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Abstract. In this article, we present a tutorial discussion of the coherence properties of Bose—Einstein
condensates. We use a formalism which is similar to the one used in quantum optics.
We describe within the variational approximation the question of the relative phase of
two condensates. To evaluate the structure factors of a condensate, we briefly review the
Bogolubov approach and describe light scattering off a condensate using the linear response
formalism. Finally, we study the effect of atomic interactions on the condensate’s dynamics.
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Fonctions d’ onde, phase relative et interférences pour des condensats de
Bose-Einstein atomiques

Résumé. Dans cet article, nous présentons une discussion pédagogique des propriétés de cohérence
des condensats de Bose-Einstein, en utilisant un formalisme similaire a celui de 'optique
quantique. Dans le cadre de I'approximation variationnelle, nous discutons le probléeme
de la phase relative de deux condensats. Ensuite, afin d'évaluer les facteurs de structure
d’un condensat, nous présentons rapidement I'approche de Bogolubov et décrivons la
diffusion de lumiére par un condensat en utilisant la théorie de la réponse linéaire. Enfin,
nous étudions I'effet des interactions atomiques sur la dynamique du conden2af.l
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1. Introduction

In guantum mechanics, the wave functipfr) of a single particle lies in the 3D-space. If the particle is in
a linear superposition of two states described respectively by) andy.(r), we havey(r) = c1¢1 (r) +
212 (7). Then the probability:y(r)|? to find it in » contains crossed termsc; (1) (r) + c.c. leading
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to interference effects. The situation forMNa-particle system is more complicated as the general wave
functiony(rq,...,rn) is defined in a 37-D-space and is generally non-factorizable. This means that one
cannot generally associate 3D waves to a system pérticles because of their entanglement. Considering

the particular case of Bose—Einstein condensates, however, the description can be simplified by introducing
a macroscopic matter wavim the 3D-space, with which the question of the relative phase and of the
interference between two condensates can be investigated.

In the usual symmetry breaking approach, the ‘macroscopic’ matter wave is simply the mean value
Y(r) = (@(r)} of the quantum field operator. To haver) # 0, one needs the quantum state of the
system to be a linear superposition of states with different values of the total nuvhbémbosons. In
other words, the density operajphas some off-diagonal elements, which violate the super-selection rules
(see Section 2.2.3).

In this article, we aim at presenting a tutorial discussion of coherence properties of Bose—Einstein
condensates by using more traditional approaches inspired by quantum optics. In particular, they involve
neither symmetry breaking nor coherenc@$|p|N’) with N # N’. In the first part (Section 2), we
introduce a formalism which is similar to second quantization in quantum optics and we recall a few results
about correlation functions.

In the second part (Section 3), we present the variational approach leading to a description of the
condensate in terms of a ‘macroscopic’ matter wave. We then focus on the question of the phase of a
macroscopic matter wave: can one introduce simple quantum states describing two condensates with a
well defined relative phas#? Can one introduce two interfering 3D-matter waves? What is the variable
conjugate t@?

The following part (Section 4) consists of a brief introduction to Bogolubov theory where we study
the simple case of a homogeneous condensate. Section 5 is devoted to the analysis of the probing of a
condensate by light or particle scattering. In particular, we calculate the dynamic and static structure factors
of a condensate both in the variational and Bogolubov approaches. We finally discuss in Section 6 the major
difference between light and matter waves, namely the effect of atomic interactions.

A more detailed study of these questions has been giverCasies du Colleége de Franc&he lecture
notes (in French) are available [1].

2. A few basic results on correlation functions

2.1. Correlation functions for quantum optical fields

In this section, we recall some results concerning correlation functions in quantum optics. For the sake
of simplicity, we ignore the vector character of the field.

2.1.1 Quantum optical fields

Let us consider first a classical fiel(r,t) = £+ (r,t) + £ (r,t) (with £~ = (£1)"). Its positive
frequency componerst™ can be written as:

EX(r,t) =3 E(r)ailt) (1)

where{&;(r)} is a complete set of mode functions ang(t) is the normal variable associated with the
modei. In the absence of sources, the normal variables undergo a decoupled evej(tjea a; (0) e ~iwit,

In the quantum description of an optical field [2]; and o become respectively the annihilation and
creation operatorg; anda;" of a photon in the modé They obey the commutation rule:

as,af] =8y (2)
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Using these operators, the quantum field operﬁtb(r) is written:
Et(r) =Y &i(r)a (3)

Let us now consider a few useful examples of quantum radiation fields:

e A single mode fields a field with all the modes in the vacuum state (O photon) except one mode
(labeled mode 1). The field operator then writes(r) = & (r)a;. The most general state of the mode
is 1) =3y, eni| N1), [IN1) being the Fock state witV; photons in the mode 1.

e A two-mode fieldcontains two modes (1 and 2) which are not empty. The field operator is written
Et(r) =& (r)ar + E(r)az and any statéy)) can be written as a linear superposition of two-mode
Fock state$N1, N2>: |1/J> = ZNI,NQ CN; No |N1, N2>

e A coherent statén;) of a single-mode field is an eigenstate of the annihilation operatavith the
complex eigenvalue; . Using Fock statelV; ), one can write [2]:

o0 Nl
2 Q
o) = e~ lnl"/2 E ——|N1) (4)
Nimo v/ Np!

The probability?(N;) to have N, photons in a coherent state;) obeys a Poisson la®(N;) =
e~111%| a1 |2M1 / Ny ! with @ mean valuéN, ) = | o |2 and a varianceA N2 = |y |2 = (V).

The coherent statier; ) of a single mode field is the quantum state closest to the classical radiation field
ET(r) described by the normal variable . For example:

E*(r)]a) = &1(r)ar]ar) = ari(r)]ar) = £ (r)]ay) (5)

e Coherent states of multimode fiel¢lsx;}) are simply tensorial products of coherent stajeg
corresponding to individual modes of the field. Their properties are similar to those for single-mode
fields, and in particulafst (7)|{a; }) = ET (r)[{a;}).

e Let us consider atatistical mixture of coherent state a single mode field, having the sar®¥;) =
|| and a random phase equally distributed between @and

5 1 o i i
p=gm | dorflon e o ©)

Calculating(N|p|N'), one gets:
|a1 |N+N’ 1

27
et B i((N—N")¢p1
VNN 27 /0 dére
ONN’ (7)

1 27 ) .
(N|pIN") = %/0 A1 (N||au| e ) (|as| et | N") = eIl

g |2V
N!

— o lal?

This shows thap appears equivalently as a statistical mixtgre >, P(N)|N)(N| of Fock states
| V) with the Poisson distributio® (V) for N.

2.1.2 Correlation functions

We now introduce the correlation functions of a light field. In fact, correlation functions are widely used
in statistical physics, for they allow to study the statistical properties of a field much deeper than with only
its mean value and variance. R R

The first order correlation functic®™) (r, ') = (E~ (r)E* (+')) describes spatial correlations between
the fields in two different points: and »’. Its classical analogue corresponds to the visibility of the
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interference fringes obtained with two fields originating frormndr’. Using the Heisenberg picture instead

of the Schrédinger picture, one can also introdGe® (r ¢, 7' t') = (E~ (rt)E+ (r't')) which describes the

dynamics of the correlation&(!) (rt, r't') is simply the quantum generalization of the classical correlation

functionGM) (rt,v't') = E— (rt)E+ (r't!).

The second order correlation function is writtei? (r,r') = (E~(r)E~(r')E*(+')ET(r)). It
corresponds to the probability of detecting one photon and another one in'.

To the third orderG®) (v, v/ 7") = (E— (r)E~ (') E~ (" )E* (r")E+ (+')E* (r)) is the probability to
detect one photon in, a second one in” and a third one in*”. All higher order correlation functions are
built similarly.

In some particular cases, the correlation functions have simple expressions:

e For a gaussian field(for instance a thermal field), all correlation functions can be expressed in
terms of products of a certain number 6fY. More precisely, they are sums of products of all
possible products of on&~ by one E*. For instanceG(® (r,7') is the sum of the2! = 2 terms
(E=(r)ET(r)(E~(#")E*(r')) and (E~ (r)E* (+'))(E~ (+/)E*(r)), while G® (r,7/, ") contains
3! =6 terms. R

e For a coherent state|{a;}), we have seen thab*(r)|[{a;}) = ET(r)|[{a;}) where £Et(r) =

> ai€;(r) is the classical field described by the normal varial{les}. Similarly, Ha Y| E-(r) =

J
E(r){{a;}| with (ET)* = £~ It follows that:

GV (r,r') =€~ (r)EF(r) 8)
G®(r,r") =&~ (r)E~ (r)EF(r)E+(r) =Z(r)I(r') ©)
GO (r, v vy =T(r)I(r")I(r") (10)

G®@(r,r") is thus simply the correlation function of the intensifyr) = |£*(r)|>. Generally, all

correlation functions of a coherent stdfev;}) are equal to the average value of the products of the

corresponding classical fields™ and& .

It is sometimes useful to introduce normalized correlation functions. The first order normalized
correlation function is written as:

GO (r, 7

O (p,r) =
g(r.r) VGO ()G (r/ 1)

(11)

One can see that? (r,r) = 1. Generally)g") (r,7')| decreases from 1 to 0 whén— r/| increases from
0 to +oco. The characteristic length over which the decrease occurs tierence length.. of the field.
Similarly, one can define the normalized second order correlation function as

G (r,r")
@) (p ') = ’
g\ (r,r') = GO (r,r)GD (' 7" (12)

For a gaussian fielg® (r, /) is rewritten asgg® (r, ') = 1 + [g(V) (r,7")|2. ¢ (r,7') thus decreases
from 2 to 1 whenr — »’| increases from 0 too. This bunching effect is called the Hanbury Brown—Twiss
effect [3] and was observed in the 1950’s by Hanbury Brown and Twiss [4].

