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Abstract
Atom interferometers allow the measurement of the acceleration of freely
falling atoms with respect to an experimental platform at rest on Earth’s
surface. Such experiments have been used to test the universality of free
fall by comparing the acceleration of the atoms to that of a classical freely
falling object. In a recent paper, Müller et al (2010 Nature 463 926–9) argued
that atom interferometers also provide a very accurate test of the gravitational
redshift (or universality of clock rates). Considering the atom as a clock
operating at the Compton frequency associated with the rest mass, they claimed
that the interferometer measures the gravitational redshift between the atom-
clocks in the two paths of the interferometer at different values of gravitational
potentials. In this paper, we analyze this claim in the frame of general relativity
and of different alternative theories. We show that the difference of ‘Compton
phases’ between the two paths of the interferometer is actually zero in a large
class of theories, including general relativity, all metric theories of gravity,
most non-metric theories and most theoretical frameworks used to interpret
the violations of the equivalence principle. Therefore, in most plausible
theoretical frameworks, there is no redshift effect and atom interferometers
only test the universality of free fall. We also show that frameworks in
which atom interferometers would test the redshift pose serious problems,
such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path
integral formulation of quantum mechanics and of the principle of least action
for matter waves, (iii) violation of energy conservation, and more generally
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(iv) violation of the particle-wave duality in quantum mechanics. Standard
quantum mechanics is no longer valid in such frameworks, so that a consistent
interpretation of the experiment would require an alternative formulation of
quantum mechanics. As such an alternative has not been proposed to date,
we conclude that the interpretation of atom interferometers as testing the
gravitational redshift at the Compton frequency is unsound.

PACS numbers: 04.80.Cc, 03.75.Dg

1. Introduction

1.1. Motivation

General relativity (GR) has historically been underpinned by distinct types of experimental
measurements, which have tested the geometric nature of the theory as well as the specific
field equations of GR. In particular, the four ‘classical tests’ are still carried out today with
continuously improving accuracy. The first one is the observation of the perihelion advance
of planets, for example Mercury, which had been known by Le Verrier in 1845, and explained
by general relativity in 1915 (see [1] for a review). The second is the bending of light by
the Sun, which was predicted by general relativity and first measured by Eddington in 1919
during a solar eclipse [2]. Another test is the relativistic time delay of radio waves grazing the
Sun during their round trip to Mercury and which was computed and measured by Shapiro in
1964 [3].

The gravitational redshift, also considered as a ‘classical test’, is actually a test of one
facet of the equivalence principle. The weak equivalence principle has been verified with
high precision using torsion balances [4–6] and the Lunar laser ranging [7]. The gravitational
redshift was predicted by Einstein but not observed for a long time [2]. It became observable
with the advent of high precision quantum spectroscopy and was first measured in 1960 by
Pound and Rebka [8] (see also [9]), who used gamma ray spectroscopy of the radiation emitted
and absorbed by 57Fe nuclei. The emitter and absorber were placed at the top and bottom of
a 22.5 m high tower at Harvard and the frequency difference predicted by GR was measured
with about 1% uncertainty. Since then, the initial prediction of a gravitational redshift of solar
spectral lines emitted at the Sun’s surface has also been measured [10].

In a test of the gravitational redshift using clocks, one checks that the clock rates are
universal—i.e. the relative rates depend only on the difference of gravitational potentials (as
determined by the trajectories of massive test bodies) but not on the nature and internal structure
of the clocks. In 1976 a hydrogen-maser clock was launched on a rocket to an altitude of
10 000 km and its frequency compared to a similar clock on ground. This yielded a test of the
gravitational redshift with about 10−4 accuracy [11]. In 2013 the European Space Agency will
install on board the International Space Station, the Atomic Clock Ensemble in Space (ACES),
including a highly stable laser-cooled atomic clock, which will test (in addition to many other
applications in fundamental physics and metrology) the gravitational redshift to a precision
of about 10−6 [12]. The gravitational redshift is also tested in null redshift experiments in
which the rates of different clocks (based on different physical processes or different atoms)
are compared to each other [13, 14].

Quite generally in a modern context, tests of GR measure the difference between the
predictions of GR and of some generalized alternative theory or theoretical framework (see
[15] for a review). For example, GR may be compared to alternative metric theories of
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gravitation such as the Jordan–Brans–Dicke scalar–tensor theory [16, 17]. The metric theories
may also be compared with non-metric theories of gravity such as the Belinfante–Swihart
theory [18]. It has to be kept in mind that the classification and inter-comparison of different
tests have then to be defined with respect to the framework used.

In the following, we will investigate whether a gravimeter (or accelerometer) based on
atom interferometry can test the gravitational redshift. Atom interferometers allow one to
measure the acceleration of atoms falling in the gravitational field of the Earth (with respect
to the experimental platform at rest on Earth). The beam splitter for atom waves is realized
through the interaction of atoms with laser beams resonant with a hyperfine atomic transition.
It is known [19–26] that the main contribution to the phase shift in atom interferometers
comes from the phase imprinted on the matter wave by the beam splitters. Following earlier
suggestions by Bordé [19], the first gravimeter based on atom interferometry was realized by
Kasevich and Chu [20]. Before that, the first gravimeter based on neutron interferometry had
been realized by Colella, Overhauser and Werner [28] (see [29] for a review).

Atom interferometers have reached high sensitivities in the measurement of the
gravitational acceleration [30, 31] and rotational acceleration through the Sagnac effect
[32–34]. This yields very important tests of the weak equivalence principle or universality of
free fall (UFF) when comparing the free fall of atoms with that of classical macroscopic matter
(in practice, a nearby freely falling corner cube whose trajectory is monitored by lasers). The
relative precision of such tests of the UFF is currently 7 × 10−9, using Cs [30, 35] or Rb [31]
atoms. Although it remains less sensitive than tests using macroscopic bodies of different
composition which have reached a precision of 2 × 10−13 [6, 7], this UFF test is interesting
as it is the most sensitive one comparing the free fall of quantum objects (namely caesium
atoms) with that of a classical test mass (the corner cube).

1.2. Overview

In a recent paper, Müller, Peters and Chu [35] (hereafter abbreviated as MPC) proposed a new
interpretation of atom interferometry experiments as testing the gravitational redshift, that is,
also the universality of clock rates (UCR), with a precision 7 × 10−9, which is several orders
of magnitude better than the best present [11] and near future [12] clock tests.

The main argument of MPC (see also the more detailed papers [36, 37]) is based on an
analogy between atom interferometry experiments and classical clock experiments. The idea
of clock experiments is to synchronize a pair of clocks when they are located closely to one
another and move them to different elevations in a gravitational field. The gravitational redshift
will decrease the oscillation frequency of the lower clock relative to the higher one, yielding a
measurable phase shift between them. There are two methods for measuring the effect. Either
we bring the clocks back together and compare the number of elapsed oscillations, or we
measure the redshift by means of continuous exchanges of electromagnetic signals between
the two clocks. In both methods, one has to monitor carefully the trajectories of the two
clocks. For example, in the second method one has to remove the Doppler shifts necessarily
appearing in the exchanges of electromagnetic signals.

In the first method, the phase difference between the two clocks when they are recombined
together can be written as a difference of integrals over proper time:

�ϕclock = ω

[∫
I

dτ −
∫

II
dτ

]
≡ ω

∮
dτ. (1.1)

The two clocks have identical proper frequency ω. We denote by I and II the two paths
(with say I being at a higher altitude, i.e. a lower gravitational potential) and use the notation∮

dτ to mean the difference of proper times between the two paths, assumed to form a close
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contour. The integrals in (1.1) are evaluated along the paths of the clocks, and we may use
the Schwarzschild metric to obtain an explicit expression of the measured phase shift in the
gravitational field of the Earth.

It is indeed true that the phase shift measured by an atom interferometer contains a
contribution which is similar to the clock phase shift (1.1). In this analogy, the role of the
clock’s proper frequency is played by the atom’s (de Broglie–)Compton frequency [38]

ωC = mc2

h̄
, (1.2)

where m denotes the rest mass of the atom. However, the phase shift also includes another
contribution �ϕ� coming from the interaction of the laser light used in the beam-splitting
process with the atoms. Thus,

�ϕ = ωC

∮
dτ + �ϕ�. (1.3)

Here we are assuming that the two paths close up at the entry and exit of the interferometer;
otherwise, additional terms have to be added to (1.3). The first term in (1.3) is proportional
to the atom’s mass through the Compton frequency and represents the difference of Compton
phases along the two classical paths. In contrast, the second term �ϕ� does not depend on the
mass of the atoms.

