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Abstract. In this article, we present a tutorial discussion of the coherence properties of Bose–Einstein
condensates. We use a formalism which is similar to the one used in quantum optics.
We describe within the variational approximation the question of the relative phase of
two condensates. To evaluate the structure factors of a condensate, we briefly review the
Bogolubov approach and describe light scattering off a condensate using the linear response
formalism. Finally, we study the effect of atomic interactions on the condensate’s dynamics.
 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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equation / Bogolubov theory / atomic interactions

Fonctions d’onde, phase relative et interférences pour des condensats de
Bose–Einstein atomiques

Résumé. Dans cet article, nous présentons une discussion pédagogique des propriétés de cohérence
des condensats de Bose–Einstein, en utilisant un formalisme similaire à celui de l’optique
quantique. Dans le cadre de l’approximation variationnelle, nous discutons le problème
de la phase relative de deux condensats. Ensuite, afin d’évaluer les facteurs de structure
d’un condensat, nous présentons rapidement l’approche de Bogolubov et décrivons la
diffusion de lumière par un condensat en utilisant la théorie de la réponse linéaire. Enfin,
nous étudions l’effet des interactions atomiques sur la dynamique du condensat. 2001
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

condensats de Bose–Einstein / ondes de matière / propriétés de cohérence / équation de
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1. Introduction

In quantum mechanics, the wave functionψ(r) of a single particle lies in the 3D-space. If the particle is in
a linear superposition of two states described respectively byψ1(r) andψ2(r), we haveψ(r) = c1ψ1(r)+
c2ψ2(r). Then the probability|ψ(r)|2 to find it in r contains crossed termsc1c∗2ψ1(r)ψ

∗
2(r)+ c.c. leading

Note présentée par Guy LAVAL .

S1296-2147(01)01184-2/FLA
 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés 445



C. Cohen-Tannoudji, C. Robilliard BOSE–EINSTEIN CONDENSATES AND ATOM LASERS

to interference effects. The situation for aN -particle system is more complicated as the general wave
functionψ(r1, . . . ,rN ) is defined in a 3N -D-space and is generally non-factorizable. This means that one
cannot generally associate 3D waves to a system ofN particles because of their entanglement. Considering
the particular case of Bose–Einstein condensates, however, the description can be simplified by introducing
a macroscopic matter wavein the 3D-space, with which the question of the relative phase and of the
interference between two condensates can be investigated.

In the usual symmetry breaking approach, the ‘macroscopic’ matter wave is simply the mean value
ψ(r) = 〈ψ̂(r)〉 of the quantum field operator. To haveψ(r) �= 0, one needs the quantum state of the
system to be a linear superposition of states with different values of the total numberN of bosons. In
other words, the density operatorρ̂ has some off-diagonal elements, which violate the super-selection rules
(see Section 2.2.3).

In this article, we aim at presenting a tutorial discussion of coherence properties of Bose–Einstein
condensates by using more traditional approaches inspired by quantum optics. In particular, they involve
neither symmetry breaking nor coherences〈N |ρ̂|N ′〉 with N �= N ′. In the first part (Section 2), we
introduce a formalism which is similar to second quantization in quantum optics and we recall a few results
about correlation functions.

In the second part (Section 3), we present the variational approach leading to a description of the
condensate in terms of a ‘macroscopic’ matter wave. We then focus on the question of the phase of a
macroscopic matter wave: can one introduce simple quantum states describing two condensates with a
well defined relative phaseθ? Can one introduce two interfering 3D-matter waves? What is the variable
conjugate toθ?

The following part (Section 4) consists of a brief introduction to Bogolubov theory where we study
the simple case of a homogeneous condensate. Section 5 is devoted to the analysis of the probing of a
condensate by light or particle scattering. In particular, we calculate the dynamic and static structure factors
of a condensate both in the variational and Bogolubov approaches. We finally discuss in Section 6 the major
difference between light and matter waves, namely the effect of atomic interactions.

A more detailed study of these questions has been given as aCours du Collège de France. The lecture
notes (in French) are available [1].

2. A few basic results on correlation functions

2.1. Correlation functions for quantum optical fields

In this section, we recall some results concerning correlation functions in quantum optics. For the sake
of simplicity, we ignore the vector character of the field.

2.1.1. Quantum optical fields

Let us consider first a classical fieldE(r, t) = E+(r, t) + E−(r, t) (with E− = (E+)∗). Its positive
frequency componentE+ can be written as:

E+(r, t) =
∑
i

Ei(r)αi(t) (1)

where{Ei(r)} is a complete set of mode functions andαi(t) is the normal variable associated with the
modei. In the absence of sources, the normal variables undergo a decoupled evolutionαi(t) = αi(0) e

−iωit.
In the quantum description of an optical field [2],αi andα∗

i become respectively the annihilation and
creation operatorŝai andâ+i of a photon in the modei. They obey the commutation rule:[

âi, â
+
j

]
= δij (2)
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Using these operators, the quantum field operatorÊ+(r) is written:

Ê+(r) =
∑
i

Ei(r)âi (3)

Let us now consider a few useful examples of quantum radiation fields:
• A single mode fieldis a field with all the modes in the vacuum state (0 photon) except one mode

(labeled mode 1). The field operator then writesÊ+(r) = E1(r)â1. The most general state of the mode
is |ψ〉=

∑
N1

cN1 |N1〉, |N1〉 being the Fock state withN1 photons in the mode 1.
• A two-mode fieldcontains two modes (1 and 2) which are not empty. The field operator is written
Ê+(r) = E1(r)â1 + E2(r)â2 and any state|ψ〉 can be written as a linear superposition of two-mode
Fock states|N1,N2〉: |ψ〉=

∑
N1,N2

cN1N2 |N1,N2〉.
• A coherent state|α1〉 of a single-mode field is an eigenstate of the annihilation operatorâ1 with the

complex eigenvalueα1. Using Fock states|N1〉, one can write [2]:

|α1〉= e−|α1|2/2
∞∑

N1=0

αN1
1√
N1!

|N1〉 (4)

The probabilityP(N1) to haveN1 photons in a coherent state|α1〉 obeys a Poisson lawP(N1) =

e−|α1|2 |α1|2N1/N1! with a mean value〈N̂1〉= |α1|2 and a variance∆N2
1 = |α1|2 = 〈N̂1〉.

The coherent state|α1〉 of a single mode field is the quantum state closest to the classical radiation field
E+(r) described by the normal variableα1. For example:

Ê+(r)|α1〉= E1(r)â1|α1〉= α1E1(r)|α1〉= E+(r)|α1〉 (5)

• Coherent states of multimode fields|{αj}〉 are simply tensorial products of coherent states|αi〉
corresponding to individual modes of the field. Their properties are similar to those for single-mode
fields, and in particular̂E+(r)|{αi}〉= E+(r)|{αi}〉.

• Let us consider astatistical mixture of coherent statesof a single mode field, having the same〈N1〉 =
|α1|2 and a random phase equally distributed between 0 and2π:

ρ̂=
1

2π

∫ 2π

0

dφ1
∣∣|α1| eiφ1

〉〈
|α1| eiφ1

∣∣ (6)

Calculating〈N |ρ̂|N ′〉, one gets:

〈N |ρ̂|N ′〉= 1

2π

∫ 2π

0

dφ1
〈
N
∣∣|α1| eiφ1

〉〈
|α1| eiφ1

∣∣N ′〉= e−|α1|2 |α1|N+N ′

√
N !

√
N ′!

1

2π

∫ 2π

0

dφ1 e
i(N−N ′)φ1

= e−|α1|2 |α1|
2N

N !
δNN ′ (7)

This shows that̂ρ appears equivalently as a statistical mixtureρ̂ =
∑∞

N=0P(N)|N〉〈N | of Fock states
|N〉 with the Poisson distributionP(N) for N .

2.1.2. Correlation functions

We now introduce the correlation functions of a light field. In fact, correlation functions are widely used
in statistical physics, for they allow to study the statistical properties of a field much deeper than with only
its mean value and variance.

The first order correlation functionG(1)(r,r′) = 〈Ê−(r)Ê+(r′)〉 describes spatial correlations between
the fields in two different pointsr and r′. Its classical analogue corresponds to the visibility of the
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interference fringes obtained with two fields originating fromr andr′. Using the Heisenberg picture instead
of the Schrödinger picture, one can also introduceG(1)(r t,r′ t′) = 〈Ê−(rt)Ê+(r′t′)〉 which describes the
dynamics of the correlations.G(1)(rt,r′t′) is simply the quantum generalization of the classical correlation
functionG(1)(r t,r′t′) = E−(rt)E+(r′t′).

The second order correlation function is writtenG(2)(r,r′) = 〈Ê−(r)Ê−(r′)Ê+(r′)Ê+(r)〉. It
corresponds to the probability of detecting one photon inr and another one inr′.

To the third order,G(3)(r,r′,r′′) = 〈Ê−(r)Ê−(r′)Ê−(r′′)Ê+(r′′)Ê+(r′)Ê+(r)〉 is the probability to
detect one photon inr, a second one inr′ and a third one inr′′. All higher order correlation functions are
built similarly.

In some particular cases, the correlation functions have simple expressions:
• For a gaussian field(for instance a thermal field), all correlation functions can be expressed in

terms of products of a certain number ofG(1). More precisely, they are sums of products of all
possible products of onêE− by one Ê+. For instance,G(2)(r,r′) is the sum of the2! = 2 terms
〈Ê−(r)Ê+(r)〉〈Ê−(r′)Ê+(r′)〉 and 〈Ê−(r)Ê+(r′)〉〈Ê−(r′)Ê+(r)〉, while G(3)(r,r′,r′′) contains
3! = 6 terms.

• For a coherent state|{αi}〉, we have seen that̂E+(r)|{αi}〉 = E+(r)|{αi}〉 where E+(r) =∑
j αjEj(r) is the classical field described by the normal variables{αj}. Similarly, 〈{αi}|Ê−(r) =

E−(r)〈{αi}| with (E+)∗ = E−. It follows that:

G(1)(r,r′) = E−(r)E+(r′) (8)

G(2)(r,r′) = E−(r)E−(r′)E+(r′)E+(r) = I(r)I(r′) (9)

G(3)(r,r′,r′′) = I(r)I(r′)I(r′′) (10)

G(2)(r,r′) is thus simply the correlation function of the intensityI(r) = |E+(r)|2. Generally, all
correlation functions of a coherent state|{αi}〉 are equal to the average value of the products of the
corresponding classical fieldsE+ andE−.
It is sometimes useful to introduce normalized correlation functions. The first order normalized

correlation function is written as:

g(1)(r,r′) =
G(1)(r,r′)√

G(1)(r,r)G(1)(r′,r′)
(11)

One can see thatg(1)(r,r) = 1. Generally,|g(1)(r,r′)| decreases from 1 to 0 when|r− r′| increases from
0 to+∞. The characteristic length over which the decrease occurs is thecoherence lengthλc of the field.

Similarly, one can define the normalized second order correlation function as

g(2)(r,r′) =
G(2)(r,r′)

G(1)(r,r)G(1)(r′,r′)
(12)

For a gaussian field,g(2)(r,r′) is rewritten asg(2)(r,r′) = 1 + |g(1)(r,r′)|2. g(2)(r,r′) thus decreases
from 2 to 1 when|r− r′| increases from 0 to∞. This bunching effect is called the Hanbury Brown–Twiss
effect [3] and was observed in the 1950’s by Hanbury Brown and Twiss [4].

For a coherent state by contrast,g(2)(r,r′) = 1 whateverr andr′, which means that a coherent state
exhibits no bunching effect.