For a coherent state by contragt? (r, ') = 1 whateverr andr’, which means that a coherent state
exhibits no bunching effect.

The third order normalized correlation function is:

el (T, T'/, ,r,//)
- GO (r,7)GO (v v GO (9" r")

g® (e’ r") (13)
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For a gaussian field,®) (r,r,r) = 3! = 6. By contrastg® (r,r’, ") = 1 at all points for a coherent state.

2.2. Quantum description of a system ofV identical bosons

2.2.1 Second quantization formalism

In the framework of first quantization, the way to describe a systef adentical bosons consists of
writing a completely symmetrical wave functi@ri{r,,ro, ..., rx) in @a 3N-D-space (we ignore the spin to
keep notation simple). The observables of the system are described by symmetric Hermitian operators, for
instance:
¢ the one-body density (or spatial densify}r) in = is written:

N
pr(r)=> 6(#;i—r) (14)
=1
¢ the two-body density(r,r’) can be written:
N
pr(r ) =" "8(# —r)8(#; — 1) (15)
i=1 j##i
e the interaction energy is then:
1 1
o S A — = 3 3 _ ~
Vint = 522‘/(7“1 ;) = 5 //d rd’r' V(r—r")pu(r,r’) (16)

i=1 j#i

However, it is more convenient to describe suciVaoson system by using tteecond quantization
formalism similarly to the usual approach in quantum optics. Given an orthonormal basis of single particle
states{|+;) }, one can build a Fock space with a bafis,,ns,...,n,...)} characterized by the number
n; of bosons in each individual state;). The occupation numbers can take values from tand obey

One can then define the annihilation and creation operatasda;” which respectively annihilate and
create a boson in the stdtg;):

aini) = v/niln; — 1) 17)
a; [ni) = Vni +1n; +1) (18)
ai|0) =0 (19)

where |0) is the vacuum state. Equation (18) implies that) = ((a;")" /v/n;!)|0). The creation and
annihilation operators follow the commutation relatidis dj] =0d;5.
By analogy with quantum optics, one can also define field operators

d(r) =" wi(r)a; (20)
Ol = vi(r)af (21)
where; (r) = (r|y);) is the projection of the single state particle optd.

To understand better the physical meaning of the field operators, we can evaluate the éfﬁe{tzt)ofn
the vacuum:
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Zw )af10) = (Wilr)wi) sz (i)

¥ i(r)[0) = Ir) (22)

We see thatZT(r) or zZ(r) creates or annihilates a bosonsinrespectively. In other Wordsz(r) and
¢ (r) are, for the basig|r)}, the equivalent ofi; anda;" for the basis{|¢;)}. Similarly, they obey the
commutation relationhZ(r), JT(r’)] =o(r—17').

In second quantization, all symmetric observables can be expressed as products of creation and
annihilation operators: R
e one-particle observables suchias= 3" , f; become:

F=3"5 "l flvba)af an (23)
a g
P [[@rannlfir) i) (24)
e two-particle observables such @s= AN > ;2 9(i,j) become:
= S S S e (1), (2191, D52 (1) F (25)
a B v 06

G= %//// dBr &3 Br” B (17", 290"1§(1,2)127,1 ’I”>1ZT(’!'W){b\T(’!‘N)’LZJ\(T‘/){b\(T) (26)
For example, the one- and two-body density operagigns) andpr (v, r') are written, in the basi§r) }:

pr(r) =91 (r)d(r) (27)
pu(r,) = () () (r)(r) (28)
The relation betweerpi(r) and pr(r,r’) can be obtained by using the commutation relations

[(r), 01 (r")] = 8(r — ') and[i)(r), d(r")] = 0:
pu(r,r") = pi(r)pr(r’) = 8(r —r')pi(r) (29)

2.2.2 Correlation functions

The correlation functions of bosonic fields exhibit strong analogies with those of quantum optics.
Correlation functions are the average value of products of bosonic field operators:

o G (r ¢ = (JT(r)J(r’» accounts for the spatial coherence betweemnd »’. In particular,

GO (r,r) = (T(r )’l/J( )) = (p1(r)) is the probability of finding a boson in.

o GA(r )= @T( )wT( )1/)( )1/)(1~)> (p1(r, ")) represents the probability of finding a bosorrin
and another one in'.
e All higher order correlation functions are deduced similarly. For instatiiér’, ') p1(r, t)) describes

the correlations between the densities of bosons in two different points at two different times.

We want to stress the importance of correlation functions: indeed, most experimental detection signals
can be expressed in terms of correlation functions. For instance, the 3-body collision rate is related to
G®)(r,r,r), and the visibility of interference fringes is proportional@" (r,7'). We will also see in
Section 5.1 that the spectrum and the total intensity of the light scattered in a given direction is described
by the dynamic and static structure factors which are derived from correlation functions.

Generally, correlation functions are connected with the linear response theory. The response of a system
of N bosons to aveakprobe can indeed be described blrnear susceptibility which is connected to the
correlation function of the unperturbed system through the fluctuation—dissipation theorem [5].
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2.2.3 Superselection rules

For a system of bosonic atoms, all physical observables contain an equal number of creation and
annihilation operators (see, for example, equations (23) and (25)), which means that they do not change the
total numberN of bosons. Unlike photons, bosonic atoms cannot be created or destroyed in an interaction
process.

As a consequence, if one starts with a density opefathiagonal inN ((N|p|N') =0if N # N'), it
remains diagonal at all subsequent times.

Contrary to photons, a linear superpositiohf = >\, cx|N) has no physical meaning. This is in
particular the case of coherent states. However, we have seen in Section 2.1.1 that a statistical mixture
of coherent stategy) with the saméda| and a phase uniformly distributed oV@r 2| is also a statistical
mixture of Fock statefV). Such a statistical mixture does have a physical meaning for bosonic atoms.

2.3. Calculation of correlation functions in a few simple cases

2.3.1 Perfect gas of bosons in a box

Let us consider a non-interacting gas of bosons of mas a box of sizeL. An orthonormal basis of
single particle states is made of plane waves with periodic boundary conditions:

1 . 2
Y (r) = 752 ° krowith &, = 7 N (ng €7Z) (30)

The corresponding field operators are written:

- 1 ~ ik- ~ —ik-
P(r) = 1,3/2 Zakekr and 1/) L3 Za e (31)
k k
In the absence of interaction, the Hamiltonian is simply:
~ . h2k?
= exafa, with e = 5 (32)
& m

In the grand canonical ensemble [6], the equilibrium density operator is wfittes e*ﬁ(ﬁ*“ﬁ)/ZG
where = 1/(kgT) is the Boltzmann factoy, is the chemical potential(< 0 for bosons) and is the
grand canonical partition function. The translational invariancg @implies that:

(g ) = T (Peqling i) = (1)1 (33)

where(ng) = (G ax) is the mean number of particles in the sthte
One can then calculate the first order correlation funciéh (r, ') of the system:

G(l)(r,r) Tr[peqz/JT( =13 Z el (' =7) a dk> (34)

In equation (34), one can replace the sum dwday an integral, provided that one accounts separately
for the contribution ot = 0 which would otherwise be omitted (the density of states vanishds fo0).
Using

ze Pk
{(a) ar) = T 20 Fer Zz e lBen
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wherez = e°# is the fugacity, one gets

oo

No 1 o
G(l)(’r,r’): L_g 4 W/d3k61k~(r7r )Zzl e*lﬁﬁ2k2/2m
=1
Ny 1 A 7(r—7r')?2
_FJFE;MQXI’(_T (35)

with Ny = (ng) the population of the ground state and

the thermal de Broglie wavelength. Note tii&t) (r, ') only depends ofr — #’), which is a consequence
of the translational invariance ¢{,. In particular:

No 1 X: N
GO =p(r) =5+ 5D Er=1s (36)
T =
;1\,_/
:93/2(2)

does not depend an
Let us now study the evolution @¥") (r — ¢’) for increasing values gf = N/L? at fixedT.

e For a very dilute gawerifying pA3. < 1, we haveN, < N andz < 1. We can thus neglec¥,/L? and
usegs 2 (z) ~ z (i.e. keep only the term= 1 in the sum over) in equation (36). This yieldsV/L3 ~
z/A\3, i.e.z = NA3./L?. Making the same approximations in the expressio@df (equation (35)), we
get:

GO (r — p) ~ /\ig o) /N % o (r—r)? /2% (37)
T

We recover the coherence length/+/7 of a classical Maxwell-Boltzmann gas (degure 1).

o For larger values o still remaining below the critical valugy, can still be neglected butis larger and
one has to take into account the contribution of terms Withl in the sum ovet. GV (r — +') is then
a sum of gaussian curves with increasing widts/ /7, Atv/2/v/7, Arv/3/y/T, ... The coherence
length thus increases.

e When one reaches the critical regimene has: = 1, which corresponds tp.is A% = > 72, 1/13/2 =
2.612. At this point, one can still negled¥, which has not yet started to increase. Inserting 1 in

(6]

G (s)
\ D
A \ G71(S)
pcriti
X ______________________
N
NyLY
- vy -
s=lr-r'l s=Ir-rl
Figure 1. First order correlation function for a very Figure 2. First order correlation function for a Bose
dilute gas pA3: < 1). condensed gapi3 > 1).
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equation (35), one gets:
1) 1 =1 m(r—r')?
Gcrit(r - r/) - E ; 13/2 exp (_ l>"21“ (38)

Ggii)t(r — ') only depends onr and does not vary with a further increasepait fixedT'.
e For p > peig, No is no longer negligible and remains equal to 1. We thus have:

GO (pr,r') = % +G0 (r -7 (39)

crit

andGM (r,7) = No/L? + perit, With perie = (N — No) /L2,

Once the critical density is attained, any further increase daficreases onlyVy, ijgt remaining

unchanged. This corresponds to an increase of the flat backgrofigdrm?2 i.e. to aninfinite coherence

length. A long range spatial order thus develops for increasing densities at constant temperature.