At first sight, the first term in equation (1.3) could be used for a test of the gravitational
redshift, in analogy with classical clock experiments, cf equation (1.1), and the precision of
the test could be very good, because the Compton frequency of the caesium atom is very
high, ωC ≈ 2π × 3.0 × 1025 Hz. However, as shown in a previous brief reply [39],6 this
re-interpretion of the atom interferometer as testing the UCR is fundamentally incorrect.

The clear-cut argument showing that the atom interferometer does not measure the redshift
is that the ‘atom-clock’ contribution, i.e. the first term in (1.3), is in fact zero for a closed total
path [21, 23, 25, 26]. Thus, only the second term �ϕ� remains in equation (1.3). The final
phase shift,

�ϕ = �ϕ� = k g T 2, (1.4)

depends on the wavevector k of the lasers, on the interrogation time T and on the local gravity
g, but is independent of the Compton frequency (1.2).

In this paper, we expand our previous brief reply and address in detail the involved
issues. As we shall detail below, the first term in (1.3) vanishes in GR and in all metric
theories of gravity, and in a large class of non-metric test theories which emcompasses most
theoretical frameworks used to interpret the violations of the different facets of the equivalence
principle [15].

The key point about the result (1.4) is a consistent calculation of the two paths in the
atom interferometer and of the phases along these paths, both derived from the same classical
action, using in a standard way by the principle of least action. At the deepest level, the
principle of least action and its use in atom interferometry come from the Feynman path
integral formulation of quantum mechanics or equivalently the Schrödinger equation [21].

We will see in the following that the argument of MPC (developed in the initial paper [35])
implies a violation of the principle of least action. The significance and the sensitivity of atom
interferometry should then be evaluated in the framework of an alternative theory because
it is not consistent to calculate, as MPC do in [35],7 the dephasing of the interferometer by

6 See also [40] for MPC’s answer to our reply.
7 See ‘Methods’ in [35], where they consider two scenarios. The first one clearly states that the trajectories are not
modified whilst the atomic phases are. The second uses g′ for the trajectories and g(1 + β) for the phases, which
again corresponds to two different Lagrangians.
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using the Feynman approach with two different Lagrangians. Instead, a different approach for
the description of atom interferometers has to be developed for dealing with the violation of
fundamental principles of quantum mechanics.

These investigations lie at the interface between quantum mechanics and gravitational
theories. One could wonder whether it is possible to provide clear answers to the question
asked in the title of this paper. We shall see below that a number of clear-cut statements
and definite conclusions will be obtained, provided the theoretical frameworks are specified
clearly and unambiguously. To this aim, we shall consider two general alternative theoretical
frameworks.

The first framework, which we call the ‘modified Lagrangian formalism’, consists of a
deformation of the Lagrangian of GR [15, 41, 42]. Such a modified Lagrangian formalism
is at the basis of the usual interpretation of the various tests of the equivalence principle,
including the tests of the UCR and the UFF, in a way consistent with Schiff’s conjecture
[44], the principle of least action and the basic principles of quantum mechanics. Within this
general formalism UCR and UFF tests are related (violation of one implies violation of the
other) with the quantitative relationship depending on the formalism used. As we will show, in
such theories the atom interferometer phase shift arising from the free evolution of the atoms
is rigorously zero and thus the Compton frequency plays no role. Instead, the measured phase
shift comes from the laser interactions and measures the free fall of the atoms using the laser
as a ‘ruler’. In that sense the atom interferometers test UFF, and indeed appear as such in the
more recent publication of MPC [37].8

In the second framework, which we call the ‘multiple Lagrangian formalism’, the motion
of test particles (atoms or macroscopic bodies) obeys the standard GR Lagrangian in a
gravitational field, whereas the phase of the corresponding matter waves obeys a different
Lagrangian. The MPC analysis in [35] belongs to this framework which raises extremely
difficult problems. It violates the Feynman path integral method which is at the basis of the
computation of the quantum phase shift, as well as the Schiff conjecture. In particular, the phase
shift is derived in a manner which is not consistent with standard quantum mechanics. This
derivation would thus require the development of a mathematically sound theory allowing
one to go beyond standard quantum mechanics. It is only after this development that the
interpretation of atom interferometry experiments as testing the gravitational redshift could be
attributed an unambiguous meaning.

At this point, we also want to mention other crucial differences between atom
interferometry and clock experiments. In clock experiments, the trajectories of the clocks
are continuously controlled for instance by continuous exchange of electromagnetic signals.
In atom interferometry in contrast, the trajectories of the atoms are not measured independently
but theoretically derived from the Lagrangian and initial conditions. Furthermore, we expect
that it is impossible to determine independently the trajectories of the wave packets without
destroying the interference pattern at the exit of the interferometer9.

Another important difference lies in the very notion of a clock. Atomic clocks use the
extremely stable energy difference between two internal states. By varying the frequency of

8 In [37] atom interferometer tests set limits on the same parameter combination as classical UFF tests, namely
β1 + ξbind

1 −β2 − ξbind
2 ([37], p 4), where the subscripts refer to test masses 1 and 2 (e.g. 1 = Cs and 2 = falling corner

cube in [30] whilst 1 = Ti and 2 = Be in [6]), and ξbind refers to the nuclear binding energy of the test masses. On
the other hand UCR tests in [37] set limits on either β1 − ξ trans

2 or ξ trans
1 − ξ trans

2 ([37], p 3), where ξ trans is related to
the atomic transition of the atom used in the clock and not to its nuclear binding energy.
9 Note also that the phase shift (1.1) for clocks is valid in any gravitational field, with any gravity gradients, since it
is simply the proper time elapsed along the trajectories of the clocks in a gravitational field. By contrast, the phase
shift (1.3) is known only for quadratic Lagrangians (see section 2.1) and cannot be applied in a gravitational field
with large gravity gradients, or more generally with any Lagrangian that is of higher order.
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an interrogation signal (e.g. microwave or optical), one obtains a resonant signal when the
frequency is tuned to the frequency of the atomic transition. In their re-interpretation, MPC
view the entire atom as a clock ticking at the Compton frequency associated with its rest
mass. But the ‘atom-clock’ is not a real clock in the previous sense, since it does not deliver
a physical signal at Compton frequency, as also recently emphasized in the same context in
[43].

The plan of this paper is as follows. In section 2, we discuss the prediction of
GR, emphasizing its foundations in sections 2.1 and 2.2, and standard interpretation in
section 2.3. In section 3, we investigate the alternative multiple Lagrangian formalism
(section 3.1) and modified Lagrangian formalism (section 3.2). Our conclusions are
summarized in section 4. The case of neutron interferometry is briefly discussed in appendix A.
We provide some estimate of the influence of high-order gravity gradients in appendix B.