The third order normalized correlation function is:

g(3)(r,r′,r′′) =
G(3)(r,r′,r′′)

G(1)(r,r)G(1)(r′,r′)G(1)(r′′,r′′)
(13)
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For a gaussian field,g(3)(r,r,r) = 3! = 6. By contrast,g(3)(r,r′,r′′) = 1 at all points for a coherent state.

2.2. Quantum description of a system ofN identical bosons

2.2.1. Second quantization formalism

In the framework of first quantization, the way to describe a system ofN identical bosons consists of
writing a completely symmetrical wave functionψ(r1,r2, . . . ,rN ) in a 3N -D-space (we ignore the spin to
keep notation simple). The observables of the system are described by symmetric Hermitian operators, for
instance:
• the one-body density (or spatial density)ρ̂I(r) in r is written:

ρ̂I(r) =

N∑
i=1

δ(r̂i − r) (14)

• the two-body densitŷρII(r,r′) can be written:

ρ̂II(r,r
′) =

N∑
i=1

∑
j �=i

δ(r̂i − r)δ(r̂j − r′) (15)

• the interaction energy is then:

V̂int =
1

2

N∑
i=1

∑
j �=i

V (r̂i − r̂j) =
1

2

∫ ∫
d3r d3r′ V (r− r′)ρ̂II(r,r

′) (16)

However, it is more convenient to describe such aN -boson system by using thesecond quantization
formalism, similarly to the usual approach in quantum optics. Given an orthonormal basis of single particle
states{|ψi〉}, one can build a Fock space with a basis{|n1, n2, . . . , ni, . . .〉} characterized by the number
ni of bosons in each individual state|ψi〉. The occupation numbers can take values from 0 toN and obey∑

i ni =N .
One can then define the annihilation and creation operatorsâi andâ+i which respectively annihilate and

create a boson in the state|ψi〉:

âi|ni〉=
√
ni|ni − 1〉 (17)

â+i |ni〉=
√
ni +1|ni + 1〉 (18)

âi|0〉= 0 (19)

where |0〉 is the vacuum state. Equation (18) implies that|ni〉 = ((â+i )
ni/

√
ni!)|0〉. The creation and

annihilation operators follow the commutation relations[âi, â
+
j ] = δij .

By analogy with quantum optics, one can also define field operators

ψ̂(r) =
∑
i

ψi(r)âi (20)

ψ̂ †(r) =
∑
i

ψ∗
i (r)â

+
i (21)

whereψi(r) = 〈r|ψi〉 is the projection of the single state particle onto|r〉.
To understand better the physical meaning of the field operators, we can evaluate the effect ofψ̂ †(r) on

the vacuum:
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ψ̂ †(r)|0〉=
∑
i

ψ∗
i (r)â

+
i |0〉=

∑
i

〈ψi|r〉|ψi〉=
∑
i

|ψi〉〈ψi|r〉

ψ̂ †(r)|0〉= |r〉 (22)

We see that̂ψ †(r) or ψ̂(r) creates or annihilates a boson inr, respectively. In other words,̂ψ(r) and
ψ̂ †(r) are, for the basis{|r〉}, the equivalent of̂ai and â+i for the basis{|ψi〉}. Similarly, they obey the
commutation relations[ψ̂(r), ψ̂ †(r′)] = δ(r− r′).

In second quantization, all symmetric observables can be expressed as products of creation and
annihilation operators:
• one-particle observables such asF̂ =

∑N
i=1 f̂i become:

F̂ =
∑
α

∑
β

〈ψβ |f̂ |ψα〉â+β âα (23)

F̂ =

∫ ∫
d3r d3r′〈r|f̂ |r′〉ψ̂ †(r)ψ̂(r′) (24)

• two-particle observables such asĜ= 1
2

∑N
i=1

∑
j �=i ĝ(i, j) become:

Ĝ=
1

2

∑
α

∑
β

∑
γ

∑
δ

〈ψδ(1)ψγ(2)|ĝ(1,2)|ψβ(2)ψα(1)〉â+δ â
+
γ âβâα (25)

Ĝ=
1

2

∫ ∫ ∫ ∫
d3r d3r′ d3r′′ d3r′′′〈1r′′′,2r′′|ĝ(1,2)|2r′,1r〉ψ̂ †(r′′′)ψ̂ †(r′′)ψ̂(r′)ψ̂(r) (26)

For example, the one- and two-body density operatorsρ̂I(r) andρ̂II(r,r′) are written, in the basis{|r〉}:

ρ̂I(r) = ψ̂ †(r)ψ̂(r) (27)

ρ̂II(r,r
′) = ψ̂ †(r)ψ̂ †(r′)ψ̂(r′)ψ̂(r) (28)

The relation between̂ρI(r) and ρ̂II(r,r
′) can be obtained by using the commutation relations

[ψ̂(r), ψ̂ †(r′)] = δ(r− r′) and[ψ̂(r), ψ̂(r′)] = 0:

ρ̂II(r,r
′) = ρ̂I(r)ρ̂I(r

′)− δ(r− r′)ρ̂I(r) (29)

2.2.2. Correlation functions

The correlation functions of bosonic fields exhibit strong analogies with those of quantum optics.
Correlation functions are the average value of products of bosonic field operators:
• G(1)(r,r′) = 〈ψ̂ †(r)ψ̂(r′)〉 accounts for the spatial coherence betweenr and r′. In particular,
G(1)(r,r) = 〈ψ̂ †(r)ψ̂(r)〉= 〈ρ̂I(r)〉 is the probability of finding a boson inr.

• G(2)(r,r′) = 〈ψ̂ †(r)ψ̂ †(r′)ψ̂(r′)ψ̂(r)〉= 〈ρ̂II(r,r′)〉 represents the probability of finding a boson inr
and another one inr′.

• All higher order correlation functions are deduced similarly. For instance,〈ρ̂I(r′, t′)ρ̂I(r, t)〉 describes
the correlations between the densities of bosons in two different points at two different times.
We want to stress the importance of correlation functions: indeed, most experimental detection signals

can be expressed in terms of correlation functions. For instance, the 3-body collision rate is related to
G(3)(r,r,r), and the visibility of interference fringes is proportional toG(1)(r,r′). We will also see in
Section 5.1 that the spectrum and the total intensity of the light scattered in a given direction is described
by the dynamic and static structure factors which are derived from correlation functions.

Generally, correlation functions are connected with the linear response theory. The response of a system
of N bosons to aweakprobe can indeed be described by alinear susceptibility which is connected to the
correlation function of the unperturbed system through the fluctuation–dissipation theorem [5].
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2.2.3. Superselection rules

For a system of bosonic atoms, all physical observables contain an equal number of creation and
annihilation operators (see, for example, equations (23) and (25)), which means that they do not change the
total numberN of bosons. Unlike photons, bosonic atoms cannot be created or destroyed in an interaction
process.

As a consequence, if one starts with a density operatorρ̂ diagonal inN (〈N |ρ̂|N ′〉 = 0 if N �= N ′), it
remains diagonal at all subsequent times.

Contrary to photons, a linear superposition|ψ〉 =
∑

N cN |N〉 has no physical meaning. This is in
particular the case of coherent states. However, we have seen in Section 2.1.1 that a statistical mixture
of coherent states|α〉 with the same|α| and a phase uniformly distributed over[0,2π[ is also a statistical
mixture of Fock states|N〉. Such a statistical mixture does have a physical meaning for bosonic atoms.

2.3. Calculation of correlation functions in a few simple cases

2.3.1. Perfect gas of bosons in a box

Let us consider a non-interacting gas of bosons of massm in a box of sizeL. An orthonormal basis of
single particle states is made of plane waves with periodic boundary conditions:

ψk(r) =
1

L3/2
eik·r with kx =

2π

L
nx (nx ∈ Z) (30)

The corresponding field operators are written:

ψ̂(r) =
1

L3/2

∑
k

âk e
ik·r and ψ̂ †(r) =

1

L3/2

∑
k

â+k e−ik·r (31)

In the absence of interaction, the Hamiltonian is simply:

Ĥ =
∑

k

εkâ
+
k âk with εk =

�
2k2

2m
(32)

In the grand canonical ensemble [6], the equilibrium density operator is writtenρ̂eq = e−β(Ĥ−µN̂)/ZG

whereβ = 1/(kBT ) is the Boltzmann factor,µ is the chemical potential (µ< 0 for bosons) andZG is the
grand canonical partition function. The translational invariance ofρ̂eq implies that:〈

â+k′ âk

〉
=Tr

(
ρ̂eqâ

+
k′ âk

)
= 〈nk〉δk k′ (33)

where〈nk〉= 〈â+k âk〉 is the mean number of particles in the statek.
One can then calculate the first order correlation functionG(1)(r,r′) of the system:

G(1)(r,r′) = Tr
[
ρ̂eqψ̂

†(r)ψ̂(r′)
]
=

1

L3

∑
k

eik·(r
′−r)

〈
â+k âk

〉
(34)

In equation (34), one can replace the sum overk by an integral, provided that one accounts separately
for the contribution ofk= 0 which would otherwise be omitted (the density of states vanishes fork= 0).
Using 〈

â+k âk

〉
=

z e−βεk

1− z e−βεk
=

∞∑
l=1

zl e−lβεk
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wherez = eβµ is the fugacity, one gets

G(1)(r,r′) =
N0

L3
+

1

(2π)3

∫
d3k eik·(r−r′)

∞∑
l=1

zl e−lβ�
2k2/2m

=
N0

L3
+

1

λ3T

∞∑
l=1

zl

l3/2
exp

(
−π(r− r′)2

lλ2T

)
(35)

with N0 = 〈n0〉 the population of the ground state and

λT =

√
2π�2

mkBT

the thermal de Broglie wavelength. Note thatG(1)(r,r′) only depends on(r− r′), which is a consequence
of the translational invariance of̂ρeq. In particular:

G(1)(r,r) = ρI(r) =
N0

L3
+

1

λ3T

∞∑
l=1

zl

l3/2︸ ︷︷ ︸
=g3/2(z)

=
N

L3
(36)

does not depend onr.
Let us now study the evolution ofG(1)(r− r′) for increasing values ofρ=N/L3 at fixedT .

• For a very dilute gasverifying ρλ3T � 1, we haveN0 �N andz� 1. We can thus neglectN0/L
3 and

useg3/2(z)� z (i.e. keep only the terml = 1 in the sum overl) in equation (36). This yieldsN/L3 �
z/λ3T, i.e.z =Nλ3T/L

3. Making the same approximations in the expression ofG(1) (equation (35)), we
get:

G(1)(r− r′)� z

λ3T
e−π(r−r′)2/λ2

T � N

L3
e−π(r−r′)2/λ2

T (37)

We recover the coherence lengthλT/
√
π of a classical Maxwell–Boltzmann gas (seefigure 1).

• For larger values ofρ still remaining below the critical value,N0 can still be neglected butz is larger and
one has to take into account the contribution of terms withl > 1 in the sum overl. G(1)(r − r′) is then
a sum of gaussian curves with increasing widthsλT/

√
π, λT

√
2/
√
π, λT

√
3/
√
π, . . . The coherence

length thus increases.
• When one reaches the critical regime, one hasz = 1, which corresponds toρcritλ3T =

∑∞
l=1 1/l

3/2 =
2.612. At this point, one can still neglectN0 which has not yet started to increase. Insertingz = 1 in

Figure 1. First order correlation function for a very
dilute gas (ρλ3

T � 1).
Figure 2. First order correlation function for a Bose

condensed gas (ρλ3
T > 1).
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equation (35), one gets:

G
(1)
crit(r− r′) =

1

λ3T

∞∑
l=1

1

l3/2
exp

(
−π(r− r′)2

lλ2T

)
(38)

G
(1)
crit(r− r′) only depends onλT and does not vary with a further increase ofρ at fixedT .