Let us now study the asymptotic behavioux®f) (r — ') for s = [ — /| > Ar. Equation (34) clearly
shows thatz(!)(s) is the Fourier transform qfin,). The behaviour oY) (s) at larges is thus determined
by that of (ng) at smallk:

z z z 1 .
<nk> = eﬁh2k2/2m —z kio 1 — + 6% kio ﬁh2/2m k2 + kz Wlth (40)
2 11—z  4r(1-2)
¢ BR2/2m AL
This yields:
exp(—siv 47;(172))
GM(8) X (s5Ar) - (Yukawa shape) for < 1
S
GMW(s) X(ssar) 1/s  (Coulomb shape) for = 1 (41)

Normalized correlation functions are often convenient because they do not depénhdFam a dilute
gas, we havg) (r — ') = exp(—n(r — r')? /%) (seefigure 39. By contrast, in the case of a very dense
gas, the first order normalized correlation function decreases slowlyswatvards the asymptotic value
1 — periv/ p (seefigure 3. This implies that whep — oo, g™ (s) — 1.

In this paragraph we have made all the calculations in the grand canonical ensemble, where the
mathematics is the simplest. However, in present experiments on Bose—Einstein condensates the total
numberN of bosons is fixed, the canonical ensemble would be more appropriate. Both ensembles lead

(1)
(@) M g ® bes)
L 8 (r-r") e

bt [
Yy | T
A

l_pcritlpé

> v 0
s=lr-r'l s=Ir-r'l

Figure 3. Normalized first order correlation function for a very dilute gas (a) and for a Bose condensed gas (b).
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to similar results concerning), henceG(Y), which justifies the preceding calculations. By contrast, the
fluctuations of the occupation numbérs,) can be quite differentin the canonical and the grand canonical
ensembles for a degenerate Bose gas [7], so that the grand canonical calculatidh 6f®® ... is not
reliable outside the regim@ <« N;;. In the following, we will rather use a Fock state to describe the
condensate and to calculate the correlation functions.

Let us now calculate?®, G®), ... for N < Ngyt, using the grand canonical description. We can
use Wick’s theorem, which applies to a gaussian distribution, hence to a perfect gas in grand canonical
equilibrium [8]: all average values can be expressed as sums of products of average values involving only
two operators (one creation and one annihilation operator). The results obtainétl fgf®), . .. are thus
the same as those found in quantum optics for a gaussian field [3]:

2

9@ (rr) =14 g (0] (42)

gD ry=1+1=2
2 2 2

9P (e’ ") =14 gV (@) + [gD (' ")+ [¢ D (" 7))
+2Re[gM (r,r")g M (', 7" gD (r", 1) (43)
9(3) (r,r,7)=31=6
2.3.2 N non-interacting bosons in the ground state of a trap

Let us consider a basis of individual states;(r)} including the ground staté; (r) of the trap. The
state of the system can be described by the Fock g¥éte- [n, = N, n; = 0if i # 1). The field operators
are written:

Y(r)=1i(r)as + > ei(r)a; (44)
i#1

Gy =wiraf + > vi(r)af (45)
i#1

Becaused; with i # 1 commutes witha; and &f and becausé;|0;) = 0, we can use simplified
expressions ofy andy ' to calculate the average value of normally ordered field operators:

G(r)=ei(r)a and $T(r) =yi(r)af (46)

We can then write the field correlation functions:
e First order correlation function:

G (r,r') =7 (r)r (r')(Naf a1 |N) = N9 (r)iba (r') (47)
e Second order correlation function:

GO (r,7') = 1 ()1 () ()1 (r) (Naf a7 aran | N)
—_—

=N(N-1)
GO (") = N(N = 1) |t (r)* |11 (') | (48)
The normalized second order correlation function is written:
9(2)(7“,7“/):]\[(]]\[\772_1):1—%21 if N> 1 (49)
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e Third order correlation function:

GO (r,r! ) =07 ()07 ()0 (" )r (7" )pu () hu (r) (N |y & @ drdndn| N)

=N(N—-1)(N—2)

GO (' 7"y = N(N = 1)(N = 2) [ (7)*[¢r () |*[ 001 (#")|? (50)
This yields for the normalized third order correlation function:
~1 ifN>1 (52)

e Similarly to what we have calculated in equations (47), (48) and (50), all correlation functidns
with ¥ < N of a single mode Fock state; = N, n; =0 if i # 1) are equal to a product cfk
functions, namely: functionsy/Nv; andk functionsy/N1;. We thus recover the same factorization as
for a coherent statgy) of the ‘mode’y; with a = /N (see Section 2.1.2). Consequently, as shown in
equations (49) and (51), all normalized correlation functigfis with k£ < N are equal to 1.

3. ‘Macroscopic’ matter waves

In this section, we first introduce the ‘macroscopic’ matter wave concept in the framework of the
variational approximation. We then use it to study the coherence properties of a single Bose—Einstein
condensate and the question of the relative phase between two separate condensates.

3.1. Variational approximation

3.1.1 The Gross—Pitaevskii equation

Let us considelN identical bosons in a trap described by a potenifig). ForT <« T they all condense
in the ground state of the Hamiltonian:

N

.2
H= Z BZ”L + ‘/cxt(’f'i):| + % sz(ﬁg) (53)

i=1 i=1 j#i

whereV (#;;) = V(|#; —7;|) is the interaction potential between pairs of bosons. At very low temperatures,
namely when the de Broglie wavelength becomes much larger than the rangd/af;;), only s-wave
scattering between pairs of bosons remains significant, and we can approKifgieby:

2
477:? a (54)

V(TAZ]) = gé(|’f‘l — ’IA“]|) with g=

wherea is the scattering length.

Generally, the ground state &f cannot be determined exactly. In the absence of interactions however,
it is a product state: all the bosons are in the ground state of the single particle Hamilfoaian
p?/2m + Vexs (7). In the presence of weak interactions, one can still approximate the ground stateyof
a product state:

W) = [(1)) - [0(2)) - [0 (N)) (55)
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where all the bosons are in the same stéte Obviously,|¢,) is completely symmetric. Contrary to the
non-interacting caséy) is no longer the ground state bfut has to be determined as the one minimizing:

(g H|1pg)

(Valts)

Let us first calculatéy, |fl|wg>:
~ h2
(Wal o) = N [ o (r)| =524 Vo wi0)

* W / / dPr e/ g () () (Ir = o) (r () (56)

We now look for the minimum otwg|ﬁ|wg> with (¢4 |1s) = 1 fixed. Because) is a priori a complex
number, we can consider the variatiang and d¢* of 1) andvy* respectively as independent. Using the
method of Lagrange multipliers, the approximate ground s$tatehas to satisfy:

§[(Wgl Htbg)] — A6 (tg|thg) =0 (57)

where) is the Lagrange multiplier associated with the constrainfi,) = 1.
Inserting the expression (56) @bg|ﬁ|wg> in equation (57) and cancelling the coefficientgf* yields:
K2 3 / N2
—5 At Ve ()| 6(r) + (N = 1)| [ &'V (jr =)o) o) = de(r)  (58)
We recover the Gross—Pitaevskii equation [9,10], which has a straightforward interpretation: each boson
evolves in the external potentil],; and in themean-fielcbotential produced by thgV — 1) other bosons.

Letus now try and find an interpretation for the paramatehich was introduced formally as a Lagrange
multiplier. After multiplying equation (58) by * () and integrating over, one gets:

A= /d?’ri/)*('r) [—%A + cht(r)] Y(r)

F =1 [[Erdr s eV (- o) (59)
~N
AT I 8(tbg| H |1hg) O
3= el ) = 1 (el ) - 2287108 2 (60)
—_————

=0

A= %(wgflwg} thus represents the chemical potential which was previously noted
We can simplify equation (58) by replacifg(r — r’) by g6(r — r’) (equation (54)). This gives

2

0 A V() 007) + (N = Dg o)) = () (61)

This equation is analogous to the one found in non-linear optics for the light field. One can thus generalize
to matter waves some effects well known in non-linear optics such as four-wave mixing [11], solitons [12],
etc.

The ground state energy is generally the sum of three contributions:
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(i) the kinetic energyEi, = N [ d3ry*(r)(—h?/(2m)) Ay (r),
(ii) the ‘trapping energyEe.; = N [ d®r|y(r)|*Vexs (7),
(iii) the interaction energyi, = s N(N — 1)g [ d3r|y(r)[*.
For a homogeneous condensate in a box of Bizéhe wave function) = 1/L3/2 is uniform and the only
remaining contribution comes from the mean-field interaction engxgy~ %gpN.

3.1.2 Macroscopic matter waves

We consider here a badig);)} of single particle states including the solutipn of the Gross—Pitaevskii
equation.y; is generally real{; = 1). In the variational description of the condensat&’at 0, the
quantum state of the system is the Fock state= |n; = N,n; =0if i #1).

We have seen in Section 2.3.2 that for a Fock state, all the correlation funétidhs. ., G*) with
k < N are products oR,4,...,2k functionsyv/N,. This is very similar to the situation of coherent
optical fields (also callequasi-classicafields) for which the correlation functions are products of classical
fields (see Section 2.1.2).

