Z: [ (ho — o)A + no SAT+ AT+

HBog —

e Formally grand canonical for non-condensed modes, with
chemical potential ug = ggp.

e Elastic interaction C' — NC': Hartree-Fock
C,0+ NC,k — C,04+ NC,k

e Inelastic interaction C — NC' : Landau superfluidity
C,0+C,0— NC,k+ NC, —k

Not forbidden by energy conservation.



Normal form for the Hamiltonian:

e Hp,e quadratic, hence linear equations of motion:

w0 () = (" —nat ) (A1) =2 (1)

e Elxxpansion on eigenmodes of eigenenergies x¢y. :

A eik-r Uk ) e—ik-r Vk -
(AT) - gom/z <Vk> LT (Uk> bk

because exchanging A and AT equivalent to time reversal.

e Bosonic commutation relations for U,? — sz = 1;

1/4
I h2k? /2m /
U, — Vi, \2ug + h2k2/2m

Up+ Vi, =



e A grand-canonical ideal gas of bosonic quasi-particles:

. 12k2 ([ h2k?
Hpog = Eo+ »  €blby with €f = o | 5+ 20
k+#£0 !

Bogoliubov spectrum
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SPATIAL COHERENCE



Consistency check

In thermodynamic limit:

e Non-condensed fraction:

(N1) (ATA)y 1 [ &3

(172 2
U+ Vi

N p p) (2m)3

ePer — 1

+ V2

e No ultraviolet (k — oo) divergence: V2 = O(1/k%)
e No infrared (kK — 0) divergence: U,%, Vk2 = O(1/k).
e Small for T < T, and (pa®)/2 « 1.
e First order coherence function g1(r) = (¢T(r)1(0)):

d3k
(2m)3

g1(r) = p —

(1 — cosk-r)

(172 2

eBer — 1

tends to the condensate density for »r — oc.

+ V2




In lower dimensions:

eIn 2D for T' > 0 and in 1D VT, the non-condensed frac-
tion has infrared divergence. No BEC in thermodynamic
limit (Mermin, Wagner, 1966; Hohenberg, 1967).

e Quasi-condensate (weak density fluctuations, weak phase
gradients) (Popov, 1972). One can save the idea of Bo-
goliubov by applying it to a modulus-phase representa-
tion of the field operator 1ﬁ

o g]130g(r) — —oo at infinity, but remarkably (Mora, Castin.
2003):

QC gy % (r)
97 (r) = pexp |ZL—2 —1].

so that logarithmic divergence of g]130g(r) turned into

power-law decay of g?c(r).



TEMPORAL COHERENCE



GENERAL CONSIDERATIONS

o If weak fluctuations of fyg:
(al)(t)ao(0)) = (fg) (e~ 00
o If phase change 0(t) — 6(0) has Gaussian distribution:
(ah(t)ao(0))| = (Rg)e~ Var P(O-0()]/2

e In terms of correlation function C(t) = (0(¢)0(0))—(6)2 :

Var [6(t) — 0(0)] = 2t /t dr C(1) — 2 /t dr C(T)

0 0
ballistic regime diffusive regime
lim, 1 C(T) #0 C(r) = o(1/71)

_ ) _ T—>—|—AOO
Var [6(t) — 6(0)] ~ At? | Var 60(t) — 6(0)] ~ 2Dt




TWO CASES DEPENDING ON C(t — +00)

C(t)

C(t)

>

» = 6(t) — 6(0)

00

Diffusive.  A®>~2t( C(1) dt

70

\\Banistic: Ad” ~ At




GENERAL CONSIDERATIONS (2)
Previous studies at T > O:

e Zoller, Gardiner (1998), Graham (1998-2000): Diffusive.
e Contradicted by Kuklov, Birman (2000): Ballistic.

e Sinatra, Witkowska, Castin (2006-): Clarification and
quantitative studies.

Two key actors:

e Bogoliubov procedure eliminating the condensate mode
from the Hamiltonian:

H:E()(N)—I— Zeki?;r{i?k‘l‘ﬂi’,‘l‘
k=£0
where €, is the Bogoliubov spectrum. Hamiltonian Hj

is cubic in field A. It breaks integrability and plays cen-
tral role in condensate dephasing (Beliaev-Landau pro-



cesses):

H; = gop'/2 3 B3AT(A + ADA
r

Quasi-particle resonant interactions a la Beliaev bTbTh
and A la Landau bTbb: finite lifetime, kinetic equations
on mean quasi-particle occupation numbers

e Time derivative of condensate phase operator:
1

= —[0,H| ~ —pp—o(N)/h — — Z(Uk + Vi) %y
1h h k20

with n, = IA)IT{IA)k This contradicts Graham, 1998 and
2000. Keep in mind useful “magic” relation:

g0
E(Uk + V)2 = dnex




Case of a pure condensate

e One-mode model, with g = N : Hype mode = %NZ

e Evolution of the condensate phase:

: 1 gN -
0(t) = E[ga Hone mode] = _m = —p(N)/h
e No phase spreading if fixed IN.
e Ballistic spreading if N fluctuates (Sols, 1994; Walls,
1996; Lewenstein, 1996; Castin, Dalibard, 1997)

2
Var [0(t) — 0(0)] = (t/h)? (%) Var N

e Experiments: Seen not for (azr)(t)ao) but for (a;r)(t)bo(t))
by interfering two condensats with common ¢t = 0 phase
[Bloch, Hansch (2002); Pritchard, Ketterle (2006); Re-
ichel, 2010.]