• For ρ > ρcrit, N0 is no longer negligible andz remains equal to 1. We thus have:

G(1)(r,r′) =
N0

L3
+G

(1)
crit(r− r′) (39)

andG(1)(r,r) =N0/L
3 + ρcrit, with ρcrit = (N −N0)/L

3.

Once the critical density is attained, any further increase ofρ increases onlyN0, G(1)
crit remaining

unchanged. This corresponds to an increase of the flat background infigure 2, i.e. to aninfinitecoherence
length. A long range spatial order thus develops for increasing densities at constant temperature.
Let us now study the asymptotic behaviour ofG(1)(r− r′) for s= |r− r′| � λT. Equation (34) clearly

shows thatG(1)(s) is the Fourier transform of〈nk〉. The behaviour ofG(1)(s) at larges is thus determined
by that of〈nk〉 at smallk:

〈nk〉=
z

eβ�2k2/2m − z
�

k→0

z

1− z + β �2k2

2m

�
k→0

z

β�2/2m

1

k2 + k2c
with (40)

k2c =
1− z

β�2/2m
=

4π(1− z)

λ2T
.

This yields:

G(1)(s)∝(s
λT)

exp
(
−s

√
4π(1−z)

λT

)
s

(Yukawa shape) forz < 1

G(1)(s)∝(s
λT) 1/s (Coulomb shape) forz = 1 (41)

Normalized correlation functions are often convenient because they do not depend onN . For a dilute
gas, we haveg(1)(r− r′) = exp(−π(r− r′)2/λ2T) (seefigure 3a). By contrast, in the case of a very dense
gas, the first order normalized correlation function decreases slowly withs towards the asymptotic value
1− ρcrit/ρ (seefigure 3b). This implies that whenρ→∞, g(1)(s)→ 1.

In this paragraph we have made all the calculations in the grand canonical ensemble, where the
mathematics is the simplest. However, in present experiments on Bose–Einstein condensates the total
numberN of bosons is fixed, the canonical ensemble would be more appropriate. Both ensembles lead

Figure 3. Normalized first order correlation function for a very dilute gas (a) and for a Bose condensed gas (b).
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to similar results concerning〈nk〉, henceG(1), which justifies the preceding calculations. By contrast, the
fluctuations of the occupation numbers〈nk〉 can be quite different in the canonical and the grand canonical
ensembles for a degenerate Bose gas [7], so that the grand canonical calculation ofG(2), G(3), . . . is not
reliable outside the regimeN � Ncrit. In the following, we will rather use a Fock state to describe the
condensate and to calculate the correlation functions.

Let us now calculateG(2), G(3), . . . for N � Ncrit, using the grand canonical description. We can
use Wick’s theorem, which applies to a gaussian distribution, hence to a perfect gas in grand canonical
equilibrium [8]: all average values can be expressed as sums of products of average values involving only
two operators (one creation and one annihilation operator). The results obtained forg(2), g(3), . . . are thus
the same as those found in quantum optics for a gaussian field [3]:

g(2)(r,r′) = 1+
∣∣g(1)(r,r′)∣∣2 (42)

g(2)(r,r) = 1+ 1 = 2

g(3)(r,r′,r′′) = 1+
∣∣g(1)(r,r′)∣∣2 + ∣∣g(1)(r′,r′′)

∣∣2 + ∣∣g(1)(r′′,r)
∣∣2

+ 2Re
[
g(1)(r,r′)g(1)(r′,r′′)g(1)(r′′,r)

]
(43)

g(3)(r,r,r) = 3! = 6

2.3.2. N non-interacting bosons in the ground state of a trap

Let us consider a basis of individual states{ψi(r)} including the ground stateψ1(r) of the trap. The
state of the system can be described by the Fock state|N〉= |n1 =N, ni = 0 if i �= 1〉. The field operators
are written:

ψ̂(r) = ψ1(r)â1 +
∑
i�=1

ψi(r)âi (44)

ψ̂ †(r) = ψ∗
1(r)â

+
1 +

∑
i�=1

ψ∗
i (r)â

+
i (45)

Becausêai with i �= 1 commutes withâ1 and â+1 and becausêai|0i〉 = 0, we can use simplified
expressions of̂ψ andψ̂ † to calculate the average value of normally ordered field operators:

ψ̂(r) = ψ1(r)â1 and ψ̂ †(r) = ψ∗
1(r)â

+
1 (46)

We can then write the field correlation functions:
• First order correlation function:

G(1)(r,r′) = ψ∗
1(r)ψ1(r

′)〈N |â+1 â1|N〉=Nψ∗
1(r)ψ1(r

′) (47)

• Second order correlation function:

G(2)(r,r′) = ψ∗
1(r)ψ

∗
1(r

′)ψ1(r
′)ψ1(r) 〈N |â+1 â+1 â1â1|N〉︸ ︷︷ ︸

=N(N−1)

G(2)(r,r′) =N(N − 1)
∣∣ψ1(r)

∣∣2∣∣ψ1(r
′)
∣∣2 (48)

The normalized second order correlation function is written:

g(2)(r,r′) =
N(N − 1)

N2
= 1− 1

N
� 1 if N � 1 (49)
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• Third order correlation function:

G(3)(r,r′,r′′) = ψ∗
1(r)ψ

∗
1(r

′)ψ∗
1(r

′′)ψ1(r
′′)ψ1(r

′)ψ1(r) 〈N |â+1 â+1 â+1 â1â1â1|N〉︸ ︷︷ ︸
=N(N−1)(N−2)

G(3)(r,r′,r′′) =N(N − 1)(N − 2)
∣∣ψ1(r)

∣∣2∣∣ψ1(r
′)
∣∣2∣∣ψ1(r

′′)
∣∣2 (50)

This yields for the normalized third order correlation function:

g(3)(r,r′,r′′) =
N(N − 1)(N − 2)

N3
=

(
1− 1

N

)(
1− 2

N

)
(51)

� 1 if N � 1 (52)

• Similarly to what we have calculated in equations (47), (48) and (50), all correlation functionsG(k)

with k � N of a single mode Fock state|n1 = N, ni = 0 if i �= 1〉 are equal to a product of2k
functions, namelyk functions

√
Nψ1 andk functions

√
Nψ∗

1 . We thus recover the same factorization as
for a coherent state|α〉 of the ‘mode’ψ1 with α =

√
N (see Section 2.1.2). Consequently, as shown in

equations (49) and (51), all normalized correlation functionsg(k) with k�N are equal to 1.

3. ‘Macroscopic’ matter waves

In this section, we first introduce the ‘macroscopic’ matter wave concept in the framework of the
variational approximation. We then use it to study the coherence properties of a single Bose–Einstein
condensate and the question of the relative phase between two separate condensates.

3.1. Variational approximation

3.1.1. The Gross–Pitaevskii equation

Let us considerN identical bosons in a trap described by a potentialVext. ForT � TC they all condense
in the ground state of the Hamiltonian:

Ĥ =

N∑
i=1

[
p̂2i
2m

+ Vext(r̂i)

]
+

1

2

N∑
i=1

∑
j �=i

V (r̂ij) (53)

whereV (r̂ij) = V (|r̂i− r̂j |) is the interaction potential between pairs of bosons. At very low temperatures,
namely when the de Broglie wavelengthλT becomes much larger than the range ofV (r̂ij), only s-wave
scattering between pairs of bosons remains significant, and we can approximateV (r̂ij) by:

V (r̂ij) = gδ
(
|r̂i − r̂j |

)
with g =

4π�
2

m
a (54)

wherea is the scattering length.
Generally, the ground state of̂H cannot be determined exactly. In the absence of interactions however,

it is a product state: all the bosons are in the ground state of the single particle Hamiltonianĥ =
p̂2/2m+ Vext(r). In the presence of weak interactions, one can still approximate the ground state ofĤ by
a product state:

|ψg〉=
∣∣ψ(1)〉 · · · ∣∣ψ(i)〉 · · · ∣∣ψ(N)

〉
(55)
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where all the bosons are in the same state|ψ〉. Obviously,|ψg〉 is completely symmetric. Contrary to the
non-interacting case,|ψ〉 is no longer the ground state ofĥ but has to be determined as the one minimizing:

〈ψg|Ĥ |ψg〉
〈ψg|ψg〉

Let us first calculate〈ψg|Ĥ |ψg〉:

〈ψg|Ĥ |ψg〉=N

∫
d3rψ∗(r)

[
− �

2

2m
∆+ Vext

]
ψ(r)

+
N(N − 1)

2

∫ ∫
d3r d3r′ψ∗(r)ψ∗(r′)V

(
|r− r′|

)
ψ(r′)ψ(r) (56)

We now look for the minimum of〈ψg|Ĥ |ψg〉 with 〈ψg|ψg〉 = 1 fixed. Becauseψ is a priori a complex
number, we can consider the variationsδψ andδψ∗ of ψ andψ∗ respectively as independent. Using the
method of Lagrange multipliers, the approximate ground state|ψg〉 has to satisfy:

δ
[
〈ψg|Ĥ |ψg〉

]
− λδ〈ψg|ψg〉= 0 (57)

whereλ is the Lagrange multiplier associated with the constraint〈ψg|ψg〉= 1.
Inserting the expression (56) of〈ψg|Ĥ |ψg〉 in equation (57) and cancelling the coefficient ofδψ∗ yields:[

− �
2

2m
∆+ Vext(r)

]
ψ(r) + (N − 1)

[∫
d3r′ V

(
|r− r′|

)∣∣ψ(r′)
∣∣2]ψ(r) = λψ(r) (58)

We recover the Gross–Pitaevskii equation [9,10], which has a straightforward interpretation: each boson
evolves in the external potentialVext and in themean-fieldpotential produced by the(N − 1) other bosons.

Let us now try and find an interpretation for the parameterλwhich was introduced formally as a Lagrange
multiplier. After multiplying equation (58) byψ∗(r) and integrating overr, one gets:

λ=

∫
d3rψ∗(r)

[
− �

2

2m
∆+ Vext(r)

]
ψ(r)

+ (N − 1)︸ ︷︷ ︸
�N

∫ ∫
d3r d3r′ψ∗(r)ψ∗(r′)V

(
|r− r′|

)
ψ(r′)ψ(r) (59)

λ� ∂

∂N
〈ψg|Ĥ |ψg〉=

d

dN
〈ψg|Ĥ |ψg〉 −

δ〈ψg|Ĥ |ψg〉
δψ︸ ︷︷ ︸
=0

∂ψ

∂N
(60)

λ= d
dN 〈ψg|Ĥ |ψg〉 thus represents the chemical potential which was previously notedµ.

We can simplify equation (58) by replacingV (r− r′) by gδ(r− r′) (equation (54)). This gives[
− �

2

2m
∆+ Vext(r)

]
ψ(r) + (N − 1)g

∣∣ψ(r)∣∣2ψ(r) = µψ(r) (61)

This equation is analogous to the one found in non-linear optics for the light field. One can thus generalize
to matter waves some effects well known in non-linear optics such as four-wave mixing [11], solitons [12],
etc.

The ground state energy is generally the sum of three contributions:
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(i) the kinetic energyEkin =N
∫
d3rψ∗(r)(−�

2/(2m))∆ψ(r),
(ii) the ‘trapping energy’Eext =N

∫
d3r|ψ(r)|2Vext(r),

(iii) the interaction energyEint =
1
2N(N − 1)g

∫
d3r|ψ(r)|4.