In the following, we associate to the condensate a macroscopic (or ‘giant’) mattexwéye (r). Note
however that this macroscopic matter wave description fails when the variational approximationis no longer
valid.

3.2. Coherence properties of a Bose—Einstein condensate

3.2.1 Coherence length of a trapped condensate

The coherence length of the condensate is the characteristic length over which the first order correlation
functionG( (r,7') decreases. In the macroscopic matter wave description, we have:

GV (r, ") = Nepy (r) (r') (62)

This shows that(!) (r, r') vanishes whefr — r’| becomes larger than the spatial exienof ¢, (r). For a
non-interacting condensate in a harmonic trap with frequegcyhe coherence length of the condensate is
equal to the widthrg = \/h/mwy of the ground state of the trap. In the presence of repulsive interactions,
which correspond to a positive scattering lengtlthe size of the condensate increases.

To have a better insight, we now compare the different length scales of the problem, namely the de
Broglie wavelength\t = /2712 /(mkgT), the size of the thermal cloudr ~ \/kgT/(mw?) and the
size of the trap ground state) = /%/(mwy). In the situation considered here, we hauve) < kgT,
which yields:

AT < 0o < Ar (63)

This equation shows that there is a long range order associated with the condensate. It also reminds us
that the spatial extension of the trap is finite, so ti&? (r, ') depends om and+’ and not only on- — .
We thus have to define the coherence lengttof the condensate more precisely than we have done with
equation (62).

Theglobal spatial coherencé'(a) is given by the sum of all spatial coherences between pairs of points
(r,r + a) separated bw:

G(a) = / ErGY(r,r+a) (64)

The coherence length is then defined as the characteristic decay legth)ofvhen|a| increases from
0 to +o0.

457



C. Cohen-Tannoudji, C. Robilliard BOSE-EINSTEIN CONDENSATES AND ATOM LASERS

In fact, there is a simple relationship between the global spatial cohefficeand the momentum

distribution?(p) of the gas:

Gl@) =N [ &r )il +a) =N [ [ [ @rdpdp trip)plin) rlp) ol + ) (69)
Since(r|p) = e/ /(2rh)3/2, integrating over yields:
J @t p 0l s a) = gl [t e s gl (6
(2mh)3
Using equation (66), equation (65) transforms into:

Gla) = / dp &P/ N (plisy) (1 |p) 67)

=P(p)

G(a) is thus simply the Fourier transform &¥(p).

3.2.2 Afew experimental tests of spatial coherence

In this paragraph, we present a few recent experimental measurements of the coherence length of a

condensate.

Determination ofP(p) by Bragg spectroscopjl3]. This experiment, performed at MIT, is based on

a velocity-selective two-photon transition coupling two states with the same internal quantum numbers
but with different momenta. From the spectrum obtained by sweeping the frequency difference between
the two counter-propagating beams, one can derive the momentum distriB{tigrand in particular

its width Ap. The value ofAp measured by J. Stenger et al. is consistent with the Heisenberg limit
Ap ~ h/og, whereoy is the spatial width of the solution, of the Gross—Pitaevskii equation [13]. This
shows that the coherence length of the condensate is equal to its spatial extent and that there is a single
phase throughout the condensate.

Direct measurement aff(a) [14]. The NIST experiment is a ‘self-interference’ experiment: a pair of
short pulses of stationary wave creates two copies of the condensate separateArbgbsorption
imaging technique allows one to measure the overlap integral of the two copies as they interfere. From
the decay time of the interference fringes, E. Hagley et al. also find that the phase of the condensate is
uniform [14], which amounts to saying that the coherence length of the condensate is equal to its spatial
extent.

Interference of two matter waves extracted from two different points of the condgtisafehe method

used by the Munich group to extract a matter wave from their condensate consists of a position-selective
output-coupler using a continuous RF wave. Using two RF waves with different frequencies, one couples
out two matter waves from two different pointeandr’ = r + a of the condensate. The visibility of the
interference fringes between these matter waves is directly related to the first order correlation function
GM(r,r"). 1. Bloch et al. have studied the evolution@f") (r, ') across the phase transition and have
found clear evidence that the coherence length of the gas changes frorthy whenT > T, to \. ~ ¢

whenT < T..

Higher order correlation functions have also been investigated experimentally.

In particular, the measurement of the mean interaction en@?gy} of the condensate [16,17] yields
some information about theecond order correlation functiog® (r,r) [18]. Indeed, the mean
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interaction energy is equal to:
<Aint> = %// d3rd3r’V(|r - r’|)G(2) (r,7") (68)

Replacing V(|r — ='|) by its approximate formdwh?ad(r — r’)/m (equation (54)) and using
equation (12), one gets:

()= 20 [ dr ()" (r,7) ©9)

We have already calculatgé® (r, r) in the cases of a thermal field and of a Fock state (see Section 2.1.2
and equation (49), respectively):

g (r,r)=2 forathermal cloud (70)
g (r,r)~1 foraFock state (71)

The measured values 6F;,;) are consistent wity? (r, r) = 1 but excludey® (r, ) = 2. This means
that the transition to Bose—Einstein condensation is associated with a strong suppression of density
fluctuations.

e The three-body collision loss rate is proportional to the probability to have three bosons very close to each
other and thus to ththird order correlation functionG'® (v, r, ) = [p1(r)]?9® (r,7,7). As seen in
Section 2.1.2 and in equation (51), respectivgly),(, ,r) is equal to 6 for a thermal cloud and to 1 for
a Fock state. The measurement of the three-body loss rate was performed by the JILA group [19]. After
an appropriate normalization to account for the variation of the one-body density from one experiment
to the other, the three-body loss rate is found to be 7.4 (2.6) times smaller for a condensate than for an
ultracold thermal cloud.

3.3. Relative phase between two Bose—Einstein condensates

In this section, we assume that we have two well separated condensates, i.e. two condensates in two
different traps centered i, andrs, respectively. The solutions of the Gross—Pitaevskii equation for each
trap are denoteg@; andi),, respectively, and for the sake of simplicity we assumg») = 0 as well as

Y1(r2) =a(r1) =0.

We take a basi$|;)} of individual states including):) and|¢-). In our case, the only relevant basis
states in the Fock space dre,n2,n; = 0 for i # 1,2). In the following, we simplify the notation by
omitting n; for i # 1,2. We finally impose that the total number of bosa¥is= n; + n. is fixed.

3.3.1 Phase states

We now try to find a quantum state describing the two condensates with a well defined relativé.phase
Such a state must exhibit a spatial coherence between two points situated one in each condensate, for
instance between; andrs:

G (ry,ry) = <1ZT(7“1)1Z(7“2)> #0 (72)
As aILmodesé ;f 1,2 are empty, we can, when computing normally ordered products of field operators,
replacey(r) andy f(r) by:

h(r) =1 (r)as + o (r)a (73)
G f(r) =i (r)af +¢3(r)af (74)
Because); (r2) = ¢2(r1) = 0, we have

() =1i(r)ar and P(re) = Yo (rs)as (75)
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The simplest idea would be to consider Fock statgsns). Let us calculate the first order correlation
function in(ry,72):

GO (r1,ma) = (n1,m2|t T (r)d(r2)nn, n2) = 5 (71)tha (r2) (01, nalay d2|ny, n2)
=Yy (r1)2(r2)y/n2(ny + 1){(n1,ne|ng + 1,10 — 1)
G (r1,m5) =0 (76)
The absence of any spatial coherence between two separated condensates jnastatehows that two

condensates in Fock states do not possess a well defined relative phase.
Another idea consists of taking dll bosons in the same linear combination/afandi),:

11, m2,0) = m1|1b1) + 2 e |1ha) (77)

wheren; , 1, are real and verify? + 73 = 1, andd is the relative phase between the two condensates.

We now study the properties of such states, called phase states. In the following, we use the simplified
expression N, §) for the phase statgV, n:1,72,6) corresponding taV bosons in the statg);,72,6). To
find the expression dfV, #), we introduce the creation operaﬁ;jr1 1,0 Of @ boson in the statey;, 2, 6):

at

mn26 nl&f + 72 e_iedg (78)

We have:

—_

|N79>:

1 .
[ 17 10) = — [maf +mneaf]™|0)

m n1 2 6 \/ﬁ
N

1 N! ni, ne —in2b (A4 \ni s+ \n
= 7= E —— ' nae " (a7)™ (az )" |0)
v N! 0 n1lnsg! —_———
no=N—n1 =vni1lVnal|ni,n2)

N NI .
INO)= > g e "% ny,no) (79)
niz0 1yl
RQZN—R1

A phase state appears as a linear superposition of Fock Btates) with ny + ny = N fixed. Equation
(79) shows that a phase state is not a product of one state of ‘mode’ 1 by one of ‘mode’ 2, but exhibits some
guantum correlations between the two condensates. Let us now study the distributjcsnofn:

_ N! 2n1, 2n2 i U%Zl—nf
P(nl) - TLl!TLQ!T]l 772 Wlth ng = N — n1 (80)

The distribution ofn; is thus a binomial distribution, with the standard results:

{ﬁl—Nr]f and ﬁQZNT]%:N—ﬁl (81)

(Any)? = Nn7 (1 —n7) = Nnins = (Ang)?

To characterize the phase stafé ), it is also interesting to study the distribution of=n; — na,
which can take values from N to NV by steps of 2. Its mean valueis= 71, — 72, while its dispersion is
An =2An; = 2v/Nnn,. The dispersion of. in a phase state is thus large in absolute value, but remains
small compared tév.