2. Gravimetry using atom interferometers

2.1. Path integral formalism

Theoretical tools for atom optics and interferometry have been extensively developed
[21, 23–27]. Since atom interferometers are close to the classical regime (S � h̄), a path
integral approach is very appropriate since it reduces to a calculation of integrals along classical
paths for Lagrangians which are at most quadratic in position and velocity. The path integral
approach to matter wave interferometry is developed in detail in [21]. Equivalent results have
been obtained using non-relativistic or relativistic wave equations of quantum mechanics (see
e.g. [23] for a review). Here we only recall the points relevant to our discussion. We denote by
K(zb, tb; za, ta) the quantum propagator that provides the wavefunction of the atom at point
(zb, tb) given the wavefunction at any initial point (za, ta),

ψ(zb, tb) =
∫

dza K(zb, tb; za, ta) ψ(za, ta), (2.1)

where the integration is over all initial positions za at the given time ta. In Feynman’s
formulation the propagator is a sum over all possible paths � connecting (za, ta) to (zb, tb),

K(zb, tb; za, ta) =
∫

Dz�(t) e
i
h̄
S� , (2.2)

where Dz�(t) is the integration measure over the path z�(t), which is such that z�(ta) = za

and z�(tb) = zb. The phase factor is computed from the action along each path given by

S�(zb, tb; za, ta) =
∫ tb

ta

dt L[z�(t), ż�(t)]. (2.3)

It can be shown [21] that in the case where the Lagrangian is at most quadratic in positions z

and velocities ż, i.e. is of the general type

L [z, ż] = a(t) ż2 + b(t) żz + c(t) z2 + d(t) ż + e(t) z + f (t), (2.4)

where a(t), b(t), c(t), d(t), e(t) and f (t) denote some arbitrary functions of time t, the
propagator takes the simple form

K(zb, tb; za, ta) = F(tb, ta) e
i
h̄
Scl(zb,tb;za,ta). (2.5)

Here, the function F depends on times ta, tb but not on positions za , zb, which is no longer the
case when the Lagrangian is more than quadratic [21]. We denote by Scl the classical action

Scl(zb, tb; za, ta) =
∫ tb

ta

dt L[zcl, żcl], (2.6)

6



Class. Quantum Grav. 28 (2011) 145017 P Wolf et al

Figure 1. Spacetime trajectories followed by the atoms in the interferometer. Laser pulses occur
at times ta, tb = tc and td, separated by time intervals T and T ′. The two-photon Raman transitions
are between two hyperfine levels g and g′ of the ground state of an alkali atom.

where the integral extends over the classical path zcl(t) satisfying the Lagrange equation

d

dt

(
∂L

∂żcl

)
= ∂L

∂zcl
, (2.7)

with boundary conditions zcl(ta) = za and zcl(tb) = zb. One can show that the wavefunction
deduced from (2.1) and (2.5) obeys the Schrödinger equation corresponding to the Hamiltonian
H deduced from the Lagrangian L.

Next the result (2.5) is used to obtain the final wavefunction (2.1) in the case where the
initial state ψ(za, ta) is a plane wave, i.e.

ψ(za, ta) = 1√
2πh̄

e
i
h̄
(p0za−E0ta). (2.8)

Denoting by z0 the initial position at time ta such that the initial momentum of the classical
path starting from (z0, ta) equals the momentum p0 of the initial plane wave, we obtain

ψ(zb, tb) = G(tb, ta) ψ(z0, ta) e
i
h̄
Scl(zb,tb;z0,ta). (2.9)

The function G is another function depending only on times ta and tb. The result (2.9) is
at the basis of the computation of the phase shift in atom interferometers. We shall from
now on change our notation z0 back into za so that (2.9) applies to say the half upper path
between (za, ta) and (zb, tb) of the interferometer depicted in figure 1. We emphasize at this
point that this formula is valid only for quadratic Lagrangians of the form (2.4). For more
general Lagrangians, the function G a priori depends on the positions za and zb, and the simple
formula (2.9) is a priori incorrect.

Evidently, any attempt like the one proposed by MPC in [35] to integrate the classical
action (2.6) over a path which is different from the classical path, i.e. which does not obey the
Lagrange equation (2.7) or is a solution of a Lagrange equation with a different Lagrangian,
will violate the fundamental Feynman path integral formulation of quantum mechanics. The
wavefunction (2.9) is then no longer a solution of the Schrödinger equation and it becomes
inconsistent to use it for the calculation of the phase difference. This inconsistency is inherent
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to the class of formalisms investigated in section 3.1, and, as we shall see, is the only way to
substantiate the claim made by MPC.

2.2. Computation of the phase shift

The atomic gravimeter is described in detail in [19, 20, 22, 30] and the general theory of such
gravito-inertial devices can be found, for example, in [21, 23, 24]. The schematic view of the
atom interferometer showing the two interferometer paths I and II is given by figure 1. Here
we recall only the main points relevant to our discussion (see the detailed description of the
experimental setup in [30]).

The caesium (or some alkali) atoms are optically cooled and launched in a vertical fountain
geometry. They are prepared in a hyperfine ground state g. A sequence of vertical laser pulses
resonant with a g → g′ hyperfine transition is applied to the atoms during their ballistic (i.e.
free fall) flight. In the actual experiments, the atoms undergo a two-photon Raman transition
where the two Raman laser beams are counter-propagating. This results in a recoil velocity of
the atoms, with the effective wave vector transferred to the atoms being k = kA + kB , where
A and B refer to the counter-propagating lasers (see e.g. [21, 22]). A first pulse at time ta
splits the atoms into a coherent superposition of hyperfine states gg′ with the photon recoil
velocity yielding a spatial separation of the two wave packets. A time interval T later (we
denote T = tb − ta = tc − ta; see figure 1), the two wave packets are redirected toward each
other by a second laser pulse thereby exchanging the internal states g and g′. Finally a time
interval T ′ later (with T ′ = td − tb = td − tc), the atomic beams recombine and a third pulse is
applied. After this pulse the interference pattern in the ground and excited states is measured.

The calculation of the phase shift �ϕ of the atomic interferometer in the presence of a
gravitational field was done in [19–21] and proceeds in several steps. The first contribution
to the phase shift comes from the free propagation of the atoms in the two paths. Using the
result (2.9) of the path integral formalism, and the fact that the function G therein depends on
times ta, tb but not on positions za, zb, we see that this contribution is equal to the difference
of classical actions in the two paths,

�ϕS = �Scl

h̄
. (2.10)

To compute it, one calculates the classical trajectories of the wave packets in the two arms
using the equations of motion of massive test bodies deduced from the classical Lagrangian
and the known boundary conditions (position and momenta) of the wave packets. In the case
of the general quadratic Lagrangian (2.4), the equations of motion read

d

dt
[2a(t)ż] = [2c(t) − ḃ(t)]z + e(t) − ḋ(t). (2.11)

Following figure 1, we denote by z1(t) and z3(t) the classical trajectories between the laser
interactions in the upper path I, and by z2(t) and z4(t) the trajectories in the lower path II. The
boundary conditions in positions appropriate to the closed-path interferometer of figure 1 are
(for simplicity we set ta = 0)

z1(0) = z2(0), (2.12a)
z1(T ) = z3(T ), (2.12b)
z2(T ) = z4(T ), (2.12c)
z3(T + T ′) = z4(T + T ′). (2.12d)

The boundary conditions in velocities are determined by the recoils induced from the
interactions with the lasers. Actually once we have imposed the boundary conditions (2.12),

8
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and in particular that the interferometer closes at some time T + T ′, only the recoils due to the
second pulse at the intermediate time T are needed for this calculation. These are given by

ż1(T ) − ż3(T ) = +
h̄k

m
, (2.13a)

ż2(T ) − ż4(T ) = −h̄k

m
, (2.13b)

where k = kA + kB is the effective wave vector transferred by the lasers to the atoms. Second,
one calculates the difference in the classical action integrals along the two paths,

�Scl =
∫ T

0
(L[z1, ż1] − L[z2, ż2]) dt +

∫ T +T ′

T

(L[z3, ż3] − L[z4, ż4]) dt + �Sgg′ , (2.14)

where the Lagrangian L(z, ż) is given by (2.4), and the integrals are carried out along the
classical paths calculated in the first step. We have taken into account the changes in energy
between the hyperfine ground states g and g′ of the atoms in each path. These energies will
cancel out from the two paths provided that T ′ is equal to T, which will be true for a Lagrangian
in which we neglect gravity gradients. In the more general case T ′ will differ from T and there
is an extra contribution in (2.14) given by

�Sgg′ = h̄ ωgg′(T − T ′), (2.15)

where we denote the internal energy change by Eg′ − Eg = h̄ ωgg′ .
We now prove (see e.g. [21, 23]) that the two action integrals in (2.14) cancel each other in

the case of a quadratic Lagrangian of the general form (2.4). This follows from the fact that the
difference between the Lagrangians L[z1(t), ż1(t)] and L[z2(t), ż2(t)], which are evaluated
at the same time t but on two different trajectories z1(t) and z2(t), is a total time derivative
when the Lagrangians are ‘on-shell’, i.e. when the two trajectories z1(t) and z2(t) satisfy the
equations of motion (2.11). Namely, we find10

L[z1, ż1] − L[z2, ż2] = d

dt

[
(z1 − z2)

(
a(t)(ż1 + ż2) +

1

2
b(t)(z1 + z2) + d(t)

)]
. (2.16)

Since the difference of Lagrangians is a total time derivative the difference of action functionals
in (2.14) can be immediately integrated. Using the continuity conditions at the interaction
points with the lasers (2.12), and then using the recoils due to the intermediate laser pulse at
time T given by (2.13), yields

�Scl − �Sgg′ = a(T )[z1(T ) − z2(T )][ż1(T ) + ż2(T ) − ż3(T ) − ż4(T )] = 0. (2.17)

Therefore, for all quadratic Lagrangians the difference of classical actions in the interferometer,
and therefore the phase shift due to the free propagation of the atoms, reduces to the contribution
of the change of internal states g and g′; thus11,

�ϕS = ωgg′(T − T ′). (2.18)

When the interferometer is symmetric, i.e. T = T ′ which will be the case when we neglect
gravity gradients, we get exactly zero. Equations (2.17) or (2.18) constitute the central theorem
to be used for the discussion in this paper.