For a homogeneous condensate in a box of sizeL, the wave functionψ = 1/L3/2 is uniform and the only
remaining contribution comes from the mean-field interaction energyEint � 1

2gρN .

3.1.2. Macroscopic matter waves

We consider here a basis{|ψi〉} of single particle states including the solutionψ1 of the Gross–Pitaevskii
equation.ψ1 is generally real (ψ∗

1 = ψ1). In the variational description of the condensate atT = 0, the
quantum state of the system is the Fock state|N〉= |n1 =N,ni = 0 if i �= 1〉.

We have seen in Section 2.3.2 that for a Fock state, all the correlation functionsG(1), . . . ,G(k) with
k � N are products of2,4, . . . ,2k functions

√
Nψ1. This is very similar to the situation of coherent

optical fields (also calledquasi-classicalfields) for which the correlation functions are products of classical
fields (see Section 2.1.2).

In the following, we associate to the condensate a macroscopic (or ‘giant’) matter wave
√
Nψ1(r). Note

however that this macroscopic matter wave description fails when the variational approximation is no longer
valid.

3.2. Coherence properties of a Bose–Einstein condensate

3.2.1. Coherence length of a trapped condensate

The coherence length of the condensate is the characteristic length over which the first order correlation
functionG(1)(r,r′) decreases. In the macroscopic matter wave description, we have:

G(1)(r,r′) =Nψ1(r)ψ1(r
′) (62)

This shows thatG(1)(r,r′) vanishes when|r−r′| becomes larger than the spatial extentσ0 of ψ1(r). For a
non-interacting condensate in a harmonic trap with frequencyω0, the coherence length of the condensate is
equal to the widthσ0 =

√
�/mω0 of the ground state of the trap. In the presence of repulsive interactions,

which correspond to a positive scattering lengtha, the size of the condensate increases.
To have a better insight, we now compare the different length scales of the problem, namely the de

Broglie wavelengthλT =
√
2π�2/(mkBT ), the size of the thermal cloud∆r �

√
kBT/(mω2

0) and the
size of the trap ground stateσ0 =

√
�/(mω0). In the situation considered here, we have�ω0 � kBT ,

which yields:

λT � σ0 �∆r (63)

This equation shows that there is a long range order associated with the condensate. It also reminds us
that the spatial extension of the trap is finite, so thatG(1)(r,r′) depends onr andr′ and not only onr−r′.
We thus have to define the coherence lengthλc of the condensate more precisely than we have done with
equation (62).

Theglobalspatial coherenceG(a) is given by the sum of all spatial coherences between pairs of points
(r,r+a) separated bya:

G(a) =

∫
d3rG(1)(r,r+ a) (64)

The coherence length is then defined as the characteristic decay length ofG(a) when|a| increases from
0 to+∞.
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In fact, there is a simple relationship between the global spatial coherenceG(a) and the momentum
distributionP(p) of the gas:

G(a) =N

∫
d3r 〈r|ψ1〉〈ψ1|r+ a〉=N

∫ ∫ ∫
d3r d3pd3p′ 〈r|p〉〈p|ψ1〉〈ψ1|p′〉〈p′|r+ a〉 (65)

Since〈r|p〉= eip·r/�/(2π�)3/2, integrating overr yields:∫
d3r〈r |p〉〈p′|r+a〉= 1

(2π�)3
e−ip′·a/�

∫
d3r ei(p−p′)·r/� = e−ip′·a/�δ(p− p′) (66)

Using equation (66), equation (65) transforms into:

G(a) =

∫
d3p e−ip·a/�N〈p|ψ1〉〈ψ1|p〉︸ ︷︷ ︸

=P(p)

(67)

G(a) is thus simply the Fourier transform ofP(p).

3.2.2. A few experimental tests of spatial coherence

In this paragraph, we present a few recent experimental measurements of the coherence length of a
condensate.
• Determination ofP(p) by Bragg spectroscopy[13]. This experiment, performed at MIT, is based on

a velocity-selective two-photon transition coupling two states with the same internal quantum numbers
but with different momenta. From the spectrum obtained by sweeping the frequency difference between
the two counter-propagating beams, one can derive the momentum distributionP(p) and in particular
its width ∆p. The value of∆p measured by J. Stenger et al. is consistent with the Heisenberg limit
∆p� �/σ0, whereσ0 is the spatial width of the solutionψ1 of the Gross–Pitaevskii equation [13]. This
shows that the coherence length of the condensate is equal to its spatial extent and that there is a single
phase throughout the condensate.

• Direct measurement ofG(a) [14]. The NIST experiment is a ‘self-interference’ experiment: a pair of
short pulses of stationary wave creates two copies of the condensate separated bya. An absorption
imaging technique allows one to measure the overlap integral of the two copies as they interfere. From
the decay time of the interference fringes, E. Hagley et al. also find that the phase of the condensate is
uniform [14], which amounts to saying that the coherence length of the condensate is equal to its spatial
extent.

• Interference of two matter waves extracted from two different points of the condensate[15]. The method
used by the Munich group to extract a matter wave from their condensate consists of a position-selective
output-coupler using a continuous RF wave. Using two RF waves with different frequencies, one couples
out two matter waves from two different pointsr andr′ = r+a of the condensate. The visibility of the
interference fringes between these matter waves is directly related to the first order correlation function
G(1)(r,r′). I. Bloch et al. have studied the evolution ofG(1)(r,r′) across the phase transition and have
found clear evidence that the coherence length of the gas changes fromλc = λT whenT > Tc toλc � σ0
whenT < Tc.

Higher order correlation functions have also been investigated experimentally.

• In particular, the measurement of the mean interaction energy〈V̂int〉 of the condensate [16,17] yields
some information about thesecond order correlation functiong(2)(r,r) [18]. Indeed, the mean
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interaction energy is equal to:

〈
V̂int

〉
=

1

2

∫ ∫
d3r d3r′ V

(
|r− r′|

)
G(2)(r,r′) (68)

Replacing V (|r − r′|) by its approximate form4π�
2aδ(r − r′)/m (equation (54)) and using

equation (12), one gets: 〈
V̂int

〉
=

2π�
2

m
a

∫
d3r

[
ρI(r)

]2
g(2)(r,r) (69)

We have already calculatedg(2)(r,r) in the cases of a thermal field and of a Fock state (see Section 2.1.2
and equation (49), respectively):

g(2)(r,r) = 2 for a thermal cloud (70)

g(2)(r,r)� 1 for a Fock state (71)

The measured values of〈V̂int〉 are consistent withg(2)(r,r) = 1 but excludeg(2)(r,r) = 2. This means
that the transition to Bose–Einstein condensation is associated with a strong suppression of density
fluctuations.

• The three-body collision loss rate is proportional to the probability to have three bosons very close to each
other and thus to thethird order correlation functionG(3)(r,r,r) = [ρI(r)]

3g(3)(r,r,r). As seen in
Section 2.1.2 and in equation (51), respectively,g(3)(r,r,r) is equal to 6 for a thermal cloud and to 1 for
a Fock state. The measurement of the three-body loss rate was performed by the JILA group [19]. After
an appropriate normalization to account for the variation of the one-body density from one experiment
to the other, the three-body loss rate is found to be 7.4 (2.6) times smaller for a condensate than for an
ultracold thermal cloud.

3.3. Relative phase between two Bose–Einstein condensates

In this section, we assume that we have two well separated condensates, i.e. two condensates in two
different traps centered inr1 andr2, respectively. The solutions of the Gross–Pitaevskii equation for each
trap are denotedψ1 andψ2, respectively, and for the sake of simplicity we assume〈ψ1|ψ2〉= 0 as well as
ψ1(r2) = ψ2(r1) = 0.

We take a basis{|ψi〉} of individual states including|ψ1〉 and|ψ2〉. In our case, the only relevant basis
states in the Fock space are|n1, n2, ni = 0 for i �= 1,2〉. In the following, we simplify the notation by
omittingni for i �= 1,2. We finally impose that the total number of bosonsN = n1 + n2 is fixed.

3.3.1. Phase states

We now try to find a quantum state describing the two condensates with a well defined relative phaseθ.
Such a state must exhibit a spatial coherence between two points situated one in each condensate, for
instance betweenr1 andr2:

G(1)(r1,r2) =
〈
ψ̂ †(r1)ψ̂(r2)

〉
�= 0 (72)

As all modesi �= 1,2 are empty, we can, when computing normally ordered products of field operators,
replaceψ̂(r) andψ̂ †(r) by:

ψ̂(r) = ψ1(r)â1 + ψ2(r)â2 (73)

ψ̂ †(r) = ψ∗
1(r)â

+
1 + ψ∗

2(r)â
+
2 (74)

Becauseψ1(r2) = ψ2(r1) = 0, we have

ψ̂(r1) = ψ1(r1)â1 and ψ̂(r2) = ψ2(r2)â2 (75)
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The simplest idea would be to consider Fock states|n1, n2〉. Let us calculate the first order correlation
function in(r1,r2):

G(1)(r1,r2) = 〈n1, n2|ψ̂ †(r1)ψ̂(r2)|n1, n2〉= ψ∗
1(r1)ψ2(r2)〈n1, n2|â+1 â2|n1, n2〉

= ψ∗
1(r1)ψ2(r2)

√
n2(n1 + 1)〈n1, n2|n1 + 1, n2 − 1〉

G(1)(r1,r2) = 0 (76)

The absence of any spatial coherence between two separated condensates in a state|n1, n2〉 shows that two
condensates in Fock states do not possess a well defined relative phase.

Another idea consists of taking allN bosons in the same linear combination ofψ1 andψ2:

|η1, η2, θ〉= η1|ψ1〉+ η2 e
−iθ|ψ2〉 (77)

whereη1, η2 are real and verifyη21 + η22 = 1, andθ is the relative phase between the two condensates.
We now study the properties of such states, called phase states. In the following, we use the simplified

expression|N,θ〉 for the phase state|N,η1, η2, θ〉 corresponding toN bosons in the state|η1, η2, θ〉. To
find the expression of|N,θ〉, we introduce the creation operatorâ+η1 η2 θ

of a boson in the state|η1, η2, θ〉:

â+η1 η2 θ
= η1â

+
1 + η2 e

−iθâ+2 (78)

We have:

|N,θ〉= 1√
N !

[
â+η1 η2 θ

]N |0〉= 1√
N !

[
η1â

+
1 + η2 e

−iθâ+2
]N |0〉

=
1√
N !

N∑
n1=0

n2=N−n1

N !

n1!n2!
ηn1
1 ηn2

2 e−in2θ (â+1 )
n1(â+2 )

n2 |0〉︸ ︷︷ ︸
=
√
n1!