T > 0 gas prepared in the canonical ensemble

By analogy with previous case (Sinatra et al, 2007) :
e As N, the energy FE is a constant of motion.

e Canonical ensemble = statistical mixture of eigenstates,
Var E # 0 but Var E < E? for a large system

e O(t) ~ —pmc(H)t/E and weak fluctuations of H :

dptme
dE

2
Var [0(t) — 0(0)] ~ (t/h)? [ (E)] Var E



From quantum ergodic theory

e Time average:
. . e BEx .
(8(#)6(0)))t = > 7 ((TA10]Py))?
A

e Deutsch (1991) : eigenstate thermalisation hypothesis.
Mean value of observable O in one eigenstate ¥, very
close to microcanonical value:

(TA|O|¥ ) ~ Omc(E = Ey)

e O = 6§ in Bogoliubov limit : |0 me = — ftme/hi.

e Linearize around mean energy due to weak (relative)
energy fluctuations:

_ _d
pnc(Ey) o pime(E) + (Ey — B) =22

dE

(E)



Implications of previous result (canonical ensemble)

e The correlation function C(7) of 8 does not tend to zero
when 7 — 400. Neither does the one of ng.

e This qualitatively contradicts Zoller, Gardiner, Graham.
In qualitative agreement with Kuklov, Birman.

e Ergodicity ensured by interactions (cf. Hg) among Bo-
goliubov quasi-particles.

e Approximating H with integrable Hp,o, as eventually
done by Kuklov and Birman, gives incorrect coefficient
of t2.

A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 75,
033616 (2007)



Why failure of master equation method of Zoller-Gardiner 7
Setting ny = BlBk : C(t) = Z Ay Ay (61 (t)d111,(0))

k,k’
Master equation + quantum regression theorem:

e System = Bogoliubov modes k and k/. Other modes =
reservoir. Born-Markov approximation:

<5ﬁk(t)5ﬁk’(0)> = 5kk/’r_l,k(1 - ﬁk)e_rkt
so C(t) — 0 and phase has diffusive spreading...

t— o0
But reservoir not truly infinite:

e From ergodic theory:
ek’ﬁk(’ﬁk -+ 1) Ek/’ﬁk/(’ﬁk/ -+ 1) 1

(0ny (t)d1y/(0)) > — — X —
and double sum: VC(t) /0 even in thermodynamic
t—o0

V — oo limit.



Illustration with a classical field calculation

Kuklov, Birman
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Figure 1: For a gas prepared in canonical ensemble, correlation function of 0 for the classical field. The equation of motion is the non-linear
Schrodinger equation. A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 75, 033616 (2007).



Gas prepared in the microcanonical ensemble: phase diffusion

e The conserved quantities N, EE do not fluctuate. One

finds C(7) T O(1/73) and Var [0(t) — 6(0)] ~ 2Dt.

¢ One needs the full dependence of C(7) to get D.

e As we have seen, C(7) can be deduced from all the
(7 (7) 725 (0))-

e The gas is in a statistical mixture of Fock states quasi-
particles |[{nq}). One simply needs ({nq}|nk(7)|{nq})-

e The evolution of the mean number of quasi-particles is
given by quantum kinetic equations including the Beliaev-
Landau processes due to Hs.



The quantum kinetic equations

: g%p +k|\ 2
Na =73 2 dgk{ nqnk — ng1x(1 + nk + ng) (Af,lq |)
X0(eq + €, — €|q—|—k|)}
2
gp 3 2
_2hﬂ2 d k{ [nq(l + ny + nq_k) — nknq_k} (Aq,|q kl)

X0(€p + €lqg—k| — eq)}
with the Beliaev-Landau coupling amplitudes:
Al b = UqUrUps + VgVieViy + (Ug + Vo) (ViUyy + Ug Vi) -

E. M. Lifshitz, L. P. Pitaevskii “Physical Kinetics”, Lan-
dau and Lifshitz Course of Theoretical Physics vol. 10,
chap. VII, Pergamon Press (1981)



Diffusion coefficient of the condensate phase
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Figure 2: Universal result in Bogoliubov limit (weakly interacting, T' < T¢).