The entanglement of the two condensates in a phase state appears in the density-mgti%) (N, 0|
as off-diagonal elements coupling states with different values ef n; — ny. The extent of this off-
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diagonality inn is of the order ofy/N. By contrast, the reduced density matfi¥) of the condensate
1 contains only diagonal elements. Indeed:

N!
A(l) J— — _ e 211 2(N n1
o =Tra|N,60)(N, 0| = 22 (no|N,8)(N,0|ng) = ngl N = )|1]1 [n1)(n|
50 =S Pl | with Pln) = — ) (82)
ny!(N —ng)!'

S

Similarly, the condensate 2 considered individually is represented by a statistical mixture of Fock states
|n2) with a binomial distribution forn.
What do the correlation functions of a phase state look like? Let us calculate for in§t&hi¢e, ') =

(N, 010 (r)i (') (r)i(r) | N, ).

We first calculate:

-~ N

b(r)|N, ) = Fw ) (@) ,0)

0 = == [).(3,,0) "] 0 (83)

where we have userﬁ(r)|0> = 0. The commutator of equation (83) can be expressed in a more convenient
form by using the properties of the creation and annihilation operators:

W(T)v (an, nge)N} = [1/11(7’)611 +2(r)az, (may +n2 67i0d§)N}
= (4t + vl ) (mat + e )"
2

= N(7711/)1 (7’) + 12 €7i0¢2(r)) ( waif +me eiied;)Nil

[0, (85, 0) ™| = N (e () + 1207 02(1) (6, )™ (84)
Inserting this expression into equation (83) leads to:
)N—l|

P(r)|N.0) = —— (mvr (r) + e () (@), 0)

m1(r) +nze o (r)]|N — 1,0) (85)

Similar calculations give:
D(r ()N, 0) = VNVN = L nn (r') + na e o (r')] [mer (r) + ma e “apa(r)] [N — 2,6) (86)
Finally, using equation (86) witj/ N (N — 1) ~ VN2 = N, one gets:

GO (r, ") = ¢*(r)*(r' ) (v )¢ (r)  where (87)
P(r) =m VN i(r) + VN e iy (r) (88)
SN—— SN——
Vi Ve

The generalization to all correlation functio6$*) with k < N is straightforward: they all factorize in
products of2k functionsy and*. We can thus conclude that two interfering macroscopic matter waves
VA (r) andy/Tae (1) e 79 can be associated with two condensates in a phase state.

Note that the phase states we have studied in this paragraph are a particular kind of quantum states
with a well defined relative phase between the two condensates. One can think of other quantum states
leading to similar results, for instance a statistical mixture of products of coherent states of the two
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modes|a; = /i1 1) ® |ag = /T2 €1%2) with 6, = 6, — 6 and @, uniformly distributed in[0, 27[. The
corresponding density operator is written [20]:

27
p=oe [ V) @ Ve ) (Ve | o (Ve )| (89
0

with 71, T andé fixed. One can show thétis diagonal inV and can be rewritten as a statistical mixture
of phase statesV, §) with ¢ fixed andN distributed in an interval of size/N aroundN.

We now want to address the question of the conjugate variable of the relative §pHaseconsider a
statistical mixture of phase statgs, 6) with NV fixed andg distributed according to a distributidi (¢):

27
p= [ wwE .00 (90)
0

Developingp over the basis of the Fock states, n2) (see equation (79)) yields:

N N 2m
. N! N! ni+n’ naotnl i(nh—n
P= 2 D\t 2{/£ AW (0) 72727 Iy, ma) (i ma| - (9D)

If one notices thalv = n; +nqe = n} +nf impliesn, —ny = ny —n} and thusi —n’ =ny —ng — (n} —nb)
= 2(nf — n9), the integral in equation (91) can be rewritten:

2 2
I:/ MW@J%%MZ/ Ao W (6) el(m—m0/2 (92)
0 0

Equation (92) shows that the integf@almultiplying the off-diagonal elements ¢@f between two states
with different values of: = n; — ns is all the smaller as the phase distributiéf{(9) is broad. In particular,
if W(0) =1/2x is flat, the integral ovef gives a delta function,, . andp is diagonal, not only inV, but
also inn = ny — no which thus appears as the conjugate variable of the relative phase

3.3.2 Emergence of a relative phase as a result of detection processes

Generally, two independent condensates do not find themselves in a state with a well-defined relative
phase, but rather in a product of Fock st&t¥s, N2) = |N1) ® |N2). Such a state corresponds to a zero
dispersion om = n; — ng, and thus to a totally undefined relative phase.

However, the detection processes induce a dispersion,osp that the relative phase of the two
condensates becomes better and better known. Indeed, the first detected boson can come either from mode .
or from mode 2. After this detection, the state vector becomes:

[¢¥) = a|Ny — 1, N2) + B|N1, N — 1) (93)

wherea andg are coefficients depending on the position of the first detected boson.
Similarly, the second detection process changes the state vector into:

|¢) = A|N1 — 2, No) + pu|Ny — 1, Ny — 1) + [Ny, Na — 2) (94)
The off-diagonality ofp = |¢)(¢)| in n =n; — ny increases with the number of detected bosons and a

relative phasé builds up. Note thaf is an unpredictable random variable and takes different values from
one experimental realization to the other.
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More precisely, the emergence of a relative phase between two condensates has been studied analytically
by Y. Castin and J. Dalibard [21] and numerically by J. Javanainen and S.M. Yoo [22] as well as by the
groups of P. Zoller [20] and of D.F. Walls [23].

4. Beyond the variational approximation

In Section 3, we have described the condensate within the variational approximation. This approach gives
an approximate expression only for the ground state, but does not yield any information about the excited
states or the elementary excitations. Besides, one may wonder if the approximation of the ground state by
a product state is sufficient, and what the first corrections to this treatment are. Indeed, the interpretation of
some physical effects requires to go beyond the product state description, as we will see in Section 5 for
the total intensity of the light scattered by a condensate.

In this paragraph, we briefly review the Bogolubov treatment [24] for a homogeneous condensate, which
gives analytical results (see also [6], Chapter 19). This approach can be extended to a gas of bosons in‘a
trap [25].

The Bogolubov approach gives accurate results wheg 7, and pa? < 1, with p the spatial density
anda the scattering length. Let us first write the second quantized Hamiltdhjarsing the field operators

@ and@T for a gas of bosons in a box of siZe(see equation (31)):

H=>episf ik + Vi with (95)

h ~ ~ ~ —~ ~
c=to and Vo= [ [ @rdin S W (i = )b

If one uses the approximate expression of the interaction potdnfial — »'|) = gd(r — =) with g =
47h%a/m, one can write:

~ g R R R R
Vint = m E a;; a,'; Oy +k0k; —k (96)
ki1,k2,k

We now use the fact that fof < T, the bosons are essentially condense& i 0, i.e. (ag ao) >
Zk#o(ak ak). One can transform the Hamiltonidh into an approxmate HamiltoniaH g by neglecting
all terms of H that contain more than two operatdig or ay, T with k # 0 and by replacingio andag

by v/N.
A special treatment has to be applied to the tégg aoao in order to take into account first order terms
of the formny, = ak ar (with k £ 0):

AdaA A ~ PN ~ aAdoA (2 A oA
$atdodo = it (d0dd — 1)do = (i do) —aoag—( Zakak> _(N_Za;ak)

a
k#£0 k+£0
~N(N—-1)— 2N -1)> a}ax
k+£0

ag ag doto ~ N* = 2N Y~ af (97)

k#£0

Finally, usingN/L? = p, one gets:
1

Heg = 79PN + Zekakak + gpz af e+ atpa_g + a;at, + ara_g) (98)

k0
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A rapid inspection ofH.¢ shows that this Hamiltonian conserves the total momentum. It is a quadratic
function ofa;” anday and can therefore be diagonalized by introducing normal modes.
To find these modes, let us write the Heisenberg equatiodfor

~

0H, eff

iy, = [dkaﬁcﬁ'] = et
k

1h&k = (€k + _C]p)&k + gp&fk (99)

. . ~ . +
As the evolution ofi, is coupled tmfk, we also calculaté_:

iy = [ty Hun] = _gii

A ~ N
i), = —(ex + gp)a*y, — gpiik (100)

Equations (99) and (100) define a closed linear system of equatioas forda ", . As a consequence,

there are two linear combinationsaf anda™, which evolve independently from each other at frequencies
w(k) given by the eigenvaluesw(k) of the matrix:

L (er+gp gp )
- 101
h ( —gp  —(ex+9p) (101)

One finds:

hw(k) = \/ex(er +29p) = \/ h;:j <h2k2 + 29/)) (102)

2m

Let us now write explicitly the eigenvectobg andlek of the linear system of equations (99) and (100):
I;k = uplp + Uk&i_k and [A)i_k = vdE + uk&fk (103)

whereu,, andw;, (which are real and depend only én= |k|) are normalized to ensufé, b;] = 1. This
condition yieldsu? — v = 1, which allows one to write:

ug = cosh by, and v = sinh 6y, (104)

Diagonalizing the matrix (101), one gets:

tanh 20), = —°J (105)
€k + pg

The system of equation (103) can be inverted, which gives:
ag = cosh 0bg — sinh Okgfk (106)
at, = —sinhOyby + coshOybT (107)

We now write and study the effective Hamiltoniahg in terms ofby andBZ. Inserting equations (106)
and (107) into (98) and using (105), one gets:

Heg = Eo+ »_ Tw(k)by b (108)
k
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e The operatoréz andby, respectively create and annihilate an elementary excitation of the system with
an energyw (k). The dispersion relation (see equation (102)):

h2k? [ h2k?
hw(k)—\/ oo (2m —|—2gp>

can be simplified by introducing a wave vectgrdefined by

4Amh? thg
ap= ap =
m 2m

The wave vectok, = /8map is associated with a lengta calledhealing length

1 1
§o= b~ Jeran (109)