√
n2!|n1,n2〉

|N,θ〉=
N∑

n1=0
n2=N−n1

√
N !

n1!n2!
ηn1
1 ηn2

2 e−in2θ|n1, n2〉 (79)

A phase state appears as a linear superposition of Fock states|n1, n2〉 with n1+n2 =N fixed. Equation
(79) shows that a phase state is not a product of one state of ‘mode’ 1 by one of ‘mode’ 2, but exhibits some
quantum correlations between the two condensates. Let us now study the distribution ofn1 andn2:

P(n1) =
N !

n1!n2!
η2n1

1 η2n2

2 with

{
η22 = 1− η21
n2 =N − n1

(80)

The distribution ofn1 is thus a binomial distribution, with the standard results:{
n1 =Nη21 and n2 =Nη22 =N − n1

(∆n1)
2 =Nη21(1− η21) =Nη21η

2
2 = (∆n2)

2
(81)

To characterize the phase state|N,θ〉, it is also interesting to study the distribution ofn = n1 − n2,
which can take values from−N to N by steps of 2. Its mean value isn= n1 − n2, while its dispersion is
∆n= 2∆n1 = 2

√
Nη1η2. The dispersion ofn in a phase state is thus large in absolute value, but remains

small compared toN .
The entanglement of the two condensates in a phase state appears in the density matrixρ̂= |N,θ〉〈N,θ|

as off-diagonal elements coupling states with different values ofn = n1 − n2. The extent of this off-
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diagonality inn is of the order of
√
N . By contrast, the reduced density matrixρ̂(1) of the condensate

1 contains only diagonal elements. Indeed:

ρ̂(1) =Tr2 |N,θ〉〈N,θ|=
∑
n2

〈n2|N,θ〉〈N,θ|n2〉=
∑
n1

N !

n1!(N − n1)!
η2n1
1 η

2(N−n1)
2 |n1〉〈n1|

ρ̂(1) =
∑
n1

P(n1)|n1〉〈n1| with P(n1) =
N !

n1!(N − n1)!
η2n1
1 η

2(N−n1)
2 (82)

Similarly, the condensate 2 considered individually is represented by a statistical mixture of Fock states
|n2〉 with a binomial distribution forn2.

What do the correlation functions of a phase state look like? Let us calculate for instanceG(2)(r,r′) =

〈N,θ|ψ̂ †(r)ψ̂ †(r′)ψ̂(r′)ψ̂(r)|N,θ〉.
We first calculate:

ψ̂(r)|N,θ〉= 1√
N !

ψ̂(r)
(
â+η1 η2 θ

)N |0〉= 1√
N !

[
ψ̂(r),

(
â+η1 η2 θ

)N]
|0〉 (83)

where we have used̂ψ(r)|0〉= 0. The commutator of equation (83) can be expressed in a more convenient
form by using the properties of the creation and annihilation operators:[

ψ̂(r),
(
â+η1 η2 θ

)N]
=
[
ψ1(r)â1 + ψ2(r)â2,

(
η1â

+
1 + η2 e

−iθâ+2
)N]

=

(
ψ1(r)

∂

∂â+1
+ ψ2(r)

∂

∂â+2

)(
η1â

+
1 + η2 e

−iθâ+2
)N

=N
(
η1ψ1(r) + η2 e

−iθψ2(r)
)(
η1â

+
1 + η2 e

−iθâ+2
)N−1[

ψ̂(r),
(
â+η1 η2 θ

)N]
=N

(
η1ψ1(r) + η2 e

−iθψ2(r)
)(
â+η1 η2 θ

)N−1
(84)

Inserting this expression into equation (83) leads to:

ψ̂(r)|N,θ〉= N√
N !

(
η1ψ1(r) + η2 e

−iθψ2(r)
)(
â+η1 η2 θ

)N−1|0〉

=
√
N
[
η1ψ1(r) + η2 e

−iθψ2(r)
]
|N − 1, θ〉 (85)

Similar calculations give:

ψ̂(r′)ψ̂(r)|N,θ〉=
√
N
√
N − 1

[
η1ψ1(r

′) + η2 e
−iθψ2(r

′)
][
η1ψ1(r) + η2 e

−iθψ2(r)
]
|N − 2, θ〉 (86)

Finally, using equation (86) with
√
N(N − 1)�

√
N2 =N , one gets:

G(2)(r,r′) = ψ∗(r)ψ∗(r′)ψ(r′)ψ(r) where (87)

ψ(r) = η1
√
N︸ ︷︷ ︸

√
n1

ψ1(r) + η2
√
N︸ ︷︷ ︸

√
n2

e−iθψ2(r) (88)

The generalization to all correlation functionsG(k) with k�N is straightforward: they all factorize in
products of2k functionsψ andψ∗. We can thus conclude that two interfering macroscopic matter waves√
n1ψ1(r) and

√
n2ψ2(r) e

−iθ can be associated with two condensates in a phase state.
Note that the phase states we have studied in this paragraph are a particular kind of quantum states

with a well defined relative phase between the two condensates. One can think of other quantum states
leading to similar results, for instance a statistical mixture of products of coherent states of the two
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modes|α1 =
√
n1 e

iθ1〉 ⊗ |α2 =
√
n2 e

iθ2〉 with θ2 = θ1 − θ andθ1 uniformly distributed in[0,2π[ . The
corresponding density operator is written [20]:

ρ̂=
1

2π

∫ 2π

0

dθ1
∣∣√n1 eiθ1〉⊗ ∣∣√n2 ei(θ1−θ)

〉〈√
n1 e

iθ1
∣∣⊗ 〈√

n2 e
i(θ1−θ)

∣∣ (89)

with n1, n2 andθ fixed. One can show that̂ρ is diagonal inN and can be rewritten as a statistical mixture
of phase states|N,θ〉 with θ fixed andN distributed in an interval of size

√
N aroundN .

We now want to address the question of the conjugate variable of the relative phaseθ. We consider a
statistical mixture of phase states|N,θ〉 with N fixed andθ distributed according to a distributionW (θ):

ρ̂=

∫ 2π

0

dθW (θ)|N,θ〉〈N,θ| (90)

Developingρ̂ over the basis of the Fock states|n1, n2〉 (see equation (79)) yields:

ρ̂=

N∑
n1=0

N∑
n′

1=0

√
N !

n1!n2!

√
N !

n′
1!n

′
2!
η
n1+n

′
1

1 η
n2+n

′
2

2

[∫ 2π

0

dθW (θ) ei(n
′
2−n2)θ

]
|n1, n2〉

〈
n′
1, n

′
2

∣∣ (91)

If one notices thatN = n1+n2 = n′
1+n′

2 impliesn′
2−n2 = n1−n′

1 and thusn−n′ = n1−n2−(n′
1−n′

2)
= 2(n′

2 − n2), the integral in equation (91) can be rewritten:

I =

∫ 2π

0

dθW (θ) ei(n
′
2−n2)θ =

∫ 2π

0

dθW (θ) ei(n−n′)θ/2 (92)

Equation (92) shows that the integralI multiplying the off-diagonal elements of̂ρ between two states
with different values ofn= n1−n2 is all the smaller as the phase distributionW (θ) is broad. In particular,
if W (θ) = 1/2π is flat, the integral overθ gives a delta functionδnn′ andρ̂ is diagonal, not only inN , but
also inn= n1 − n2 which thus appears as the conjugate variable of the relative phaseθ.

3.3.2. Emergence of a relative phase as a result of detection processes

Generally, two independent condensates do not find themselves in a state with a well-defined relative
phase, but rather in a product of Fock states|N1,N2〉 = |N1〉 ⊗ |N2〉. Such a state corresponds to a zero
dispersion onn= n1 − n2, and thus to a totally undefined relative phase.

However, the detection processes induce a dispersion onn, so that the relative phase of the two
condensates becomes better and better known. Indeed, the first detected boson can come either from mode 1
or from mode 2. After this detection, the state vector becomes:

|ψ〉= α|N1 − 1,N2〉+ β|N1,N2 − 1〉 (93)

whereα andβ are coefficients depending on the position of the first detected boson.
Similarly, the second detection process changes the state vector into:

|ψ〉= λ|N1 − 2,N2〉+ µ|N1 − 1,N2 − 1〉+ ν|N1,N2 − 2〉 (94)

The off-diagonality ofρ̂= |ψ〉〈ψ| in n= n1 − n2 increases with the number of detected bosons and a
relative phaseθ builds up. Note thatθ is an unpredictable random variable and takes different values from
one experimental realization to the other.
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More precisely, the emergence of a relative phase between two condensates has been studied analytically
by Y. Castin and J. Dalibard [21] and numerically by J. Javanainen and S.M. Yoo [22] as well as by the
groups of P. Zoller [20] and of D.F. Walls [23].

4. Beyond the variational approximation

In Section 3, we have described the condensate within the variational approximation. This approach gives
an approximate expression only for the ground state, but does not yield any information about the excited
states or the elementary excitations. Besides, one may wonder if the approximation of the ground state by
a product state is sufficient, and what the first corrections to this treatment are. Indeed, the interpretation of
some physical effects requires to go beyond the product state description, as we will see in Section 5 for
the total intensity of the light scattered by a condensate.

In this paragraph, we briefly review the Bogolubov treatment [24] for a homogeneous condensate, which
gives analytical results (see also [6], Chapter 19). This approach can be extended to a gas of bosons in a
trap [25].

The Bogolubov approach gives accurate results whenT � Tc andρa3 � 1, with ρ the spatial density
anda the scattering length. Let us first write the second quantized HamiltonianĤ , using the field operators
ψ̂ andψ̂ † for a gas of bosons in a box of sizeL (see equation (31)):

Ĥ =
∑

k

εkâ
+
k âk + V̂int with (95)

εk =
�
2k2

2m
and V̂int =

1

2

∫ ∫
d3r d3r′ ψ̂ †(r)ψ̂ †(r′)V

(
|r− r′|

)
ψ̂(r′)ψ̂(r)

If one uses the approximate expression of the interaction potentialV (|r − r′|) = gδ(r − r′) with g =
4π�

2a/m, one can write:

V̂int =
g

2L3

∑
k1,k2,k

â+k1
â+k2

âk2+kâk1−k (96)

We now use the fact that forT � Tc the bosons are essentially condensed ink = 0, i.e. 〈â+0 â0〉 �∑
k �=0〈â

+
k âk〉. One can transform the Hamiltonian̂H into an approximate Hamiltonian̂Heff by neglecting

all terms ofĤ that contain more than two operatorsâk or â+k with k �= 0 and by replacinĝa0 and â+0
by

√
N .

A special treatment has to be applied to the termâ+0 â
+
0 â0â0 in order to take into account first order terms

of the formnk = â+k âk (with k �= 0):

â+0 â
+
0 â0â0 = â+0

(
â0â

+
0 − 1

)
â0 =

(
â+0 â0

)2 − â+0 â0 =

(
N −

∑
k �=0

â+k âk

)2

−
(
N −

∑
k �=0

â+k âk

)
�N(N − 1)− (2N − 1)

∑
k�=0

â+k âk

â+0 â
+
0 â0â0 �N2 − 2N

∑
k �=0

â+k âk (97)

Finally, usingN/L3 = ρ, one gets:

Ĥeff =
1

2
gρN +

∑
k

εkâ
+
k âk +

1

2
gρ

∑
k �=0

[
â+k âk + â+−kâ−k + â+k â

+
−k + âkâ−k

]
(98)
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A rapid inspection ofĤeff shows that this Hamiltonian conserves the total momentum. It is a quadratic
function of â+k andâk and can therefore be diagonalized by introducing normal modes.