10 To prove this, we consider the first contribution a(ż2
1 − ż2

2) in the difference L1 − L2 and re-express it, thanks to
an integration by parts as a(ż2

1 − ż2
2) = d

dt
[a(z1 − z2)(ż1 + ż2)] − (z1 − z2)

d
dt

[a(ż1 + ż2)]. The second term is then
simplified by means of the sum of the equations of motion (2.11) written for z = z1 and z = z2. In addition we also
integrate by parts the second and fourth contributions to L1 −L2 as b(ż1z1 − ż2z2) = d

dt
[ 1

2 b(z2
1 − z2

2)] − 1
2 ḃ(z2

1 − z2
2)

and d(ż1 − ż2) = d
dt

[d(z1 − z2)] − ḋ(z1 − z2). Summing up the results we obtain (2.16).
11 Rigorously, in this equation, the time interval should be a proper time interval.
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In the second step, one calculates the difference in the light phases �ϕ� at the three
interactions with lasers. These are obtained using the paths calculated in the first step and the
equations of light propagation, with the light acting as a ‘ruler’ that measures the motion of the
atoms. For the interferometer described in figure 1 the phase difference from light interactions
is given by

�ϕ� = −φ(za, 0) + φ(zb, T ) + φ(zc, T ) − φ(zd, T + T ′). (2.19)

Here φ denotes the phase of the laser light as seen by the atom, i.e. φ(z, t) = kz − ωt − φ0

where k, ω and φ0 are the wave vector, the frequency and the phase of the laser in the frame
of the laboratory. The phase of the laser is evaluated at the interaction points shown in
figure 1. Finally the total phase shift measured in the atom interferometer is the sum of the
two contributions

�ϕ = ωgg′(T − T ′) + �ϕ�, (2.20)

depending only on the internal states g and g′, and the light phases which measure the free fall
trajectories of the atoms.

Here we have assumed that the two paths I and II close up at the entry and exit of the
interferometer (see figure 1). For the more general case where the paths are not closed, one finds
that �ϕS is no longer zero, but that �ϕS is exactly canceled by additional terms corresponding
to the phase difference of the wave packets at different positions at the interferometer entry
and exit [23] (except for the very small terms due to the energy difference h̄ωgg′).

Expression (2.18) shows that depending on the particular geometry of the interferometer,
one can obtain a sensitivity to the frequency difference ωgg′ of the two internal states. In that
sense, the interferometer can be viewed as a clock. In fact, atomic clocks are a particular kind
of interferometer which has been designed to have a strong sensitivity to ωgg′ [23, 24]. A
simple example is an interferometer with only two pulses separated by a time T. In that case,
one uses either a microwave field or Raman transitions with two co-propagating laser beams
so that k = kA − kB . Then the photon recoil becomes negligibly small and the two paths are
separated spatially at t = T by much less than the coherence length of the atoms, allowing
them to interfere. The total phase shift is then given by

�ϕ = ωgg′T + �ϕ�. (2.21)

As mentioned above, all other terms in �ϕS are exactly canceled by corresponding terms
arising from the non-closure of the paths. The laser phase shift is to leading order

�ϕ� = −ωT . (2.22)

One therefore observes interference fringes when varying the frequency of the laser or
microwave field, known as Ramsey fringes. That allows locking the laser frequency to
the atomic transition frequency ωgg′ , which constitutes an atomic clock. We note that the
interference of the two interferometer arms is required for the operation of the clock; each arm
individually cannot be considered as a clock.

If one wanted to use such interferometers (clocks) for a gravitational redshift test one would
need two of them placed in different gravitational potentials (e.g. [11, 12]). But of course such
clocks do not run at the Compton frequency but at ωgg′ , and thus the corresponding redshift
test is not at the Compton frequency. For that to be the case one would need interferometers
with the internal energy (mass) difference of the particles on the two paths h̄ωgg′ = mc2. Such
a matter–antimatter interferometer is orders of magnitude beyond present day technology.

10
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2.3. Prediction from general relativity

As a specific example, let us consider the prediction from GR, which has been extensively
treated in [23]; here, we only present a very basic analysis sufficient for our purposes.
The appropriate Lagrangian is derived to sufficient accuracy using the Schwarzschild metric
generated by the Earth,

LGR(z, ż) = −mc2 dτ

dt
= −mc2 +

GMm

r⊕
− mgz +

1

2
mż2 + O

( 1

c2

)
, (2.23)

where dτ = √−gμν dxμ dxν/c2 is the proper time, r⊕ is the Earth’s radius, g = GM
/
r2
⊕ is

the Newtonian gravitational acceleration, G is Newton’s gravitational constant, M is the mass
of the Earth, m is the mass of the atom, c is the speed of light in vacuum, z is defined by
r = r⊕ +z with r the radial coordinate, and O(1/c2) denotes a post-Newtonian correction. For
simplicity we restrict ourselves to only radial motion, which is sufficient for the arguments
presented in this paper. We also neglect systematically the post-Newtonian correction and no
longer indicate the remainder term O(1/c2).

The equations of motion are deduced from (2.23) using the principle of least action or the
Euler–Lagrange equations, and read evidently z̈ = −g. Then, when integrating (2.23) along
the resulting paths, and calculating the difference as defined by (2.14) one finds

�ϕS = 0. (2.24)

Since the Lagrangian (2.23) is quadratic, this is a particular case of the general result (2.17).
Furthermore, in the simple case of a Lagrangian which is linear in z we find that the
interferometer is symmetrical, i.e. the interrogation times are equal, T = T ′. Thus, the
effect due to the difference of internal energies Eg′ − Eg is zero in this case.

Evaluating the light phases at the different interaction points, one finds easily that (see
[21–23, 30] for details)

�ϕ� = k g T 2, (2.25)

where k is the effective wave vector of the lasers (i.e. k = kA + kB where the subscripts A and
B refer to the counter-propagating laser beams [22]), and T is the time interval between the
laser pulses (see figure 1). As a result, the total phase shift calculated in GR is

�ϕ = k g T 2. (2.26)

This shows that the atom interferometer is a gravimeter or accelerometer. The phase shift
(2.26) arises entirely from the interactions with the lasers and the fact that the atoms are falling
with respect to the laboratory in which the experiment is performed. It is thus proportional to
the acceleration g of atoms with respect to the experimental platform which holds the optical
and laser elements. With k and T known from auxiliary measurements, one deduces the
component of g along the direction of k. If the whole instrument was put into a freely falling
laboratory, the measured signal �ϕ would vanish12.

The signal (2.26) is actually the same as in the measurement of the free fall of a
macroscopic object (corner cube) using lasers. Therefore, atomic interferometers can be
used for testing the universality of free fall between the atoms and some macroscopic objects.
The precision on the test of the UFF between caesium atoms and classical objects such as the
corner cube is currently 7 × 10−9 [30, 31, 35].

We have stressed that integrating the Lagrangian along the classical paths only provides
the correct phase shift when the Lagrangian is at most quadratic in position and velocity [21].

12 The result is identical for the phase shift in neutron interferometers under the influence of gravity, as shown in
appendix A.
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For higher order Lagrangians, the full path integrals need to be evaluated. Thus, one might be
tempted to use atom interferometry tests to search for redshift effects arising from third and
higher order terms in the Lagrangian, but as already mentioned and shown explicitly in e.g.
[21] such an approach is incorrect, as the full Feynman integral is required13.