Equation (102) can then be written:

(k) = %1 [k2(k2 + 2k2) (110)

— Fork < ko, equation (110) gives a phonon type spectrufh) = ck where:

vam VYm \m

andpu = gp is the chemical potential.
— Fork > kg, the spectrum resembles a free particle spectrum but for a constant offset:

“2m " 2m 2m ' h

w(k)

We show infigure 4the dispersion relation for the elementary excitations in the Bogolubov theory.
e The ground state enerdy, of the system can be calculated as:

1 2 2
Ey= §gpN + Zakvk + Z gp(vk — ukvk) (112)
k k+#0
A
hk’/2m +gp/h ,,"
Figure 4. Dispersion relation for the elementary excitations =
in the Bogolubov approach. At low the spectrum is linear “3/ R
(w(k) = ck), while at largek it is similar to a free particle
spectrum with a constant correctigp/h. ck LS \
Ak’/2m
==2o T T >
0 ko 2k, k
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However, the approximation of the interaction poten\‘?ﬁa,lc by aé-function leads to a divergence of the
sum overk in equation (112). A regularized expression of the approximate interaction potential has to
be used to overcome this difficulty (see [6], Chapter 13). One then gets ([6], Section 19.4):

% = %gp 1+ —léf/s%(pa:)’)l/? (113)

e Itis also interesting to have a physical insight into the ground $tateof the system in the Bogolubov
theory. |¢o) must verify bk|¢o) = 0 for all k # 0. The expression foby, is given by equation (103).
However, one should pay attention to the fact tfz@tand br respectively create and annihilate an
elementary excitation, but should conserve the total numbef particles. By replacing and do
by VN, we have lost the explicit conservation &f. To overcome this difficulty, we use an improved
expression fob,, andb, namely:

g o
bi = cosh 0, 6} —2 + sinh 6 —2__ 114
k kQp VN k N k ( )
. ag . , . o
bk = cosh ak \/—Na/k + sinh 9]@- a_k\/—ﬁ (115)
Using the expression (115) féf,, the ground statgpo) has to verify:
~ 1
bi|do) = NG [cosh O ag ak + sinh 0y, 4T ao]|po) =0 VEk#0 (116)
To go further, we assume a ground statg) of the form:
o) = alno=N,0,0,..) + Y Brlno=N—2,nk=1,n_=1,0,...) +--- (117)

k£0

In this expression, the termisg = N — 2,n, = 1,n_ = 1,0,...) correspond to the virtual excitation

of pairs of particles+k, —k when two particles withk = 0 interact, with conservation of the total
momentum. Note that the structure of the ground state written in equation (117) can be deduced from a
general expression, using the condition (116) (see [6], Section 19.4).

Inserting equation (117) into equation (116) and writif@gNV — 1) /N ~ 1, one gets the relation between

the coefficientsy and Gy

B = —atanh 6 (118)

After normalization, the ground state is totally determined by equation (118). Compared with the
approximate ground state considered in the variational approximation, the Bogolubov approach accounts
for the fact that pairs of atoms are transferred from the statekvittO to statesk, —k with k£ # 0 under

the effect of atomic interactions.

If one calculates the mean number of particés- Ny out of thek = 0 state, one finds thquantum
depletion(N — Ngy)/N of the ground state:

N—-Ny, 8
N 37

We finally want to stress that equations (113) and (119) explicitly give the lowest order term in the small
dimensionless parametes?®.

(pa3) 12 (119)

466



BOSE-EINSTEIN CONDENSATES AND ATOM LASERS Relative phase and interference

5. Probing a condensate

In this section, we study detection signals obtained from the scattering of a probe particlé\byptieomn
system. Generally, scattering experiments (neutron scattering for instance) are widely used to investigate
the properties ofV-body systems. Indeed, observing how a probe particle is scattered by a given system
yields some information about its spatial structure, its elementary excitation spectrum, etc.

In this paper we discuss only thi@ear regime where the excitation due to the probe can be treated
perturbatively. This means that the system’s response is entirely determined by its properties in the absence
of the probe. As usual in the weak perturbation regime, we neglect multiple scattering and we consider each
scattering process as independent from the other ones. In this regime the linear response theory applies, s
that we can define a dynamic structure fac86g, w) and a static structure factsi(q) [26] to describe the
response of the system.

We first derive the dynamic and static structure factors within the Born approximation, similarly to what
was done in the context of superfluid helium [26]. We then discuss the origin of interference in detection
signals.

5.1. Probing the wave function of the condensate

Let us consider a probe particle with positidhinteracting with each bosonthrough an interaction
potentiallU (R — r;). We first write the interaction HamiltoniaH;,,; in the first quantization form:

~ N N
Hy =Y U(R—#;)= /d3rU(R —7) Y 8(r— )
i=1 1=1

Hine = / ErU(R—r)p(r) (120)

wherep(r) = vazl 5(r — ;) is the one-body spatial density. In second quantization, we can also write
pr(r) =¥ 1(r)¥(r). Using the basig|k)} of single particle plane waves®™/L?/? in a box of sizeL
with periodic boundary conditions, the one-particle dengity:) can be rewritten as:

~ 1 (k—k' )1t ~ 1 —iK-ra ~
pl(r):ﬁZZe(k k) az,ak:ﬁZZe K aL_KLLk (121)
k K k K
In this expressiony_, a;, x-ax appears as the Fourier transfoptlK) = [ d3r e 7 jy(r) of pi(r),
which is written asi(K) = Zﬁil -7 in first quantization. In second quantization, using equation (23)
with f = eE7 gives:

N

ﬁ(K) — Z eiK"?'i, — ZZ i3 |:/ d3r e—ik’-reiK.r eik.r d;&k
=1 k Kk L
L35(k'—K—k)
N
pK) =D KT =N "4 i (122)
=1 k

Inserting equation (121) into (120) and using equation (122) leads to:

~ KR~ 1 K (R 1 _iK. . .
Himzzze KRCLZJrKakﬁ/d?)T'U(R—T)eK(R ):ﬁzu(K)e KRZ“ZJFK%
k K K k

=U(K)
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Hin = 75 Zu K RH(K) (123)

In this expressmri,{( ) is the Fourier transform d¥ (r).

5.1.1 Scattering of a probe particle by the systen\obosons

Let us consider a scattering process where the probe particle is scattered from an initial state with
momentunp, = hk; and energy; to a final state with momentum, = ik; and energy ;. Meanwhile
the N-boson system changes from an initial statdaving an energy; to a final statep; with an energy
E;.

In order to evaluate the scattering amplitude associated with this process, we first calculate the matrix
element ofH;,,; between the initial and final statés;, ¢;) and|ky, ¢5) of the global system:

~ 1
(g & | Him i, ) = (e, 7 5 Zu( o R H(E) [k, 1)
—ZU N orlp(K)|¢i)d(ki —ky — K)

(kg ¢f| Hintlki, ¢i) =U(@){¢r|p(@)¢:i) with g=k; —ky (124)

Let us now analyze the structure of equation (124), wheréthmctioné(k, — k; — K) accounts for
the momentum conservation. The telty) describes the diffusion of the probe particle by a single boson,
independently from the quantum state of tNeboson system. By contrast, the last tefuy|5(q)|¢;),
which does not depend on the interaction potential, corresponds to the interference effects between the
contributions of the different bosons of the target.

Within the Born approximation, the transition ratg between the initial and the final state is given by
the Fermi golden rule:

2
ri = U@ (@1 1p(a)|#0)| 8 (Er — i — hw) (125)

wherefiw = ¢; — € is the energy transfer from the probe to tNeboson system.
The formalism that we have developed here to describe the scattering of a probe particle can be extended
to Bragg scattering, where the absorption of a photon of energys followed by the stimulated emission
of a photon of energyiw.. In this process, the energy and momentum transfers Vuite: i(w; — wo)
andq = k; — k2, respectively. One can scanby keeping for instance; fixed and scannings. Strictly
speaking, one also modifigs However, in the usual case where the energy transfer is sim&l 1, w2),
the momentum transfer is essentially determined by the angle betsyerdk-, and depends only weakly
on the change dk:|. In the following, we will therefore neglect the dependencg aponw.

5.1.2 Dynamic and static structure factors

The dynamic structure factdt(q,w) corresponds to the terms in equation (125) that depend only on the
N-boson system. More precisely, we have:

Z| 61716(a)l i) |"8(E: — Ef + hw) (126)

In this expression, we sum over the final states of the bosonic system to account for the fact that we measure
only the final state of the scattered particle. Equation (126) can be easily generalized to the case when the
initial state is a statistical mixture of statgswith weights;:

W)= > [brlp(@)léi)|*5(E; — By + hw) (127)
2 f
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The variations of5(g,w) with w are directly related to the dependence of the scattering cross-section on
w in the directiong. This gives access to the energy spectrum of the elementary excitations.