To find these modes, let us write the Heisenberg equation forâk:

i� ˙̂ak =
[
âk, Ĥeff

]
=
∂Ĥeff

∂â+k
, i� ˙̂ak = (εk + gρ)âk + gρâ+−k (99)

As the evolution of̂ak is coupled tôa+−k, we also calculatė̂a
+

−k:

i� ˙̂a
+

−k =
[
â+−k, Ĥeff

]
=−∂Ĥeff

∂â−k
, i� ˙̂a

+

−k =−(εk + gρ)â+−k − gρâk (100)

Equations (99) and (100) define a closed linear system of equations forâk andâ+−k. As a consequence,
there are two linear combinations ofâk andâ+−k which evolve independently from each other at frequencies
ω(k) given by the eigenvalues±ω(k) of the matrix:

1

�

(
εk + gρ gρ
−gρ −(εk + gρ)

)
(101)

One finds:

�ω(k) =
√
εk(εk +2gρ) =

√
�2k2

2m

(
�2k2

2m
+ 2gρ

)
(102)

Let us now write explicitly the eigenvectorsb̂k andb̂+−k of the linear system of equations (99) and (100):

b̂k = ukâk + vkâ
+
−k and b̂+−k = vkâk + ukâ

+
−k (103)

whereuk andvk (which are real and depend only onk = |k|) are normalized to ensure[b̂k, b̂
+
k ] = 1. This

condition yieldsu2k − v2k = 1, which allows one to write:

uk = coshθk and vk = sinhθk (104)

Diagonalizing the matrix (101), one gets:

tanh2θk =
ρg

εk + ρg
(105)

The system of equation (103) can be inverted, which gives:

âk = coshθk b̂k − sinh θk b̂
+
−k (106)

â+−k =− sinhθk b̂k + coshθk b̂
+
−k (107)

We now write and study the effective Hamiltonian̂Heff in terms of̂bk andb̂+k . Inserting equations (106)
and (107) into (98) and using (105), one gets:

Ĥeff =E0 +
∑

k

�ω(k)b̂+k b̂k (108)
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• The operatorŝb+k andb̂k respectively create and annihilate an elementary excitation of the system with
an energy�ω(k). The dispersion relation (see equation (102)):

�ω(k) =

√
�2k2

2m

(
�2k2

2m
+ 2gρ

)
can be simplified by introducing a wave vectork0 defined by

gρ=
4π�

2

m
aρ=

�
2k20
2m

The wave vectork0 =
√
8πaρ is associated with a lengthξ0 calledhealing length:

ξ0 =
1

k0
=

1√
8πaρ

(109)

Equation (102) can then be written:

ω(k) =
�

2m

√
k2(k2 + 2k20) (110)

– Fork� k0, equation (110) gives a phonon type spectrumω(k) = ck where:

c=
1√
2

�k0
m

=

√
gρ

m
=

√
µ

m
(111)

andµ= gρ is the chemical potential.
– Fork� k0, the spectrum resembles a free particle spectrum but for a constant offset:

ω(k) =
�k2

2m
+

�k20
2m

=
�k2

2m
+
gρ

�

We show infigure 4the dispersion relation for the elementary excitations in the Bogolubov theory.
• The ground state energyE0 of the system can be calculated as:

E0 =
1

2
gρN +

∑
k

εkv
2
k +

∑
k �=0

gρ
(
v2k − ukvk

)
(112)

Figure 4. Dispersion relation for the elementary excitations
in the Bogolubov approach. At lowk the spectrum is linear
(ω(k) = ck), while at largek it is similar to a free particle

spectrum with a constant correctiongρ/�.
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However, the approximation of the interaction potentialV̂int by aδ-function leads to a divergence of the
sum overk in equation (112). A regularized expression of the approximate interaction potential has to
be used to overcome this difficulty (see [6], Chapter 13). One then gets ([6], Section 19.4):

E0

N
=

1

2
gρ

[
1 +

128

15
√
π
(ρa3)1/2

]
(113)

• It is also interesting to have a physical insight into the ground state|φ0〉 of the system in the Bogolubov
theory.|φ0〉 must verify b̂k|φ0〉 = 0 for all k �= 0. The expression for̂bk is given by equation (103).
However, one should pay attention to the fact thatb̂+k and b̂k respectively create and annihilate an
elementary excitation, but should conserve the total numberN of particles. By replacinĝa+0 and â0

by
√
N , we have lost the explicit conservation ofN . To overcome this difficulty, we use an improved

expression for̂b+k andb̂k, namely:

b̂+k = coshθk â
+
k

â0√
N

+ sinh θk
â+0√
N
â−k (114)

b̂k = coshθk
â+0√
N
âk + sinhθk â

+
−k

â0√
N

(115)

Using the expression (115) forb̂k, the ground state|φ0〉 has to verify:

b̂k|φ0〉=
1√
N

[
coshθk â

+
0 âk + sinh θk â

+
−kâ0

]
|φ0〉= 0 ∀k �= 0 (116)

To go further, we assume a ground state|φ0〉 of the form:

|φ0〉= α|n0 =N,0,0, . . .〉+
∑
k �=0

βk|n0 =N − 2, nk = 1, n−k = 1,0, . . .〉+ · · · (117)

In this expression, the terms|n0 = N − 2, nk = 1, n−k = 1,0, . . .〉 correspond to the virtual excitation
of pairs of particles+k,−k when two particles withk = 0 interact, with conservation of the total
momentum. Note that the structure of the ground state written in equation (117) can be deduced from a
general expression, using the condition (116) (see [6], Section 19.4).
Inserting equation (117) into equation (116) and writing

√
(N − 1)/N � 1, one gets the relation between

the coefficientsα andβk:

βk =−α tanh θk (118)

After normalization, the ground state is totally determined by equation (118). Compared with the
approximate ground state considered in the variational approximation, the Bogolubov approach accounts
for the fact that pairs of atoms are transferred from the state withk= 0 to statesk,−k with k �= 0 under
the effect of atomic interactions.
If one calculates the mean number of particlesN −N0 out of thek = 0 state, one finds thequantum
depletion(N −N0)/N of the ground state:

N −N0

N
=

8

3
√
π

(
ρa3

)1/2
(119)

We finally want to stress that equations (113) and (119) explicitly give the lowest order term in the small
dimensionless parameterρa3.
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5. Probing a condensate

In this section, we study detection signals obtained from the scattering of a probe particle by theN -boson
system. Generally, scattering experiments (neutron scattering for instance) are widely used to investigate
the properties ofN -body systems. Indeed, observing how a probe particle is scattered by a given system
yields some information about its spatial structure, its elementary excitation spectrum, etc.

In this paper we discuss only thelinear regime, where the excitation due to the probe can be treated
perturbatively. This means that the system’s response is entirely determined by its properties in the absence
of the probe. As usual in the weak perturbation regime, we neglect multiple scattering and we consider each
scattering process as independent from the other ones. In this regime the linear response theory applies, so
that we can define a dynamic structure factorS(q, ω) and a static structure factorS(q) [26] to describe the
response of the system.

We first derive the dynamic and static structure factors within the Born approximation, similarly to what
was done in the context of superfluid helium [26]. We then discuss the origin of interference in detection
signals.

5.1. Probing the wave function of the condensate

Let us consider a probe particle with positionR interacting with each bosoni through an interaction
potentialU(R− ri). We first write the interaction Hamiltonian̂Hint in the first quantization form:

Ĥint =

N∑
i=1

U(R− r̂i) =

∫
d3rU(R− r)

N∑
i=1

δ(r− r̂i)

Ĥint =

∫
d3rU(R− r)ρ̂I(r) (120)

whereρ̂I(r) =
∑N

i=1 δ(r − r̂i) is the one-body spatial density. In second quantization, we can also write
ρ̂I(r) = ψ̂ †(r)ψ̂(r). Using the basis{|k〉} of single particle plane waveseik·r/L3/2 in a box of sizeL
with periodic boundary conditions, the one-particle densityρ̂I(r) can be rewritten as:

ρ̂I(r) =
1

L3

∑
k

∑
k′

ei(k−k′)·râ+k′ âk =
1

L3

∑
k

∑
K

e−iK·râ+k+K âk (121)

In this expression,
∑

k â
+
k+K âk appears as the Fourier transform̂ρ(K) =

∫
d3r eiK·r ρ̂I(r) of ρ̂I(r),

which is written aŝρ(K) =
∑N

i=1 eiK·r̂i in first quantization. In second quantization, using equation (23)
with f̂ = eiK·r̂ gives:

ρ̂(K) =

N∑
i=1

eiK·r̂i =
∑

k

∑
k′

1

L3

[∫
d3r e−ik′·reiK·r eik·r

]
︸ ︷︷ ︸

L3δ(k′−K−k)

â+k′ âk

ρ̂(K) =
N∑
i=1

eiK·r̂i =
∑

k

â+k+K âk (122)

Inserting equation (121) into (120) and using equation (122) leads to:

Ĥint =
∑

k

∑
K

e−iK·Râ+k+K âk
1

L3

∫
d3rU(R− r) eiK·(R−r)︸ ︷︷ ︸

=U(K)

=
1

L3

∑
K

U(K) e−iK·R
∑

k

â+k+K âk
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Ĥint =
1

L3

∑
K

U(K) e−iK·Rρ̂(K) (123)

In this expression,U(K) is the Fourier transform ofU(r).

5.1.1. Scattering of a probe particle by the system ofN bosons

Let us consider a scattering process where the probe particle is scattered from an initial state with
momentumpi = �ki and energyεi to a final state with momentumpf = �kf and energyεf . Meanwhile
theN -boson system changes from an initial stateφi having an energyEi to a final stateφf with an energy
Ef .

In order to evaluate the scattering amplitude associated with this process, we first calculate the matrix
element ofĤint between the initial and final states|ki, φi〉 and|kf , φf 〉 of the global system:

〈kf , φf |Ĥint|ki, φi〉= 〈kf , φf |
1

L3

∑
K

U(K) e−iK·Rρ̂(K)|ki, φi〉

=
∑
K

U(K)〈φf |ρ̂(K)|φi〉δ(ki − kf −K)

〈kf , φf |Ĥint|ki, φi〉= U(q)〈φf |ρ̂(q)|φi〉 with q = ki − kf (124)

Let us now analyze the structure of equation (124), where theδ-functionδ(ki − kf −K) accounts for
the momentum conservation. The termU(q) describes the diffusion of the probe particle by a single boson,
independently from the quantum state of theN -boson system. By contrast, the last term〈φf |ρ̂(q)|φi〉,
which does not depend on the interaction potential, corresponds to the interference effects between the
contributions of the different bosons of the target.

Within the Born approximation, the transition raterif between the initial and the final state is given by
the Fermi golden rule:

rif =
2π

�

∣∣U(q)∣∣2∣∣〈φf |ρ̂(q)|φi〉∣∣2δ(Ef −Ei − �ω) (125)

where�ω = εi − εf is the energy transfer from the probe to theN -boson system.
The formalism that we have developed here to describe the scattering of a probe particle can be extended

to Bragg scattering, where the absorption of a photon of energy�ω1 is followed by the stimulated emission
of a photon of energy�ω2. In this process, the energy and momentum transfers write�ω = �(ω1 − ω2)
andq = k1 − k2, respectively. One can scanω by keeping for instanceω1 fixed and scanningω2. Strictly
speaking, one also modifiesq. However, in the usual case where the energy transfer is small (ω� ω1, ω2),
the momentum transfer is essentially determined by the angle betweenk1 andk2, and depends only weakly
on the change of|k2|. In the following, we will therefore neglect the dependence ofq uponω.

5.1.2. Dynamic and static structure factors

The dynamic structure factorS(q, ω) corresponds to the terms in equation (125) that depend only on the
N -boson system. More precisely, we have:

S(q, ω) =
∑
f

∣∣〈φf |ρ̂(q)|φi〉∣∣2δ(Ei −Ef + �ω) (126)

In this expression, we sum over the final states of the bosonic system to account for the fact that we measure
only the final state of the scattered particle. Equation (126) can be easily generalized to the case when the
initial state is a statistical mixture of statesφi with weightsπi:

S(q, ω) =
∑
i

πi
∑
f

∣∣〈φf |ρ̂(q)|φi〉∣∣2δ(Ei −Ef + �ω) (127)
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The variations ofS(q, ω) with ω are directly related to the dependence of the scattering cross-section on
ω in the directionq. This gives access to the energy spectrum of the elementary excitations.