3. Testing the gravitational redshift?

We now address the question of the significance of tests of the gravitational redshift by
atom interferometers as described by MPC [35] within the frameworks of different classes of
alternative theories or models. Depending on the underlying theory, the Lagrangian will be
different, so the equations of motion providing the paths will be different, and the relation
between the action integral and the phase shift (cf equation (2.10)) may also be different. In
addition, we may have to model differently the propagation of light, so the resulting calculated
phase shift might also differ. The comparison of the calculated and measured phase shifts
then allows us to discriminate between different candidate theories. We shall see that the
significance of the tests depends on the alternative model we consider.

3.1. Multiple Lagrangian framework

In this formalism, the atom interferometry experiment could be viewed as testing the
gravitational redshift or the universality of clock rates (UCR), and it is the formalism
used by MPC in [35]. More precisely, this corresponds to the first scenario of MPC (see
‘Methods’, bottom of first column, in[35]), where they calculate the phase shift by integrating
the Lagrangian with g(1 + β) along the trajectories calculated with the standard value of g.14

Within this multiple Lagrangian framework, we derive the interferometer phase shift
(putting on a more rigorous basis the computation of MPC) and then we show that this
framework raises a number of unacceptable issues related to fundamental principles of quantum
mechanics.

The framework is motivated by a search for a possible violation of the local position
invariance (LPI) aspect of the Einstein equivalence principle, while supposing that the
remaining aspects of the equivalence principle, namely the local Lorentz invariance (LLI)
and the weak equivalence principle (WEP), are valid. Thus, in the first place, this framework
violates the Schiff conjecture [44]. (See [15] for a thorough discussion on the different parts
of the Einstein equivalence principle and the Schiff conjecture.)

If the WEP is valid we can consider the local freely falling frames associated with test
bodies, which fall with the universal acceleration g in a gravitational field. In these frames
classical clocks will measure a proper time dτ which is proportional, because LLI is valid
to the special-relativistic Minkowskian interval ds. However, because LPI is violated, we
allow for a dependence on the position of the measured rate. Specifically we introduce a
proportionality factor f (�) between dτ and ds built from some anomalous field � associated
with gravity and depending on position. In an arbitrary frame this means that the proper time
dτ measured by clocks is proportional to the metric interval ds and given by

dτ = f (�) ds = f (�)

√
−gμν dxμ dxν/c2. (3.1)

13 If one nonetheless calculates the phase shift for a higher-order Lagrangian by integrating only along the classical
path, a non-zero result is obtained. In appendix B, we estimate the order of magnitude of the effect of including cubic
terms in the Lagrangian of GR, which correspond to second-order gravity gradients.
14 In the second scenario, MPC still integrate the Lagrangian with g(1 + β) but use g′ different from g for the
trajectories without explaining clearly how to calculate g′.
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But because the WEP is valid the motion of test bodies is unaffected and obtained from the
usual variational principle associated with the metric interval ds, i.e. δ

∫
ds = 0.

Consider a classical redshift experiment. One observes at point z1 the light coming from a
particular atomic transition occurring at point z0. The points z1 and z0 are at rest in a stationary
gravitational field g. The relative difference between the frequency of the light coming from
point z0 and observed at point z1, with respect to the frequency of the light emitted by the
same atomic transition but occurring at point z1, is

Z ≡ �τ1

�τ0
− 1 = f (�1)

f (�0)

√−g00(z1)√−g00(z0)
− 1, (3.2)

where �1 = �(z1) and �0 = �(z0). It is convenient to introduce a coefficient ζ linking the
gradient of the anomalous field to the local gravitational acceleration by g = ζ d�/dz (see
[15] for more details). Expanding to first order in �z = z1 − z0, we can write

f = f0

[
1 + β

g�z

c2

]
, (3.3)

where we have defined

β = c2f ′
0

ζ f0
, (3.4)

with f 0 and f ′
0 denoting f and df/d� evaluated at the value �(z0). Inserting then (3.3) into

(3.2) we find that the parameter β defined in this way measures a possible anomalous deviation
from the standard prediction for the redshift, i.e.

Z = (1 + β)
g�z

c2
, (3.5)

and we know that β has been tested by redshift experiments with the accuracy 10−4 [11].
Usually the parameter measuring redshift violations is denoted α but here it is important

to adopt the different notation β used by MPC. Indeed one should recall that the meaning of
parameters α or β depends on the theoretical framework in use. The result (3.5) corresponds
to our particular formalism, the multiple Lagrangian formalism, and should be contrasted with
a similar result (3.19) that we will obtain below in the context of the modified Lagrangian
formalism in section 3.2. In particular, we note that the parameter β in equation (3.5) may
or may not be ‘universal’, i.e. depending on the nature and internal structure of the clock, in
contrast with the parameter α

(a)
X in equation (3.19) which depends on the type of atom (a)

constituting the clock and on some type of internal energy X violating LPI. In the present
formalism, we do not need to specify if β is universal or not because the WEP is valid so
that we can always test the value of β by measuring g from the free-fall of test bodies (as
proposed by MPC). This is different in the modified Lagrangian formalism of section 3.2
where any universal contribution to α

(a)
X is unobservable since it can always be absorbed into

a re-definition of g.
Let us now apply this formalism to atom interferometry, viewing the atoms in the two

paths of the interferometer as classical clocks ticking at the Compton frequency ωC. In this
case, z1 is a generic position of the atom on one of the paths (see figure 1) and z0 denotes
an origin located between the paths. Following the analogy with classical clocks discussed
in section 1.2, we can write the phase difference between the two ‘atom-clocks’ for a closed
interferometer as15

�ϕS = ωC

∮
dτ = ωC

∮ [
1 + β

g�z

c2

]
ds. (3.6)

15 As is clear from e.g. (3.1), the constant f 0 can be absorbed into a rescaling of the coordinates by posing
x

μ
new = f0 x

μ
old. Henceforth, we set this constant to f0 = 1.
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On the other hand, the trajectories of the atoms are the usual geodesics of spacetime, such that
δ
∫

ds = 0. As we have proved in section 2.2, in the case of a quadratic Lagrangian and a
symmetric closed interferometer, the integral of ds is zero, so one is left with

�ϕS = ωC

∮
βgz

c2
ds. (3.7)

At the dominant order, we can approximate ds by the coordinate time dt and a short calculation
shows that the phase shift is non-zero but given by

�ϕS = β k g T 2. (3.8)

Adding the term due to the interaction with lasers which is standard (because WEP is valid)
and given by (2.25), we obtain the total phase shift

�ϕ = �ϕS + �ϕ� = (1 + β) k g T 2, (3.9)

where β takes the same meaning as the redshift violation parameter entering (3.5).
Comparing the predictions (3.5) and (3.9) we conclude that within this formalism atom-

interferometric gravity measurements would test the gravitational redshift and would improve
existing limits on this measurement by four orders of magnitude, as claimed by MPC.

However, let us now critically examine the implications and meaning of this formalism
and show that it raises a number of difficult fundamental problems. We refer to this formalism
(or class of alternative theories) as a multiple Lagrangian framework because for these theories
the trajectories of massive bodies (classical particles or classical paths of wave packets) obey a
Lagrangian which is different from the Lagrangian used to compute the proper time of clocks
or the phase shift of matter waves. Since the WEP is valid, the motion of massive classical
particles obeys the standard Lagrangian of general relativity, Lparticle = LGR = −mc2 ds/dt ,
i.e. to first order

Lparticle = −m c2 +
GMm

r⊕
− m g z +

1

2
mż2. (3.10)

On the other hand, the action integral we have used for the computation of the phase shift of
the quantum matter wave is calculated from a different Lagrangian given by

Lwave =
(

1 + β
g z

c2

)
Lparticle. (3.11)

We first note that this Lagrangian is not quadratic and, neglecting higher-order corrections, we
recover the Lagrangian used by MPC [35], i.e.

Lwave = −m c2 +
GMm

r⊕
− (1 + β)m g z +

1

2
mż2, (3.12)

where the parameter β that measures the deviation from GR (i.e. β = 0 in GR) enters as a
correction in the atom’s gravitational potential energy.

