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A RICH PROBLEM

An impurity atom A (mass mA) interacting with another
species (or spin state) B (mass mB) [no interaction among
B atoms]:

1. monomeron/dimeron pb: a Fermi sea of B atoms on a
(narrow) Feshbach resonance [with C. Trefzger]

2. strong localisation of A: the B atoms are randomly
pinned at the nodes of an optical lattice [with M. An-
tezza, D. Hutchinson, P. Massignan, U. Gavish]

3. photonic band gaps: A is a photon; one B atom per node
of an optical lattice [with M. Antezza]



1 Monomeron-dimeron problem

1.1 Physical motivation

• Monomerons and dimerons are quasi-particles belonging
to the general class of Fermi polarons [neutral objects
dressed by the Fermi sea, rather than electrons dressed
by phonons in solids]

• The ground state of strongly polarized spin 1/2 Fermi
gas at unitarity [NA ≪ NB, A =↓, B =↑] is a Fermi gas
of monomerons [Chevy; Lobo, Recati, Giorgini, Stringari;
Combescot, Giraud, Leyronas; Mora]

• monomeron = A dressed by particle-hole excitations of
B Fermi sea. It is a quasi-particle of dispersion relation

∆E(P) =
P→0

∆E(0) +
P 2

2m∗
+ O(P 4)



• At unitarity, measured equation of state of monomerons
≃ an ideal Fermi gas [Navon, Nascimbène, Chevy, Sa-
lomon]

1.2 Monomeron vs dimeron

• The ground state of A, as the function of the AB scat-
tering length a, has two branches with a cusp [Prokof’ev,
Svistunov]

• Dimeron = AB dimer dressed by particle-hole excita-
tions of B Fermi sea

• transition from monomeron to dimeron at ac

• ac > 0 (broad Feshbach resonance) “intuitive”: dimer
exists in free space for a > 0 only.
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1.3 Two-channel model

H =
∑

k

~
2k2

2mA
a

†
kak+

~
2k2

2mB
b
†
kbk+(Emol+

~
2k2

2(mA + mB)
)γ

†
kγk

+
Λ

L3/2

∑

kA,kB

χ(krel)[γ
†
kA+kB

akA
bkB

+ h.c.]

Take cut-off to ∞ for a and Λ fixed (Emol → +∞). Fesh-
bach length R∗ = π~

4/(µ2Λ2). Free-space dimer iff a > 0.

1.4 How to solve

For Λ = 0:
one A, zero molecule zero A, one molecule
E0 = EFS(NB) E0 = EFS(NB − 1) + Emol
∆Epol = 0 ∆Edim = Emol − EF

For Λ > 0: Expand in the number of particle-hole pairs
[Chevy ; Combescot, Giraud], here up to one pair.
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1.5 Numerical result

ac < 0 at large kFR∗ ! Paradoxical. Stable dimeronic
branch extends to a regime where no free space dimer.
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1.6 Analytics

• Two-body scattering amplitude [Petrov]:

fkrel
= −

1
1
a + ikrel + k2

relR∗

• Usual weakly attractive limit: a → 0−, R∗ fixed

• Appropriate weakly attractive limit: a → 0−, aR∗ fixed

• Define α = mA
mA+mB

and

s ≡ αkF (−aR∗)
1/2

Note that s → 0 in the weakly attractive limit a → 0−.
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Critical scattering length on a narrow Feshbach resonance:

1

kFac
=

kF R∗→∞
−αkFR∗

+
2

π

[

1 − α−2 +
1

2

(

α−5/2 − α1/2
)

ln
1 + α1/2

1 − α1/2

]

+ O(
1

kFR∗
)



1.7 Physical interpretation of 1/(kF a)c < 0

• Stabilization of molecule by Fermi sea

• Molecule energy renormalized by Lambshift:

Ẽmol = Emol +

∫
d3k

(2π)3
χ2(k)Λ2

0 − ~2k2/2µ
= −

Λ2µ

2π~2a

• Free space: molecule stable iff Ẽmol < 0 that is a > 0

• Fermi sea: molecule stable iff Ẽmol < EF that is
1

kFa
> −αkFR∗

• For a < 0 this imposes

s > α1/2 =

(
mA

mA + mB

)1/2



2 Strong (Anderson) localisation of A matterwave

2.1 Physical motivation and configuration

• B randomly filling the nodes of an optical lattice (pocc ≪
1) with no tunneling

• A does not see the lattice potential, it sees a disordered
ensemble of scatterers

• ~
2k2

A/2mA ≪ ~ωB so elastic AB scattering



• A solvable alternative to laser speckle (Aspect). Opti-
misation of localisation by tuning the A − B scattering
length

• One expects (in 3D) an Anderson transition [mobility
edge] between extended states (continuous spectrum)
and localized states (point-like spectrum).