The static structure factorS(q) =
∫
d(�ω)S(q, ω) represents the total scattered intensity for a given

momentum transferq. S(q) can be rewritten:

S(q) =

∫
d(�ω)S(q, ω) =

∑
f

∣∣〈φf |ρ̂(q)|φi〉∣∣2, S(q) = 〈φi|ρ̂†(q)ρ̂(q)|φi〉 (128)

This shows thatS(q) depends only onφi andq. The static structure factor thus yields some information
onφi.

We now express the structure factorsS(q, ω) andS(q) in terms of correlation functions. Indeed, one
can write theδ-function of equation (126) asδ(Ei −Ef + �ω) = 1

2π

∫ +∞
−∞ exp[−i(Ei −Ef − �ω)t/�] dt,

hence:

S(q, ω) =
1

2π

∫ +∞

−∞
dt e−iωt

∑
f

〈φi|ρ̂†(q)|φf 〉 〈φf |ρ̂(q)|φi〉 ei(Ef−Ei)t/�︸ ︷︷ ︸
〈φf | eiĤt/�ρ̂(q) e−iĤt/�|φi〉

S(q, ω) =
1

2π

∫ +∞

−∞
dt e−iωt〈φi|ρ̂†(q, t= 0)ρ̂(q, t)|φi〉 (129)

In this expression,S(q, ω) appears as the time Fourier transform of the average value inφi of the product
of two Heisenberg operatorŝρ(q) taken at two different times. Noting that the product of Fourier transforms
ρ̂†(q, t = 0)ρ̂(q, t) can be expressed as the Fourier transform of the corresponding convolution product,
one can also considerS(q, ω) as the spatio-temporal Fourier transform of

∫
d3r′ 〈φi|ρ̂I(r′, t = 0)×

ρ̂I(r
′ + r, t)|φi〉.

Similarly, S(q) appears as the spatial Fourier transform of
∫
d3r′ 〈φi|ρ̂I(r′)ρ̂I(r

′ + r)|φi〉. Let us now
write the one-body density operators in terms of field operators (27):

ρ̂I(r
′)ρ̂I(r

′ + r) = ψ̂ †(r′)ψ̂(r′)ψ̂ †(r+ r′)ψ̂(r+ r′) = ψ̂ †(r′)
[
ψ̂ †(r+ r′)ψ̂(r′) + δ(r)

]
ψ̂(r+ r′)

ρ̂I(r
′)ρ̂I(r

′ + r) = δ(r)ψ̂ †(r′)ψ̂(r′) + ψ̂ †(r′)ψ̂ †(r+ r′)ψ̂(r+ r′)ψ̂(r′) (130)

Finally, one gets:∫
d3r′ 〈φi|ρ̂I(r′)ρ̂I(r′ + r)|φi〉=Nδ(r) +

∫
d3r′G(2)(r′,r′ + r) (131)

where the last term represents the total probability to find in the state|φi〉 two particles separated byr.

5.1.3. Static structure factor of a homogeneous condensate

We now calculate the static structure factorS(q) in the simple case of a homogeneous condensate, both
in the variational approximation and using the Bogolubov theory. We then compare these calculations to
experimental results.
• Within thevariational approximation, the ground state of a homogeneous condensate is the solution of

the Gross–Pitaevskii equation (61). Because of the translational invariance of the system, the ground
state is the statek = 0, so that the initial quantum state of the condensate is|φi〉= |n0 =N,ni = 0 for
i �= 0〉. In order to evaluateS(q) = 〈φi|ρ̂†(q)ρ̂(q)|φi〉, we calculate:

ρ̂(q)|φi〉=
∑

k

â+k+q âk|φi〉︸ ︷︷ ︸
=0

if k �=0

= â+q â0|φi〉=
√
N |n0 =N − 1, nq = 1〉 (132)
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This yields immediately:

S(q) =N (133)

• We now calculate the static structure factor in the framework of theBogolubov theory, which is valid for
T � Tc andρa3 � 1. Looking for an approximate expression forρ̂(q), we can neglect in̂ρ†(q)ρ̂(q) all
terms containing less than two operatorsâ0 or â+0 , similarly to what we have done in Section 4. We can
also replacêa0 andâ+0 by

√
N . Such a treatment amounts to neglecting inρ̂(q) all terms containing less

than one operator̂a0 or â+0 :

ρ̂(q) =
∑

k

â+k+qâk � â+q â0 + â+0 â−q �
√
N(â+q + â−q) (134)

We now expresŝρ(q) in terms of the operatorŝb+k and b̂k creating and annihilating an elementary
excitation with momentumk. Using equations (106) and (107), one gets from equation (134):

ρ̂(q)�
√
N
[
(coshθq − sinh θq)b̂

+
q + (cosh θq − sinh θq)b̂−q

]
(135)

We have already seen that the calculation ofS(q) involves that of̂ρ(q)|φi〉. If we assume the initial state
|φi〉 of the condensate to be the Bogolubov ground state|φ0〉, which verifieŝbk|φ0〉= 0 ∀k, then we get:

ρ̂(q)|φ0〉=
√
N(cosh θq − sinh θq)b̂

+
q |φ0〉 (136)

Hence:

S(q) =N(coshθq − sinhθq)
2〈φ0|b̂q b̂+q |φ0〉=N(coshθq − sinh θq)

2〈φ0|1− b̂+q b̂q|φ0〉
S(q) =N(coshθq − sinhθq)

2 (137)

Using equation (105), we can write the explicit dependence ofS(q) onq:

S(q) =N(cosh2θq − sinh2θq) =
N√

1− tanh2 2θq

(1− tanh2θq) =N

√
1− tanh2θq
1 + tanh2θq

S(q) =N

√
εq

εq + 2ρg
with εq =

�
2q2

2m
(138)

In the limit q → ∞, the condensate is in the free-particle regime whereεq � ρg = µ (µ being the
chemical potential). In this situation one findsS(q)→N . We recover here the same result as with the
variational approach.
By contrast, the limitq→ 0 corresponds to the phonon-like regime (see Section 4). This corresponds to
εq � ρg and therefore leads to:

S(q)�q→0 N

√
εq
2ρg

∝ q (139)

According to the Bogolubov approach,S(q) vanishes linearly withq when q → 0. The discrepancy
between equations (133) and (139) gives evidence for the fact that the approximation of the condensate
wave-function by a product state is not sufficient to account properly for all physical effects.

• These theoretical predictions can be compared to theexperimental resultsobtained by W. Ketterle and
coworkers [27]. The authors have used small angle stimulated Bragg scattering to probe excitations of a
condensate, and they explored both the free-particle and phonon regimes by changing the atomic density
for a fixed momentum transfer. The results show indeed a significant weakening of the line strength of
the Bragg resonance when one increases the density to enter the phonon regime.
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Finally, one can give a simple interpretation for the behaviour of the static structure factor of a condensate.
We have seen in Section 4, equation (117), that the ground state wave function|φ0〉 of a homogeneous
condensate in the Bogolubov theory is a linear superposition of|n0 = N,0,0, . . .〉 and of Fock states of
the kind |n0 = N − 2, nk = 1, n−k = 1,0,0, . . .〉. Therefore, there are two different ways of imparting a
momentumq to the condensate: one can either start from|n0 =N,0,0, . . .〉 and promote a zero-momentum
particle to momentumq, or start with|n0 =N − 2, nq = 1, n−q = 1,0,0, . . .〉 and transfer a particle from
momentum−q to zero-momentum. The resulting state for both paths is|n0 =N − 1, nq = 1,0,0, . . .〉, so
that one has to sum the corresponding transitionamplitudes. For high momentum transfersq however, the
state|n0 =N − 2, nq = 1, n−q = 1,0,0, . . .〉 has a negligible weight in|φ0〉 and the static structure factor
is simply equal toN , as for a perfect gas. By contrast, forq→ 0 a destructive interference between the two
paths leads to a vanishing structure factor.

5.2. About interferences in detection signals

Following the discussion about the vanishing of the static structure factor of a condensate, we now wish
to clarify the general concept of quantum interference. Indeed, thinking about interference brings to the
mind the picture of interfering waves, although interference effects can as well be observed in cases where
a description in terms of classical light or matter waves cannot be implemented. What are the ‘objects’ that
interfere then?

For aN -boson system, when the ground state of the system is not a macroscopic matter wave, the
correlation functions cannot be written as products of matter waves. One can gain some physical insight
into the interference phenomenon by writing the correlation functions in a particular way. We consider
here for example the second order correlation functionG(2)(r t,r′ t′), which describes a double-detection
signal. If the initial state of the system is a statistical mixture of states|χi〉 with weightsπi, one has,{|uf 〉}
being an orthonormal basis of states:

G(2)(r t,r′ t′) =
〈
ψ̂ †(r, t)ψ̂ †(r′, t′)ψ̂(r′, t′)ψ̂(r, t)

〉
=
∑
i

πi〈χi|ψ̂ †(r, t)ψ̂ †(r′, t′)ψ̂(r′, t′)ψ̂(r, t)|χi〉

=
∑
i

πi〈χi|ψ̂ †(r, t)ψ̂ †(r′, t′)

[∑
f

|uf 〉〈uf |
]

︸ ︷︷ ︸
=1

ψ̂(r′, t′)ψ̂(r, t)|χi〉

G(2)(r t,r′ t′) =
∑
i

πi
∑
f

∣∣〈uf |ψ̂(r′, t′)ψ̂(r, t)|χi〉
∣∣2 (140)

The detection signal is thus obtained by averaging over the initial states|χi〉 and summing over the
final states|uf 〉 the transition probabilities|Afi|2 = |〈uf |ψ̂(r′, t′)ψ̂(r, t)|χi〉|2. Let us now consider a
single transition amplitudeAfi. Becausêψ(r, t) is a linear superposition of operators corresponding to the
different ‘modes’ψi(r), Afi is a sum of amplitudes associated to detections in different modes.

For a two-mode problem, for instance,ψ̂(r, t) = â1(t)ψ1(r) + â2(t)ψ2(r), so thatAfi is the sum of 4
amplitudes, as shown infigure 5.

The transition probability|Afi|2 contains crossed terms, i.e. terms of the kindψ∗
2(r)ψ1(r) which

correspond to detections in different modes. Therefore, one can say that the ‘objects’ that interfere are
transition amplitudes, giving rise to fringes in the detection signal, provided that there exists at least two
possible paths between the initial state and a given final state.

In the simple case of a two-boson state|χi〉= |k1,k2〉 with one boson having momentumk1 and another
one having a momentumk2, if the two detections are simultaneous (t= t′), then only two interfering paths
exist:
(1) the process wherek1 is detected inr andk2 in r′ has an amplitudeexp(ik1 · r) exp(ik2 · r′);
(2) the one withk1 detected inr′ andk2 in r has an amplitudeexp(ik1 · r′) exp(ik2 · r).
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Figure 5. Schematic
representation of the four

amplitudes which interfere
in a double counting

experiment.

Figure 6. Schematic representation of
the two interfering paths for a

two-photon state with one photon in
each mode.

Both paths end in the vacuum state, and the total transition amplitudeA is the sum of the two contributions,
namelyA∝ exp(ik1 · r) exp(ik2 · r′) + exp(ik1 · r′) exp(ik2 · r). The transition probability then exhibits
interference fringes:

|A|2 ∝ 1 + 1+ 2Re
[
ei(k1−k2)·(r−r′)

]
= 2

[
1 + cos(k1 − k2) · (r− r′)

]
(141)

One can easily see that the probability of detecting one boson inr does not depend onr, since it is
proportional to| exp(ik1 ·r)|2+ | exp(ik2 ·r)|2 = 2. Once a boson is detected inr, however, the probability
to detect the second one inr′ is a sinusoidal function ofr− r′, as shown by equation (141).