The most important problem is that it is inconsistent to use a different Lagrangian (or
metric) for the calculation of the trajectories and for the phases of the atoms or clocks. More
precisely, it supposes that the fundamental Feynman path integral formulation of quantum
mechanics, which is at the basis of the derivation of the phase shift in an atom interferometer
(see section 2.1), has to be altered in the presence of a gravitational field or could be wrong16.
16 In the case of atom gravimeters using Bloch oscillation [45, 46], also interpreted as redshift tests by MPC, the atoms
are ‘trapped’ in optical dipole traps, and the Bloch oscillation frequencies are interpreted as interference of two matter
waves at Compton frequency, without using the Feynman formalism. However, this interpretation is plagued with the
same difficulties. The Bloch oscillation frequency is obtained from the Schrödinger equation with the Hamiltonian
including a gravitational term. We first note that adding or not the rest-mass energy to that Hamiltonian does not
modify the derived Bloch frequency; hence, the Compton frequency of the atoms plays no role. Second, to obtain
the result of MPC, one needs to use a different gravitational term in the Hamiltonian when calculating the states and
energies providing the Bloch frequency or when calculating the motion of the atoms in the same gravitational field.
This is akin to the multiple Lagrangian framework with the same difficulties and inconsistencies.
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Physically it amounts to making the distinction between the atoms when calculating their
trajectories and the same atoms when calculating their phases, which is inconsistent as
it is the same fundamental matter field in both cases. Even more, the basis for writing
equation (3.6) for the derivation of the atom interferometry phase shifts (as does MPC) is
unjustified because the Feynman formalism is violated. To remain coherent some alternative
formalism for the atomic phase shift calculations (presumably modifying quantum mechanics)
should be developed and used. More generally the multiple Lagrangian formalism supposes
that the duality between particles and waves in quantum mechanics gets somehow violated in
a gravitational field.

The above violation of the ‘particle-wave duality’, implied by the multiple Lagrangian
formalism, is very different from a violation of the equivalence principle in the ordinary sense.
In this formalism, a single physical object, the atom, is assumed to be described by two
different Lagrangians, Lwave applying to its phase shift, and Lparticle applying to its trajectory.
By contrast, in tests of the equivalence principle, one looks for the modification of the free fall
trajectories or clock rates as a function of composition or clock type. Thus, different bodies
or clocks are described by different Lagrangians, but of course for any single type of body
we always have Lwave = Lparticle. The pertinent test-bed for equivalence principle violations
is the modified Lagrangian formalism reviewed in section 3.2, which does not imply any
particle-wave duality violation.

The second problem of theories in the multiple Lagrangian formalism and of the
interpretation of MPC is the violation of Schiff’s conjecture [44]. Indeed, we have assumed
in this section that the LPI aspect of the equivalence principle is violated but that for instance
the WEP aspect remains satisfied. In a complete and self-consistent theory of gravitation,
one expects that the three aspects of the Einstein equivalence principle (WEP, LLI and LPI)
are sufficiently entangled together by the mathematical formalism of the theory that it is
impossible to violate one without violating all of them. The Schiff conjecture has been
proved using general arguments based upon the assumption of energy conservation [41, 42].
A contrario, we expect that violating the conjecture leads to some breakdown of energy
conservation. In the present case, this translates into postulating two Lagrangians for the same
physical object. Explicit theories that are logically and mathematically consistent but still
violate Schiff’s conjecture are very uncommon (see [15] and references therein)17.

In conclusion, the multiple Lagrangian formalism violates the Feynman path integral
formulation of quantum mechanics, the principle of least action and energy conservation,
and Schiff’s conjecture. Unfortunately, the claim made by MPC [35] that atom gravimeters
measure the gravitational redshift can only be substantiated within this formalism.

3.2. Modified Lagrangian framework

In this section, we review and adapt for our purpose the important ‘modified Lagrangian
framework’, which is a powerful formalism for analyzing tests of the various facets of the
Einstein equivalence principle (EEP). This formalism allows deviations from GR and metric
theories of gravity, with violations of the UFF and UCR, and permits a coherent analysis of
atom interferometry experiments. But it does not suffer from the shortcomings of the multiple
Lagrangian framework. The formalism describes the Newtonian limit of a large class of
non-metric theories, in a way consistent with Schiff’s conjecture and fundamental principles
of quantum mechanics.

17 Ni [47] has proposed a possible counterexample of Schiff’s conjecture. As it is based on a modified Lagrangian, it
falls in the category of theories investigated in section 3.2 for which atom interferometry does not test the redshift.
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Within this general formalism there is no fundamental distinction between UFF and UCR
tests, as violation of one implies violation of the other (Schiff’s conjecture), thus testing one
implies testing the other. Depending on the theory used, different experiments test different
parameters or parameter combinations at differing accuracies, so they may be complementary
or redundant depending on the context. As we shall see, in such theories the mass of the atoms
cancels out when computing the phase shift of the atom interferometer, and thus the atom’s
Compton frequency is irrelevant. In that sense, atom interferometers test UFF (and are indeed
interpreted that way in the more recent work [37]), but are insensitive to a test of UCR at the
Compton frequency.

This class of theories is defined by a single Lagrangian, that is, however, different from the
GR Lagrangian (2.23). In particular, the coupling between gravitation and different types of
mass–energy is generically not universal [48]. This leads to modifications of the gravitational
redshift and also, more generally, to violations of the weak equivalence principle or universality
of free fall, the local Lorentz invariance and the local position invariance. But it does not
imply a violation of the principle of least action nor of energy conservation, as it is based on
a single Lagrangian and, of particular interest here, the Feynman path integral formulation of
quantum mechanics remains valid. Most alternative theories commonly considered belong to
this class which encompasses a large number of models and frameworks (see e.g. [15, 48] and
references therein). It includes for example most non-metric theories (e.g. the Belinfante–
Swihart theory [18]), some models motivated by string theory [49] and brane scenarios, some
general parameterized frameworks such as the energy conservation formalism [41, 42] (see
also [50]), the THεμ formalism and its variants [51, 52], and the Lorentz violating standard
model extension (SME) [53, 54] used in [37].

The modified Lagrangian formalism is a physical framework in which the violation of EEP
originates from the anomalous behavior of some particular type of energy in a gravitational
field. For our purposes it is sufficient to use a strongly simplified ‘toy’ Lagrangian chosen
as a particular case within the ‘energy conservation formalism’ of Nordtvedt and Haugan
[41, 42] (see [15] for a review). To keep in line with MPC we choose an expression similar to
the Lagrangian of GR given by (2.23), namely

Lmodified = −m(z) c2 +
GMm(z)

r⊕
− m(z) g z +

1

2
m(z) ż2. (3.13)

We postulate that for the body or atom under consideration the mass m depends on the
position z through a violation of the LPI subprinciple of EEP. This is modeled by assuming
that a particular internal energy of the atom EX behaves anomalously in the presence of the
gravitational field, where X refers to the type of interaction involved (electromagnetic, nuclear,
spin–spin, spin–orbit, etc). In the general case, EX could depend on both the position z and
velocity ż of the atom [42], but here we consider only the dependence on z to model the
violation of the LPI. Separating out EX(z) from the other forms of energies EY composing
the atom and which are supposed to behave normally, we write

m(z) = m +
1

c2

[
EX(z) +

∑
Y 	=X

EY

]
. (3.14)

Here m denotes the sum of the rest masses of the particles constituting the atom, and m and
all EY ’s are constant. The violation of LPI is modeled in the simplest way by assuming that
at the leading order

EX(z) = EX + β
(a)
X m g z, (3.15)

where β
(a)
X denotes a dimensionless parameter characterizing the violation of LPI and

depending on the particular type of mass–energy or interaction under consideration, e.g.
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β
(a)
X would be different for the electromagnetic or the nuclear interactions, with possible

variations as a function of spin or the other internal properties of the atom, here labeled by the
superscript (a). Thus β

(a)
X would depend not only on the type of internal energy X but also on

the type of atom (a). Defining now the ‘normal’ contribution to the total mass,

m0 = m +
∑
Y

EY

c2
, (3.16)

and replacing m(z) by its explicit expression into the Lagrangian (3.13) we obtain

Lmodified = −m0 c2 +
GMm0

r⊕
− (

1 + β
(a)
X

)
m0 g z +

1

2
m0 ż2, (3.17)

in which we have neglected some higher-order relativistic terms. A major difference with
the Lagrangian (3.12) of the previous section is that the coefficient β

(a)
X is not universal but

depends on the internal structure of the atom.
Before discussing the atom interferometry experiment, let us recall the results for

traditional free fall and redshift experiments. By varying (3.17) we obtain the equations
of motion of the atom as

z̈ = −(
1 + β

(a)
X

)
g, (3.18)

which shows that the trajectory of the atom is affected by the violation of LPI and is not
universal. In fact we see that β(a)

X measures the non-universality of the ratio between the atom’s
passive gravitational mass and inertial mass. Thus, in the modified Lagrangian framework,
the violation of LPI implies a violation of the WEP and the UFF, and β

(a)
X appears to be

the UFF-violating parameter. This is a classic example [41, 42] of the validity of Schiff’s
conjecture, namely that it is impossible to violate LPI (or LLI) without also violating WEP.