The static structure factof(q) = [ d(hw) S(gq,w) represents the total scattered intensity for a given
momentum transfeq. S(q )can be rewrltten

S(q) = / d(hw 21 Grla@Ie)’, S =@l @p@le)  (128)

This shows thaS(q) depends only o; andq. The static structure factor thus yields some information
ong;.
We now express the structure factdt&g, w) and S(q) in terms of correlation functions. Indeed, one

can write thed-function of equation (126) ay E; — E; + hw) = 5= +;° exp[—i(E; — Ey — hw)t/h] dt,
hence:

+oo
Saw)=5- [ dte Y (0 @los) @rlp@o) ¢ BB
. g

(Or| ettt/ Mp(q)e=iHE/ M| ¢;)

+oo
Saw)=5- [ dte ol (@.t=0)(a. Ol (129)
In this expression$(q, w) appears as the time Fourier transform of the average valgiedfthe product
of two Heisenberg operatofgq) taken at two different times. Noting that the product of Fourier transforms
p'(q,t = 0)p(q,t) can be expressed as the Fourier transform of the corresponding convolution product,
one can also con5|de$(q, ) as the spatio-temporal Fourier transform p#i*r’ (¢;|p1(r’,t = 0) x
pr(r 47, 1)|¢i).
Similarly, S(g) appears as the spatial Fourier transfornj'afr’ (¢;|p1(r’)pr(r’ + 7)|#;). Let us now
write the one-body density operators in terms of field operators (27):

o) pr(r’ + 1) =0T ) T (e + v )+ ) =0T () [0 F (7)) + 5(r) ] (r + 1)

pr o'+ 1) =8(r) (@) (r") + 9 ()b (o (e + )b () (130)

Finally, one gets:

/ A3’ (| pr() pr(v’ +7)|ds) = No(r) + / &Er A v ) (131)

where the last term represents the total probability to find in the gtgtéwo particles separated by

5.1.3 Static structure factor of a homogeneous condensate

We now calculate the static structure factig) in the simple case of a homogeneous condensate, both

in the variational approximation and using the Bogolubov theory. We then compare these calculations to

experimental results.

e Within thevariational approximationthe ground state of a homogeneous condensate is the solution of
the Gross—Pitaevskii equation (61). Because of the translational invariance of the system, the ground
state is the statk = 0, so that the initial quantum state of the condensate;is= |no = N,n; =0 for
i #0). In order to evaluat§(q) = (¢:|p'(q)(q)|¢:), we calculate:

q)|éi) Zak+qak|¢z —d;&0|¢i>:m|nO:N_lvnq:1> (132)

if k;éO
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This yields immediately:
S(g)=N (133)

e We now calculate the static structure factor in the framework oBibgolubov theorywhich is valid for
T < T, andpa® < 1. Looking for an approximate expression fifig), we can neglect i (q)5(q) all
terms containing less than two operatagsor G, similarly to what we have done in Section 4. We can
also replace, andag by v/N. Such a treatment amounts to neglecting(a) all terms containing less
than one operatat, or ag

pla) = ), Jox~agao+afa_qg~ VN(af +d_q) (134)
k

We now expresg(q) in terms of the operatoré,j and by, creating and annihilating an elementary
excitation with momentunk. Using equations (106) and (107), one gets from equation (134):

p(q) ~ VN[ (cosh b, — sinh8,)b + (coshf, — sinh 6,)b_] (135)

We have already seen that the calculatio' () involves that ofs(q)|¢;). If we assume the initial state
|¢;) of the condensate to be the Bogolubov ground stafe which verifieshg|¢o) = 0 Vk, then we get:

p(q)|¢o) = VN (cosh 8, — sinh0,)b} | o) (136)

Hence:

S(q) = N(cosh 6, — sinh6,)?(do|bgby |¢o) = N (cosh, — sinh6,)*(¢o|1 — by bgleo)

S(q) = N(coshf, —sinh,)? (137)
Using equation (105), we can write the explicit dependenc®(gf on g:

N 1 — tanh 26
S(q) - N(COSh 294 —sinh 29q) = —(1 — tanh 29q) =N ﬁ
1 — tanh® 26, + tanh 26,
5 . h2q2
S =N, /—2 th _va 138
. ety T om (138)

In the limit ¢ — oo, the condensate is in the free-particle regime whegre> pg = i (1 being the
chemical potential). In this situation one find$qg) — N. We recover here the same result as with the
variational approach.

By contrast, the limiy — 0 corresponds to the phonon-like regime (see Section 4). This corresponds to

g4 < pg and therefore leads to:
S(q) g0 N[ L o g (139)
2pg

According to the Bogolubov approach{q) vanishes linearly withy when ¢ — 0. The discrepancy
between equations (133) and (139) gives evidence for the fact that the approximation of the condensate
wave-function by a product state is not sufficient to account properly for all physical effects.

e These theoretical predictions can be compared texperimental resultebtained by W. Ketterle and
coworkers [27]. The authors have used small angle stimulated Bragg scattering to probe excitations of a
condensate, and they explored both the free-particle and phonon regimes by changing the atomic density
for a fixed momentum transfer. The results show indeed a significant weakening of the line strength of
the Bragg resonance when one increases the density to enter the phonon regime.
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Finally, one can give a simple interpretation for the behaviour of the static structure factor of a condensate.
We have seen in Section 4, equation (117), that the ground state wave fujagtioof a homogeneous
condensate in the Bogolubov theory is a linear superpositigngof N, 0,0,...) and of Fock states of
the kind|np =N —2,n, = 1,n_, = 1,0,0,...). Therefore, there are two different ways of imparting a
momentumy to the condensate: one can either start ffagn= N, 0,0, .. .) and promote a zero-momentum
particle to momenturg, or start withjng =N —2,n4 =1,n_4=1,0,0,...) and transfer a particle from
momentum-—gq to zero-momentum. The resulting state for both pathsjs= N — 1,24 =1,0,0,...), SO
that one has to sum the corresponding transiimplitudesFor high momentum transfegshowever, the
state|ng =N —2,nq =1,n_q=1,0,0,...) has a negligible weight ify,) and the static structure factor
is simply equal taV, as for a perfect gas. By contrast, fpr- 0 a destructive interference between the two
paths leads to a vanishing structure factor.

5.2. About interferences in detection signals

Following the discussion about the vanishing of the static structure factor of a condensate, we now wish
to clarify the general concept of quantum interference. Indeed, thinking about interference brings to the
mind the picture of interfering waves, although interference effects can as well be observed in cases where
a description in terms of classical light or matter waves cannot be implemented. What are the ‘objects’ that
interfere then?

For a N-boson system, when the ground state of the system is not a macroscopic matter wave, the
correlation functions cannot be written as products of matter waves. One can gain some physical insight
into the interference phenomenon by writing the correlation functions in a particular way. We consider
here for example the second order correlation funo@iéh (¢, 7' '), which describes a double-detection
signal. If the initial state of the system is a statistical mixture of statgswith weightsr;, one has{|us)}
being an orthonormal basis of states:

GOt 'ty =T (e )0 ()b (e 1)) = milbxal T (e, )0 T ) (' ) (r, ) i)

= 3wl 0BT, ) [Z|uf><uf|] B )b 1))

f

=1

G(Q) rt,r't") ZWZZ| uf|z/J r' t) (r,t)|xi>|2 (140)

The detection signal is thus obtained by averaging over the initial statesand summing over the
final states|uy) the transition probabilitie$A ;|* = |<uf|1Z(r’,t’)zZ(r,t)|Xi>|2. Let us now consider a
single transition amplitudd ;. Becauseﬂ(r, t) is a linear superposition of operators corresponding to the
different ‘modes’y;(r), Ay; is a sum of amplitudes associated to detections in different modes.

For a two-mode problem, for instanaﬁ(r,t) = a1 (t)1(r) + aa2(t)2(r), so thatdy; is the sum of 4
amplitudes, as shown figure &

The transition probabilityA¢;|*> contains crossed terms, i.e. terms of the kingr)y;(r) which
correspond to detections in different modes. Therefore, one can say that the ‘objects’ that interfere are
transition amplitudesgiving rise to fringes in the detection signal, provided that there exists at least two
possible paths between the initial state and a given final state.

In the simple case of a two-boson stgte) = |k, k=) with one boson having momentukn and another
one having a momentuk,, if the two detections are simultaneous<t'), then only two interfering paths
exist:

(1) the process where, is detected in- andks in v’ has an amplitudexp(ik; - ) exp(iks - 7');
(2) the one withk; detected in~’ andk, in r has an amplitudexp(ik; - ') exp(iks - 7).
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lug)

/ \\

a (") (') an(t" )2 (r') a(t' )2 (') ay (") (')

Figure 5. Schematic

representation of the four
R R N R amplitudes which interfere
ina doubl_e counting
an (£)9 (r) o (t)a(r) ax (£) () s () (r) experiment
Ix:i)
D Figure 6. Schematic representation of

the two interfering paths for a

Elo NWVVVVVV\/V\,)D E'.M
+ h .
two-photon state with one photon in
E,e M\ D E,e D’ P P

each mode.

Both paths end in the vacuum state, and the total transition amplitusléhe sum of the two contributions,
namelyA o« exp(iky - r) exp(iks - ') + exp(ik1 - ') exp(ik2 - 7). The transition probability then exhibits
interference fringes:

|AI?x1+1+2Re [ei(’“*k?)'(’"*"/)] =2[1+cos(k1 — ka) - (r —7')] (141)

One can easily see that the probability of detecting one bosendaes not depend on, since it is
proportional to exp(ik1 - 7)|? + | exp(ik2 - 7)|? = 2. Once a boson is detectedriphowever, the probability
to detect the second one#nis a sinusoidal function of — r’, as shown by equation (141).

Note that similar effects exist for photons [28] (see also [2], Comp)AConcerning two-photon states,
one clearly identifies the two interfering paths by introducing emittgrand E, for the two photons in
modes 1 and 2, respectively, as well as two detectors D and Dfi(gee 6.

6. Matter waves versus light waves: effect of atom—atom interactions

The approach we have adopted in this article makes it clear that bosonic quantum gases exhibit many
analogies with quantum optical fields. However, there are also some major differences, in particular those
related with the interactions between atoms. We study in this section the effect of atom—atom interactions
first on the relative phase of two condensates in different traps, and then on the behaviour of two condensates
in the same trap.