2.2 Model

• Each trapped B atom replaced by Wigner-Bethe-Peierls
contact conditions at lattice node on A wavefunction,
with effective scattering length aeff :

φ(rA) =
rAB→0

D(rB) ×

(
1

rAB
−

1

aeff

)

︸ ︷︷ ︸
zero energy scattering state for rAB≫aho

+ O(rAB)



• Scatterers occupy a sphere of finite but large diameter

2.3 How to solve

• single particle Green’s function in presence of a number
NB of B scatterers at energy E = ~

2k2
A/2mA exactly

given by NB × NB matrix inversion

G(r, r0) = g(r−r0)+
2π~

2

mA

NB∑

i,j=1

g(r−ri)[M
−1]ijg(rj −r0)

Mij =







−
2π~

2

m
g(ri − rj) = eikArij/rij if i 6= j,

ikA + a−1
eff if i = j.

where free-space Green’s function g(r − r0) is transla-
tionally invariant.



• Gives access to localisation length ξ: decay length of
field radiated by a source of A in the B medium:

G(r, r0) ≃
|r−r0| large

A
e−|r−r0|/ξ

|r − r0|α

• Gives access to density ρE of states (E < 0) [real poles
of G] or resonances [complex poles of G] (E=Re z0 > 0,
~Γ/2 = − Im z0 > 0)

2.4 Matrix M is not an Anderson problem

• off-diagonal disorder only

• at E > 0, Mij decays slowly for rij → ∞: more slowly

than 1/r3
ij. So no localized states ? (Boris Altshuler,

informal discussion)



2.5 Numerical results

• pocc = 1/10, diameter= 140d; 〈NB〉 ≃ 1.4 × 105

• for aeff < 0, for aeff → +∞, no evidence of localisation
[van Tiggelen, Lagendijk]

• The best for localisation is to take aeff ≃ half mean
inter-B distance

• Rich situation because we consider also E < 0. E.g.
for aeff = d we shall find three mobility edges, one at
positive energy and two at negative energy. Is certainly
sensitive to the presence of the lattice.
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DOS WITHOUT/WITH SPATIAL FILTER

Oblique line = mean-field bottom E = ρBgeff
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3 Photonic band gaps

3.1 Physical motivation

• find matter lattices leading to omnidirectional band gaps
(OBG) for light

• first studies with extended objects (dielectric spheres)
[Ho, Cha Soukoulis, 1990]

• for atoms: Lagendijk et al., 1996 predict OBG for fcc
lattice

• Knoester et al. , 2006: Lagendijk’s sum is divergent;
addition by hand of a regularizing term; no OBG for
fcc. But this no longer solves the original Hamiltonian
problem.



3.2 Case of classical physics

• for a stationary state of the field at frequency ω, atom
in R carries a mean electric dipole ~D (R):

~D (R) = ǫ0α(ω)
∑

R′ 6=R

g(R − R′) ~D (R′)

• α(ω) ∝ 1/(ω − ω0 + iΓ/2) is atomic polarisability

• gij(r) is component along i of electric field radiated in
r by a unit dipole oscillating along j and located at the
origin of coordinates:

gij(r) ∝ [(ω/c)2δij + ∂ri∂rj]
︸ ︷︷ ︸

ensures transversality

ei(ω/c)r

r︸ ︷︷ ︸
scalar field



• periodic case, Bloch theorem: ~ω = ǫq with

~D (R) = ~D eiq·R

3.3 How to calculate the sum ?

• “formule sommatoire de Poisson” :
∑

R∈DL

f(R) =
1

V

∑

K∈RL

f̃(K)

• but g(0) = ∞ and
∑

K KiKj/K2 not absolutely conver-
gent

• Physical regularising effect: atomic positions delocalized
over aho, provides a Gaussian cut-off in Fourier space

g(R − R′) → 〈g(R + u − R′ − u′)〉u,u′ = ḡ(R − R′)



3.4 Looking for band gaps

• none for Bravais lattices (Knoester was right)

• the historical work of Soukoulis predicted OBG for a di-
amond lattice of dielectric spheres (fcc+translated copy

by (d
4, d

4, d
4)). May be it also works with atoms ?

• we indeed predict a gap for an atomic diamond lattice

• important to check for the absence of free wave (field
vanishes on all lattice sites) using

ωfree

c
≥ inf

K 6=0

K

2



Photonic density of states for diamond, k0d = 2 (k0 =
ω0/c)
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