The violation of LPI is best reflected in classical redshift experiments with clocks which
can be analysed using a cyclic Gedanken experiment based on energy conservation [15, 41, 42].
The result for the frequency shift in a Pound–Rebka-type experiment is

Z = (
1 + α

(a)
X

) g �z

c2
, (3.19)

where the redshift violating (or UCR violating) parameter α
(a)
X is again non-universal. As

such it has to be carefully distinguished from the redshift violation parameter β appearing
in equation (3.5) of the previous section (see also the discussion after (3.5)). The important
point, proven in [15, 41, 42], is that within the framework of the modified Lagrangian (3.17),
the UCR-violating parameter α

(a)
X is related in a precise way to the UFF-violating parameter

β
(a)
X , namely (see e.g. equations (6) and (7) in [41])

β
(a)
X = α

(a)
X

EX

m c2
. (3.20)

Therefore, tests of UCR and UFF are not independent, and we can compare their different
qualitative meaning. Since for typical energies involved we shall have EX 
 m c2 this
means that βX 
 αX.18 For a given set of UFF and UCR tests their relative merit is given by
equation (3.20) and is dependent on the model used, i.e. the type of anomalous energy EX and
its dependence on the used materials or atoms19.

18 We denote by βX and αX some typical values of the parameters β
(a)
X and α

(a)
X for different bodies (a).

19 Imposing that UFF and UCR tests be quantitatively equivalent requires that the EEP-violating ‘internal’ energy EX

be the total mass, so that EX = mc2. But then α = β is a universal parameter which can be re-absorbed into the
definition of g. To obtain an effect in this case one needs to invoke the multiple Lagrangian formalism of section 3.1.
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For example, let us assume a model in which all types of electromagnetic energy are
coupled in a non-universal way, i.e. βEM 	= 0 (with all other forms of energies behaving
normally), and where the clock transition is purely electromagnetic. The UFF test between
two materials (a) and (b), both containing electromagnetic energy, is carried out with an
uncertainty of

∣∣β(a)
EM − β

(b)
EM

∣∣ � |βEM| � 10−13 [6, 7]. On the other hand, the UCR test for
a clock of type (a) based on an electromagnetic transition, is carried out with an uncertainty
of

∣∣α(a)
EM

∣∣ � |αEM| � 10−4 [11]. For macroscopic test bodies, the nuclear electromagnetic
binding energy contributes typically to about EEM/(mc2) � 10−3 of the total mass [41], so we
may have |βEM| � 10−3|αEM|, which yields for the UFF test a limit of about |αEM| � 10−10.
This is still a much more stringent limit than the UCR test |αEM| � 10−4. So in such a model,
UFF tests are significantly more sensitive than UCR tests.

However, that result depends on the particular model used. If we assume another model
in which the nuclear spin plays a role leading to a non-universal coupling of atomic hyperfine
energies, i.e. βHF 	= 0 (with other forms of energies and properties of the atom behaving
normally), the result is different. The precise mechanism is unknown, but one could imagine an
abnormal coupling of nuclear spin to gravity, with the standard coupling of the electromagnetic
nuclear binding energy, which is spin independent, still satisfied. Atomic hyperfine energies
are of order 10−24 J (corresponding to GHz transition frequencies) which for typical atomic
masses leads to ĒHF/(m̄c2) � 10−16. As a consequence, UFF tests set a limit of only
|αHF| � 103 while UCR tests using hyperfine transitions (e.g. H-masers [11]) set a limit of
about |αHF| � 10−4. The conclusion is therefore radically different in this model where UCR
tests perform orders of magnitude better than UFF tests.

To summarize, the two types of tests, UFF and UCR, are complementary in the modified
Lagrangian framework, and need to be pursued with equal vigor, because depending on the
model used either one of the tests can prove significantly more sensitive than the other. A
corollary is that usual tests of UCR do not need a violation of Schiff’s conjecture to be
meaningfully interpreted. They can perfectly be contrasted with UFF tests within a formalism
satisfying the Schiff conjecture.

Let us now consider the application to atom interferometry. In the experiment of [30, 35],
the ‘atom-clock’ that accumulates a phase is of identical composition to the falling object (the
same atom); hence, one has to consistently use the same value of β

(a)
X when calculating the

trajectories and the phase difference using the Lagrangian (3.17) inserted into (2.14). It is
then easy to show that �ϕS = 0 with the above Lagrangian [21–23]. The vanishing of �ϕS in
this case is a general property of all quadratic Lagrangians and comes from consistently using
the same Lagrangian for the calculation of the trajectories and the phase shift, as shown in
section 2.2. It is related to the cancellation between the special relativistic effect (last term in
(3.17)) and the gravitational potential energy (third term in (3.17)), discussed in more detail
below.

Then the total phase shift of the atom interferometer is again given by the light interactions
only, which are obtained from the phases at the interaction points evaluated using the trajectory
given by (3.17). From equation (2.25), one then obtains

�ϕ = �ϕ� = (
1 + β

(a)
X

)
k g T 2. (3.21)

We first note that in this class of theories the Compton frequency plays no role, as �ϕS = 0.
Indeed the mass term −m0c

2 in the Lagrangian (3.17) cancels out and could be ignored.
Second, we note that although β

(a)
X appears in the final phase shift, this is entirely related to

the light phase shift coming from the trajectory of the atoms, and thus is a measurement of
the effective free fall acceleration

(
1 + β

(a)
X

)
g of the atoms, which is given by equation (3.18).

In [30, 35] the resulting phase shift is compared to k g̃ T 2 where g̃ is the measured free fall
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acceleration of a falling macroscopic corner cube, i.e. g̃ = [
1 + β

(corner cube)
X

]
g, also deduced

from equation (3.18). In this class of theories the experiment is thus a test of the universality of
free fall, as it measures the differential gravitational acceleration of two test masses (caesium
atom and corner cube) of different internal composition, with precision∣∣β(Cs)

X − β
(corner cube)
X

∣∣ � 7 × 10−9, (3.22)

for any kind of internal energy X. Note that this expression is equivalent to the one obtained
by MPC in their recent paper [37] (p 4), but different from the one obtained in the same paper
(p 3) for UCR tests (see also a footnote in section 1.2).

As already mentioned the vanishing of �ϕS and thus the non-sensitivity to the gravitational
redshift in the ‘atom-clock’ phase is related to the cancellation between the special relativistic
term and the gravitational term when integrating along the trajectories. More generally, the
underlying fundamental point here is that for a measurement of the gravitational redshift one
wants to determine the non-zero effect of the gravitational redshift term (third term in (2.23)
or (3.17)) on the clock phase (atom or classical) independently of the effect of the special
relativistic term (fourth term in (2.23) or (3.17)) and of possible other phase shifts (e.g. the
light phase �ϕ�). This is generally done by using independent measurements that provide
the knowledge of the trajectories of the clocks z(t) and their velocities ż(t). One uses that
knowledge to subtract the time dilation and light phase shifts from the overall measured shift
�ϕ. The remaining gravitational redshift term can then be compared to the GR prediction.