A. Sinatra, Y. Castin, E. Witkowska, Phys. Rev. A 80,
033614 (2009). T# law reminiscent of normal fraction.



Summary of results for the phase spreading

2
Var [0(t)—0(0)] , = Var (E) [‘;’; I;;C(E)] t2+2Dt+c+O(%)

e Existence of a t? term first in Kuklov, Birman, 2000.

e Coefficient of t? depends on the ensemble. First ob-
tained with quantum ergodic theory (Sinatra, Castin,
Witkowska, 2007) but also with quantum kinetic theory
(from existence of undamped mode of linearized kinetic
equations due to energy conservation). Interpretation:

0(t) —0(0) , ~ —u(H)t/h

e Diffusion coefficient D is ensemble independent. AD L3 /g
function of kT /pg (Sinatra, Castin, Witkowska, 2009).

e Ensemble independent ¢ # 0: Cpc(t) not a Dirac.



AN EXAMPLE FOR kT = 10pg

C(t) [V h°E)]
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ATOMIC CLOCKS IN BRIEF

What an atomic clock does:

e Measures the transition frequency w,p of two-level atoms

e Formally, a two-level atom is a spin 1/2

e Collective spin S = Z,ﬁil S;, free Hamiltonian:
H() — hwabSZ
e At time 0, prepare the collective spin along x. At time

7, measurement of the spin precession angle w,,7T gives
transition frequency w,p (Ramsey method).

Transverse quantum fluctuations: AS;AS, > 2|(Sw)|
e Standard quantum limit: All spins along x, (Sz) = IN/2:

1
st st l /

e This is larger than technical noise in good clocks




ONE CAN GAIN WITH SPIN SQUEEZED STATES
e Can reduce a lot ASy, at the expense of increasing AS,
e Gain 1/£ on signal-to-noise ratio (Wineland, 1994):

NAS? .
2 1 ,min €
= ’ 1 — Awgp =
¢ <S:1:>2 = ab N1/21

Kitagawa-Ueda spin squeezing: H = hAw, S + hxsg

e Spin-dependent Larmor frequency: Evolution turns the

fluctuation circle into a tilted ellipse. At best time:
32/3

2
€mm N—>oo 2N2/3
e Realisable with two-mode condensates (Cirac, 2001 ):
Sz + 1Sy = a'b, S, = (a,Ta, — bTb)/Z, X = %

e In the lab (Oberthaler, 2008; Treutlein, 2010): 1/£€ = 3



ON THE BLOCH SPHERE

A7

A7

uncorrelated atoms

squeezed

In practice, squeezed axis is tilted (rotation required):

1 .
AST min = 5 |(53) + (52) — [{(Sy +i82)*)]



WHAT HAPPENS IN REAL LIFE ?
An atomic gas is a multimode system:

e At T' > 0, the non-condensed modes constitute a de-
phasing environment for the condensate: phase spread-
ing and a finite coherence time

e What is the effect on spin squeezing ?

From Bogoliubov theory in brief:

e Much before the phase collapse time, pgt/h < N 1/2,

N N Na— Ny
(Sz) ~ DY Sy ~ _E(ea —0p), S.=— 5

e Evolution of phase operators (previous lecture):
A A A A gt
(O = 8)(8) = (Ba — 0,)(0F) — 2 (25, + D]

D = Z (Ur+Vi)?(fg—npk) [Rox = quasi-particle nber]
k20




In thermodynamic limit:

2(D?) o
N T

2 _
) = (7'—|—\/1—|—7'2)2_|_(7'—|—\/1—|—7'2)\/1—|—7'2

with reduced time ™ = pgt/(2h).
e First term is Kitagawa-Ueda model.

e Second term saturates to minimal squeezing:

_(D?)

bmin =~ = (pa®)/2f (kBT/ pg)




¢%(t) FOR BOGOLIUBOV THEORY
(pa®)1/2 = 1073, kpT/pg = 1
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MINIMAL £2 FOR BOGOLIUBOV THEORY

& j(pa)"?
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VALIDITY CONDITIONS

e System out-of-equilibrium after pulse
e Will thermalize, this is neglected in Bogoliubov theory
e Have the close-to-best-squeezing time
pPgtny N 1
h nl/zgmin
smaller than thermalisation time, estimated by Beliaev-
Landau damping rates of modes of energy kg1 or pg:

PItiherm o~ 1
h (pa3)t/2

e Validity condition satisifed in weakly interacting limit:

t
ttherm




Summary of results for spin squeezing:

e For atoms with two internal states a and b, apply a 7 /2
pulse on a condensate initially in a. Due to interactions,
phase state transformed into spin squeezing state

e If injected in an atomic clock, statistical uncertainty on
clock frequency after interrogation time 7:

ASJ_,mim _ 3
(ST N2y
e Spin dynamics is a phase dynamics: S, =const, S, ~const,
Sy x 04 — O0p x (Na — Ny + D)taNp,/h
where D due to multimode nature of the fields (random

dephasing environment). Best squeezing in weakly in-
teracting, thermodynamic limit does not vanish:

(D?)
N

Awab —

2~
€mim —
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