Note that similar effects exist for photons [28] (see also [2], Comp. AIII). Concerning two-photon states,
one clearly identifies the two interfering paths by introducing emittersE1 andE2 for the two photons in
modes 1 and 2, respectively, as well as two detectors D and D’ (seefigure 6).

6. Matter waves versus light waves: effect of atom–atom interactions

The approach we have adopted in this article makes it clear that bosonic quantum gases exhibit many
analogies with quantum optical fields. However, there are also some major differences, in particular those
related with the interactions between atoms. We study in this section the effect of atom–atom interactions
first on the relative phase of two condensates in different traps, and then on the behaviour of two condensates
in the same trap.

6.1. Relative phase of two condensates in different traps

We use here notations similar to the ones of Section 3.3: the condensates 1 and 2 situated inr1 and
r2 are associated with macroscopic matter wavesψ1(r) andψ2(r), respectively. We now study the time
evolution of the spatial coherence between the two condensates under the effect of interactions within each
condensate (we neglect the interactions between the two condensates). Using the Heisenberg point of view,
one has:
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〈
ψ̂ †(r1, t)ψ̂(r2, t)

〉
= ψ∗

1(r1)ψ2(r2)
〈
â+1 (t)â2(t)

〉
with (142)

â+1 (t) = eiĤ1t/�â+1 e
−iĤ1t/� and â2(t) = eiĤ2t/�â2 e

−iĤ2t/� (143)

In equation (143),̂Hi is the Hamiltonian of condensatei, including the interaction potential. Inserting a
closure relation in equations (143) yields:

â+1 (t) =
∑
n1

√
n1 + 1|n1 +1〉〈n1| ei[E(n1+1)−E(n1)]t/� (144)

â2(t) =
∑
n2

√
n2|n2 − 1〉〈n2| ei[E(n2−1)−E(n2)]t/� (145)

We get: 〈
ψ̂ †(r1, t)ψ̂(r2, t)

〉
=

∑
n1,n2

ψ∗
1(r1)ψ2(r2)

√
n2

√
n1 + 1〈n1, n2|ρ̂|n1 + 1, n2 − 1〉

× ei[E(n1+1,n2−1)−E(n1,n2)]t/� (146)

The spatial coherence between the two condensates appears as a sum of terms proportional to the
coherence between|n1, n2〉 and|n1 +1, n2 − 1〉 and oscillating at the corresponding Bohr frequencies.

Let us consider an initial state of the system with a well-defined spatial coherence, for instance a
phase state|N,θ〉 (see Section 3.3.1). In the following, we label the states|n1, n2〉 by n = n1 − n2,
n1 + n2 = N being fixed. One can writen1,2 = 1

2 (N ± n) andn can take values from−N to N in

steps of 2. The spatial coherence〈ψ̂ †(r1, t)ψ̂(r2, t)〉 between the condensates is then proportional to∑
n

√
(N − n)(N + n+ 1)〈n|ρ̂|n+2〉 exp(i[E(n+ 2)−E(n)]t/�).

To go further in the discussion while keeping the calculations as simple as possible, we consider the
case of two homogeneous condensates in boxes of sizeL, with the same scattering lengtha; in this
case the Hamiltonian is reduced to the interaction Hamiltonian (see Section 3.1.1), namelyĤ1 + Ĥ2 =
g(N̂2

1 + N̂2
2 )/(2L

3), with g = 4π�
2a/m (54). This yields:

E(n) =
g

8L3

[
(N + n)2 + (N − n)2

]
=

g

4L3

(
N2 + n2

)
(147)

As shown infigure 7,E(n) varies quadratically withn, so that the relevant quantityE(n+2)−E(n) =
g(n+1)/L3 is linear.

As a consequence of the atom–atom interactions within each condensate, the evolution frequencies of the
coherences〈n|ρ̂|n+ 2〉 form a comb of equally spaced frequenciesg(n+ 1)/(�L3), n varying from−N
to N . We have seen in Section 3.3.1 that the dispersion inn in a phase state is on the order of

√
N . Then

the frequency spreading∆ω of the spatial coherence〈ψ̂ †(r1, t)ψ̂(r2, t)〉 is ∆ω �
√
Ng/(�L3), hence a

Figure 7. EnergyE(n) of two interacting
homogeneous condensates as a function of

n = n1 − n2.
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coherence time:

Tcoh �
�L3

g
√
N

=
�
√
N

µ
(148)

whereµ= gN/L3 is the chemical potential.
Moreover, since the frequenciesg(n+ 1)/(�L3) are equally spaced byg/�L3, one expects a revival of

the spatial coherence after a time:

Trev �
�L3

g
=

�N

µ
� Tcoh (149)

6.2. Two condensates in the same trap

We now consider the situation where two ensembles of bosonic atoms 1 and 2, prepared in two different
hyperfine or Zeeman sublevels, are both present in the same trap. Such a configuration was obtained
experimentally with Rubidium atoms at JILA [29] and with Sodium atoms at MIT [30]. To describe the
interactions with the same approximation as in the rest of the course, three coupling constantsg11 = g1,
g22 = g2, g21 = g12 and three scattering lengthsa1, a2, a21 = a12 are needed.

We first try to elucidate whether the two condensates are spatially separated or mixed. Ifg12 � g1, g2,
one expects that the two condensates would rather separate in order to minimize the interactions 1–2. To go
further, we consider the simplified situation of a homogeneous system in a box of volumeV , withN atoms
in the state|1〉 andN atoms in|2〉. This system can find itself in two states: either the two components
are mixed and occupy both the whole volumeV , or they are separated, the component 1 or 2 occupying a
volumexV or (1− x)V , respectively. We denote the total energy of the system byEI in the former case,
and byEII in the latter. The calculation ofEI is straightforward:

EI =
1

2
g1
N2

V
+

1

2
g2
N2

V
+ g12

N2

V
=
N2

2V
(g1 + g2 + 2g12) (150)

To calculateEII, we can neglectg12 since the two condensates are separated. We get:

EII =
1

2
g1
N2

xV
+

1

2
g2

N2

(1− x)V
=
N2

2V

[g1
x

+
g2

1− x

]
︸ ︷︷ ︸

G(x)

(151)

The value ofx can be determined by minimizingG(x), which yieldsx=
√
g1/(

√
g1 +

√
g2), hence:

G(x) =
√
g1
(√

g1 +
√
g2
)
+
√
g2
(√

g1 +
√
g2
)
=
(√

g1 +
√
g2
)2

(152)

Finally, one gets:

EII =
N2

2V

[
g1 + g2 + 2

√
g1g2

]
(153)

Comparing equations (150) and (153), one can conclude that:
(1) if g12 >

√
g1g2, EI >EII and the two condensates separate;

(2) if g12 <
√
g1g2, EI <EII so that both components are mixed.

We now study the role played by the mutual interactions between the two condensates concerning
the coherence timeTcoh calculated in Section 6.1. We have indeed seen that the scrambling of the
relative phaseθ between the two condensates is due to the fact that the Bohr frequenciesω(n1, n2) =
1
�
[E(n1 + 1, n2 − 1) − E(n1, n2)] appearing in the evolution of〈â+1 (t)â2(t)〉 (see equation (146)) are
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spread over an intervalδω∼
√
Ng/(�L3) whenn1 andn2 vary over an interval∆n∼

√
N aroundn1 and

n2. How are these results modified when one takesg12 into account? We discuss here the homogeneous
case, which is the simplest. Note that a more general theoretical study of a binary mixture of condensates
has been performed by A. Sinatra and Y. Castin [31].

The relevant Bohr frequencyω(n1, n2) can be written:

ω(n1, n2) =
1

�

[
E(n1 +1, n2 − 1)−E(n1, n2)

]
=

1

�

(
∂

∂n1
− ∂

∂n2

)
E(n1, n2)

ω(n1, n2) =
1

�

[
µ1(n1, n2)− µ2(n1, n2)

]
(154)

Whenn1 andn2 vary over an interval∆n aroundn1 andn2 (with n1 + n2 = n1 + n2 =N imposed by
the super-selection rule), the Bohr frequency spreading∆ω is written:

∆ω � ω(n1 +∆n,n2 −∆n)− ω(n1, n2)�∆n

(
∂

∂n1
− ∂

∂n2

)
ω(n1, n2)

∣∣∣
n1=n1, n2=n2

(155)

In the present case of a homogeneous mixture of two condensates in a box of volumeV =L3, the energy
E(n1, n2) is written:

E(n1, n2) =
1

2
g1
n21
V

+
1

2
g2
n22
V

+ g12
n1n2
V

(156)

This gives, using equation (154):

µ1,2(n1, n2) =
∂

∂n1,2
E(n1, n2) = g1,2

n1,2
V

+ g12
n2,1
V

(157)

ω(n1, n2) =
1

�

(
g1
n1
V

− g2
n2
V

+ g12
n2 − n1

V

)
(158)

Finally, one gets:

∆ω � ∆n

�V
(g1 + g2 − 2g12) (159)

SinceTcoh � 1/∆ω, one easily recovers the result of equation (148) by takingg12 = 0 and∆n�
√
N .

By contrast, ifg12 �= 0 the Bohr frequency spread is decreased and the coherence time increases. In
particular, wheng12 � (g1 + g2)/2 one has∆ω = 0 and thusTcoh →∞.

Although this behaviour seems surprising, one can find a simple physical explanation for it. For a given
∆n, the relevant quantity is the variation ofµ1 − µ2 whenn1 increases by 1 andn2 decreases by 1.
• If g12 = 0,µ1 increases whenn1 increases because there are then more atoms interacting in condensate 1.

Similarly,µ2 decreases becausen2 decreases. As a result,µ1 − µ2 increases.
• If one takes into account the mutual interactions between the two condensates, thenµ1 increases with
n1 as above. However, at the same time the interaction of the atoms of condensate 1 with the ones of
condensate 2 decreases becausen2 decreases (see equation (157)). Globally, the variation ofµ1 can be
smaller than wheng12 = 0, and it can even vanish. A symmetric argument applies for the variation ofµ2
whenn2 decreases.
Experimentally, the long coherence times observed at JILA with87Rb [32] possibly originate from the

phenomenon we have discussed here, since the interaction parameters are such that2g12 � g1 + g2.
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7. Conclusion

In this article, we have shown that Bose–Einstein condensates can be described by quantum states
analogous to those used in quantum optics, with the advantage that they do not violate any super-selection
rule (see Section 2.2.3). Using a variational approximation, we have shown that it is possible to associate
to the condensate a 3D matter wave allowing one to study many coherence properties. In particular, we
have seen that a relative phase between two condensates can exist only if the state of the two condensates
is a linear superposition of states|n1, n2〉 with different values ofn1 − n2, n1 andn2 being the number of
bosons in each condensate andn1 + n2 being fixed and equal toN .

Experimentally, the detection of a condensate is often achieved by particle or light scattering; we have
introduced dynamical and static structure factors describing this scattering in the framework of the linear
response theory. We have shown that some physical effects cannot be accounted for within the variational
approximation but require a more elaborate approach, such as the Bogolubov theory.

Finally, we have studied the effects of atom–atom interactions on the dynamics of the condensate, and in
particular on the scrambling of the relative phase of two condensates, either in two different traps or in the
same trap.

Concerning future studies, a great challenge would consist of preparing a system of two condensates in
states such asc1|n1 =N,n2 = 0〉+ c2|n1 = 0, n2 =N〉. Such states could indeed be considered as linear
superpositions of two different macroscopic states (sometimes called ‘Schrödinger cats’).
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