6.1. Relative phase of two condensates in different traps

We use here notations similar to the ones of Section 3.3: the condensates 1 and 2 sitaataddn
ro are associated with macroscopic matter wayves*) andv(r), respectively. We now study the time
evolution of the spatial coherence between the two condensates under the effect of interactions within each
condensate (we neglect the interactions between the two condensates). Using the Heisenberg point of view,
one has:
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(11, ) (ra, ) = ¥f (r1) e (re) (af (Has(t))  with (142)

it (1) = eiﬁlt/h&ii-efiﬁlt/h and as(t) = eiﬁgt/hdz o—iHat/h (143)

In equation (143)1% is the Hamiltonian of condensatgeincluding the interaction potential. Inserting a
closure relation in equations (143) yields:

=5 Vi T Ing + 1) {ny | I EOuHD=Bl/R (144)
ny

=Y Vnalng — 1)(ng|ellF 2= Em)lt/h (145)
no

We get:

(DT, ) (e, ) = D i (ri)a(re)yviaVng + L{na, nalplng +1,n2 — 1)

ni,n2

o QilB(m1+1n2-1)—E(ny )]t/ (146)

The spatial coherence between the two condensates appears as a sum of terms proportional to the
coherence betwedn,,n2) and|n; + 1,n, — 1) and oscillating at the corresponding Bohr frequencies.

Let us consider an initial state of the system with a well-defined spatial coherence, for instance a
phase statéN,6) (see Section 3.3.1). In the foIIowing, we label the stdiesns) by n = ny — no,
n1 + ne = N being fixed. One can write; o = (N + n) andn can take values fromN to N in

steps of 2. The spatial coheren@QT(rl, )1/)(7’2, t)) between the condensates is then proportional to
> V(N =n)(N +n+ 1){n|pln + 2) exp(i[E(n + 2) — E(n)]t/h).

To go further in the discussion while keeping the calculations as simple as possible, we consider the
case of two homogeneous condensates in boxes of/sizgith the same scattering length in this
case the Hamiltonian is reduced to the interaction Hamiltonian (see Section 3.1.1), famelyl; =
g(N? + N3)/(2L3), with g = 47h?a/m (54). This yields:

E(n) = [(N+n)*+ (N -n)’ = N?+n?) (147)

8L3 4L3 (

As shown infigure 7, E(n) varies quadratically withu, so that the relevant quantify(n +2) — E(n) =
g(n+1)/L3 is linear.

As a consequence of the atom—atom interactions within each condensate, the evolution frequencies of the
coherences$n|p|n + 2) form a comb of equally spaced frequencigs + 1)/(hL?3), n varying from—N
to N. We have seen in Section 3.3.1 that the dispersionima phase state is on the orderdfV. Then
the frequency spreadinfyw of the spatial cohereno(e/A)T(rl,t)zZ(rQ,t» is Aw ~+/Ng/(hL?), hence a

A E(n) - E(0)

Figure 7. EnergyE(n) of two interacting
homogeneous condensates as a function of
n=mniy —nz.
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coherence time:

A
py A (148)

Tcoh s

wherep = g N /L? is the chemical potential.
Moreover, since the frequencigé: + 1)/(hL3) are equally spaced hy/AL3, one expects a revival of
the spatial coherence after a time:

hL® RN
Trev == 7 > Tcoh (149)

6.2. Two condensates in the same trap

We now consider the situation where two ensembles of bosonic atoms 1 and 2, prepared in two different
hyperfine or Zeeman sublevels, are both present in the same trap. Such a configuration was obtained
experimentally with Rubidium atoms at JILA [29] and with Sodium atoms at MIT [30]. To describe the
interactions with the same approximation as in the rest of the course, three coupling constants,
go2 = g2, go1 = g12 and three scattering lengths, as, as; = a2 are needed.

We first try to elucidate whether the two condensates are spatially separated or mixedslfy:, g2,
one expects that the two condensates would rather separate in order to minimize the interactions 1-2. To go
further, we consider the simplified situation of a homogeneous system in a box of vBluwith NV atoms
in the stateg1) and N atoms in|2). This system can find itself in two states: either the two components
are mixed and occupy both the whole voluiigor they are separated, the component 1 or 2 occupying a
volumezV or (1 — x)V, respectively. We denote the total energy of the systeribiy the former case,
and byFr; in the latter. The calculation df; is straightforward:

1 N? 1 N? N? N?
Er=co1—+ 592— + 912

ST T 592 v :W(Ql + g2 + 2912) (150)

To calculateEr;, we can negleci;» since the two condensates are separated. We get:

En=-g1—=+:z0——5=7> (151)

1 N2 1 N2 7N2 |:gl g2 :|
272V 27 (1—2)V 2V

T 11—z

G(z)

The value ofr can be determined by minimizir@(x), which yieldsz = | /g1/(,/91 + 1/92), hence:

Gle) = Vo (Var +Viz) + Vo (Vi + Vi) = (Vo1 + V)’ (152)
Finally, one gets:
N2
En= o (91 + 92 +2/9192] (153)

Comparing equations (150) and (153), one can conclude that:
(1) if g12 > /9192, E1 > Eqr and the two condensates separate;
(2) if g12 < /9192, E1 < En so that both components are mixed.

We now study the role played by the mutual interactions between the two condensates concerning
the coherence timé,,, calculated in Section 6.1. We have indeed seen that the scrambling of the
relative phase between the two condensates is due to the fact that the Bohr frequericies:,) =
+[E(n1 + 1,n2 — 1) — E(n1,n2)] appearing in the evolution ofa; (t)as(t)) (see equation (146)) are
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spread over an intervalo ~ \/]Vg/(hL:*) whenn; andn, vary over an intervalAn ~ /N aroundrm; and
m2. How are these results modified when one takesinto account? We discuss here the homogeneous
case, which is the simplest. Note that a more general theoretical study of a binary mixture of condensates
has been performed by A. Sinatra and Y. Castin [31].

The relevant Bohr frequeney(n1,n2) can be written:

0 0

[E(n1+1,n2 — 1) — E(ny,n2)| = %(8—1“ - 8—712>E(n1,n2)

w(ni,ng) =

St = St

w(ny,nz) = = [p1(n1,n2) — p2(ni,n2)] (154)

Whenn; andn. vary over an interval\n, aroundn; andm, (with 77 + 72 = n; + ny = N imposed by
the super-selection rule), the Bohr frequency spreadings written:

Aw~w(m + An, i — An) — w(ny,N2) ~ An(i - ﬂ)(.«.}(nl,ng) (155)

ni :Hl, ng:ﬁg
In the present case of a homogeneous mixture of two condensates in a box of ¥olamig, the energy
E(n1,ns) is written:

2
2 ning

1 n? 1 n
E — gL T2 156
(n1,m2) 291‘/ +292V + 912 v (156)
This gives, using equation (154):
0 niz2 na,1
,U1,2(Tl1,n2) = mE(nl,nz) = 91,27 +9127 (157)
1 n n no —n
w(m,nz):E(glVl—ngQ—Fgu 2V 1) (158)
Finally, one gets:
An
Aw = = (g1 + 92 = 2912) (159)

SinceT.., ~ 1/Aw, one easily recovers the result of equation (148) by taking= 0 andAn ~ v/N.
By contrast, ifg12 # 0 the Bohr frequency spread is decreased and the coherence time increases. In
particular, whery;2 ~ (g1 + g2)/2 one hasAw = 0 and thusT¢.;, — oc.
Although this behaviour seems surprising, one can find a simple physical explanation for it. For a given
An, the relevant quantity is the variation pf — 2 whenn; increases by 1 and, decreases by 1.
e If g1o0 =0, uy increases when, increases because there are then more atoms interacting in condensate 1.
Similarly, o decreases becausg decreases. As a resylt; — p» increases.
¢ If one takes into account the mutual interactions between the two condensates; thereases with
n, as above. However, at the same time the interaction of the atoms of condensate 1 with the ones of
condensate 2 decreases becausdecreases (see equation (157)). Globally, the variatign afan be
smaller than wheg;» = 0, and it can even vanish. A symmetric argument applies for the variatipn of
whenn, decreases.
Experimentally, the long coherence times observed at JILA #iitb [32] possibly originate from the
phenomenon we have discussed here, since the interaction parameters are Qugh that + g-.
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7. Conclusion

In this article, we have shown that Bose—Einstein condensates can be described by quantum states
analogous to those used in quantum optics, with the advantage that they do not violate any super-selection
rule (see Section 2.2.3). Using a variational approximation, we have shown that it is possible to associate
to the condensate a 3D matter wave allowing one to study many coherence properties. In particular, we
have seen that a relative phase between two condensates can exist only if the state of the two condensate:
is a linear superposition of states,, no) with different values ofi; — nq, n; andny being the number of
bosons in each condensate and+ no being fixed and equal t&y.

Experimentally, the detection of a condensate is often achieved by particle or light scattering; we have
introduced dynamical and static structure factors describing this scattering in the framework of the linear
response theory. We have shown that some physical effects cannot be accounted for within the variational
approximation but require a more elaborate approach, such as the Bogolubov theory.

Finally, we have studied the effects of atom—atom interactions on the dynamics of the condensate, and in
particular on the scrambling of the relative phase of two condensates, either in two different traps or in the
same trap.

Concerning future studies, a great challenge would consist of preparing a system of two condensates in
states such as [n1 = N,ny =0) 4 c2|n; = 0,n2 = N). Such states could indeed be considered as linear
superpositions of two different macroscopic states (sometimes called ‘Schrédinger cats’).
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