As an example, in the Pound–Rebka experiment [8, 9], the two clocks were fixed to
the Earth’s surface at the top and bottom of the tower, which imposes z(t) = const and
ż(t) = 0. As a result the first-order Doppler shift was zero (implying �ϕ� = 0) and
the special relativistic term in the action phase shift also20. The measured frequency or
phase difference was then entirely due to the gravitational term and could be compared to
the GR prediction, clearly favoring GR. In modern rocket or satellite experiments [11, 12],
the trajectories of the clocks are measured independently using radio and/or laser ranging
which allows calculation and correction of the special relativistic and light phase-shifts, and
thus an unambiguous measurement of the gravitational redshift. In contrast, in the atom-
interferometry experiment the trajectories are not measured independently but theoretically
derived from the Lagrangian and initial conditions, thus making a ‘pure’ measurement of
the gravitational term impossible. One might even argue that in such an experiment the
independent determination of the wave packet trajectories (e.g. by high resolution imagery)
would be impossible as it would destroy the interference at the interferometer exit according
to one of the fundamental tenets of quantum mechanics.

4. Conclusion

We have shown that it was possible to provide answers to the question asked in the title of this
paper provided that the alternative theory or theoretical framework is carefully specified. To
this aim, after having proved in section 2 that within GR atom interferometers are insensitive
to the gravitational redshift, we have considered two classes of alternative theories to GR.

The first class of models is based on a modified Lagrangian (see section 3.2). In this
class, one finds most alternative approaches that postulate a non-universal coupling between
gravity and other fields of the standard model of particle physics or its extensions (see e.g.
[48, 51–54]), including some versions of string theory, brane scenarios, parameterized
frameworks, etc. This class of models is consistent with Schiff’s conjecture and represents

20 Actually, in the real experiment, the measured signal is given by a first-order Doppler shift which is applied to
compensate for the gravitational redshift.
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the most natural framework for analyzing and comparing the various consequences of the
violation of the equivalence principle. In this class of models, tests of the universality of
free fall (UFF) and of the universality of clock rates (UCR) are related, with the quantitative
relationship depending on the particular theory used, and the corresponding nuclear and atomic
models. We have shown that in this class of models, the free propagation phase shift �ϕS = 0
and therefore the Compton frequency plays no role; the interferometer cannot be viewed as
measuring the cumulated phase-difference of the ‘Compton-clocks’. Instead, the final phase
difference is given by the light interactions and thus measures the free fall acceleration of the
atoms compared to the free fall acceleration of a corner cube of different composition, akin to
classical UFF tests. The atom gravimeter experiments are thus tests of the weak equivalence
principle or universality of free fall at the 7 × 10−9 accuracy level, see equation (3.22). As
such they are less accurate than other UFF tests [6, 7] but still interesting as they are the best
tests of this kind which compare the free fall of quantum objects to that of classical test masses.

The second class of models relies on multiple Lagrangians (section 3.1). Within this
class, the atom interferometry experiment can be seen as a test of the gravitational redshift, in
line with the claims of MPC [35], but at the expense of extreme conceptual difficulties: the
basic principles of quantum mechanics, such as the Feynman path integral formulation and
Schrödinger’s equation, are affected, as well as energy conservation and the Schiff conjecture.
This is because two Lagrangians are used in this class of models, one for the trajectory
of the atoms and another one for the phase of the associated matter field. In addition,
these models pose a fundamental problem for calculating phases in atom interferometry tests,
since the standard formula for phase shifts is based on principles of quantum mechanics which
are violated in this class of alternative theories.

We conclude that the general statement of MPC according to which the atom
interferometer measures or tests the gravitational redshift at the Compton frequency is
incorrect. Instead, the interpretation of the experiment needs to be considered in the light
of alternative theories or frameworks. Although one can consider particular alternative
frameworks in which the statement of MPC could make sense, such frameworks raise
unacceptable conceptual problems which are not at the moment treated in a satisfactory
manner. In particular, they break the fundamental principles of quantum mechanics which
are used for calculating matter wave phases. In most common and plausible theoretical
frameworks, the atom interferometry experiment tests the universality of free fall with the
Compton frequency being irrelevant.

Note added. After completion of the present work, several independent analysis have appeared [43, 55] supporting
our views and consistent with our conclusions.

Appendix A. Phase shift in neutron interferometry

In this appendix, we show that the phase shift induced by gravity in neutron interferometers is
given by an expression similar to that in atom interferometry. In consistency with the analogy
between neutron and atom interferometry pointed out in [56], the gravitational phase shift is
independent of the Compton frequency also for the neutrons.

Neutron interferometers have been first used for the measurement of the gravitational
acceleration in 1975 [28]. A neutron beam is Bragg scattered by three silicon crystal planes
and forms an interferometer as shown in figure A1. The phase shift at the exit of the
interferometer is given in [28] to leading order as

�ϕ = λdBM2 d2 g

πh̄2 tan θ sin φ, (A.1)
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Figure A1. Geometry of the neutron interferometer, simplified from figure 1 of [28]. Thick dotted
lines represent the scattering crystal planes, thin solid lines the neutron trajectories.

where λdB and M are the neutron de Broglie wavelength and mass, respectively. Using the
definition of the de Broglie wavelength 2πh̄/λdB = Mv, where v is the velocity of the
neutrons, equation (A.1) can be rearranged to

�ϕ = 4πg

λdB
T 2 sin θ cos θ sin φ, (A.2)

with T ≡ L/v. The well-known Bragg condition for the scattering at the crystal planes is

λdB = 2a sin θ, (A.3)

with a the atomic spacing in the crystal lattice. Substituting equation (A.3) into equation (A.2),
one easily obtains

�ϕ = klatt g T 2 cos θ sin φ = klatt · g T 2, (A.4)

where klatt cos θ sin φ = (2π/a) cos θ sin φ is the projection of the lattice wave vector klatt

onto the direction of the gravitational field g.
We note that equation (A.4) is formally identical to equation (2.26) with the lattice wave

vector playing the role of the laser wave vector. In both cases, the expression for the phase
shift is independent of the mass of the atoms (neutrons) or the associated Compton frequency.
In both cases, the interferometer is to be understood as measuring the free fall of the atoms
(neutrons) using the laser (crystal lattice) as a ‘ruler’.

Appendix B. Effect of high-order gravity gradients

As we have seen, for any quadratic Lagrangian, the difference of classical actions (2.14) is
zero or reduces to the contribution of internal energies. In this appendix, although this has
already been presented in much greater detail in [27], we estimate the magnitude of the effect
of including cubic terms in the Lagrangian of GR, due to second-order gravity gradients, i.e.

LGR(z, ż) = −mc2 +
GMm

r⊕
+ mg

[
−z +

z2

r⊕
− z3

r2⊕

]
+

1

2
mż2. (B.1)
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For such cubic Lagrangian we expect that the difference of classical actions will no longer be
zero. On dimensional grounds we expect that the result should then be given by21

�ϕS = �Scl

h̄
= C k g T 2

(
h̄ k T

m r⊕

)2

+ �ϕgg′ , (B.2)

where C denotes some global coefficient of the order of 1. By integrating the Lagrangian
(B.1) along the classical paths, one obtains C = 1/4. We note that for the Lagrangian (B.1)
the interferometer closes up only when we adjust the time T ′ to a value that is different from
T. So the interferometer is no longer symmetric and there is a contribution coming from the
difference of internal energies gg′ of the atoms, given by

�ϕgg′ = ωgg′
gT 3

r⊕
. (B.3)

The first term in (B.2) gives a non-zero contribution which could be interpreted as a
redshift effect by analogy with classical clock experiments. However, we insist that in
order to compute correctly the phase shift, one would have to revisit the derivation made in
section 2.1 for the case of cubic and higher-order Lagrangians. If we assume that at least the
order of magnitude given by the first term in (B.2) is correct, the effect is extremely small.
With h̄k/m � 3 mm s−1, T � 0.1 s and r⊕ = 6400 km, it gives a relative correction to the
main effect (i.e. �ϕ� = kgT 2) of the order of 2 × 10−21, much too small to be measured in
the atom interferometry experiments [30, 31, 35] whose current precision is about 7 × 10−9.
Therefore, we conclude that the redshift effect in atom interferometry, if it exists at all, is very
small and currently undetectable.
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