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Abstract. The behaviour of a two-level atom saturated by a resonant fluctuating laser beam 
is studied. A classical description of the light wave is used. corresponding to a laser well 
above threshold, Two different approximations are introduced for treating the effects of slow 
and fast fluctuations; slow fluctuations are followed adiabatically by the atom and fast 
fluctuations appear as a relaxation mechanism for the population difference and for the 
optical dipole moment obeying the motional-narrowing condition. The perturbation of the 
spectral distribution of the fluorescence light is determined quantitatively and the great 
sensitivity of this spectrum to higher order correlation functions of the light wave is exhibited. 

1. Introduction 

Laser light sources now give the possibility of easily saturating atomic transitions and 
these saturation effects must be described correctly to obtain a quantitative under- 
standing of the characteristics of the fluorescence light (spectral distribution, 
polarization,. . .). 

When the spectral width AV of the light wave is very large, which is the case in 
thermal light sources and some multimode lasers (operating in a great number of 
closely spaced free-running modes), a perturbative treatment of the interaction between 
atoms and photons is possible. The correlation time l /Av of the light wave is so 
short that there is at most one interaction process during this correlation time. Simple 
rate equations can be derived which describe the coupled evolution of oe and og (atomic 
density matrices in the upper and lower states e and g) under the effect of such 
uncorrelated one-photon processes (Barrat and Cohen-Tannoudji 1961, Ducloy 1973, 
1974; see also Cohen-Tannoudji 1962, 1975). 

A great amount of theoretical work has been devoted to the opposite case (AV = 0) 
of a monochromatic resonant wave which has an infinitely long correlation time. 
Bloch-type equations are then more appropriate for describing the coherent nutation of 
atoms between e and g. Such equations have been used extensively in the field of 
quantum optics (see for example Sargent et al 1974 and references therein). Another 
example is the problem of the spectral distribution of the fluorescence light emitted by 
a two-level atom resonantly driven by an intense monochromatic laser beam; this has 
received a lot of attention (Mollow 1969, Oliver et al 1971, Carmichael and Walls 1975; 
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see also references given in Cohen-Tannoudji 1976, Swain 1975, Renaud et a2 1976, 
Carmichael and Walls 1976, Kimble and Mandel 1976) in connection with the recent 
experimental observation of such a spectrum (Schuda et al1974, Walther 1975, Wu et a1 
1975). 

In this paper we consider the intermediate situation of a quasi-monochromatic 
intense laser beam. The spectral width AV is assumed to be sufficiently small so that 
several nutations between e and g can occur during the correlation time l,/Av. excluding 
any perturbative approach. More precisely. if w1 is the mean Rabi nutation frequency. 
we take 

w1 >> AV. (1.1) 
However AV is also assumed to be large compared with the natural width r, i.e. 

so that the laser light does not appear monochromatic for the atom. Because of (1.1) 
and (1.2), neither rate equations nor Bloch-type equations can be used. 

It is clear from (1.1) and (1.2) that atoms are now sensitive to higher order correlation 
functions of the laser beam. Since such a field is generally not Gaussian, knowledge of 
AV is not sufficient to characterize these higher order correlation functions (Glauber 
1964) and some model is necessary for describing the fluctuations of the light wave. 

We consider, in this paper, a classical fluctuating wave corresponding to the well 
known properties of a single-mode laser well above threshold: a very well defined 
amplitude undergoing small fluctuations and a phase $(t)  which. in addition to fast 
fluctuations, slowly diffuses in the complex plane (Haken 1970). We show how conditions 
(1.1) and (1.2) can be used for treating the effects of slow and fast fluctuations 
separately. The general idea is that slow fluctuations are sufficiently slow to be followed 
adiabatically by the atoms, whereas fast fluctuations are sufficiently fast to be considered 
as a relaxation process obeying the motional-narrowing condition (Abragam 1961). 

Such an approach is applied to the computation of the correlation function of a 
two-level-atom dipole moment which gives, by a Fourier transform, the spectral 
distribution of the fluorescence light. The perturbation of the well known three-peak 
structure of this spectrum is evaluated quantitatively and related to the correlation 
functions of fast and slow fluctuations. A comparison between the spectra obtained with 
two light beams with the same intensity and spectral width but with quite different 
statistical properties (laser beam well above threshold and Gaussian beam) illustrates 
the great sensitivity of such spectra to higher order correlation functions. 

After a presentation of the general method which is used (52), a quantitative 
description of the fluctuating laser beam is given in $3. The results are then applied in 
$4 to the determination of the spectral distribution of the fluorescence light. 

2. General method 

2.1. Description of the light beam 

A light beam emitted by a single-mode laser well above threshold has a very well 
defined amplitude lE(t)j, undergoing only very small fluctuations, and a phase +(t) 
which, in addition to short time fluctuations with correlation time 7, .  slowly diffuses in 
the complex plane with a characteristic time sd >> T~ (see figure 1). We will describe 
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Figure 1. Time variations of the amplitude IE(t)l and phase +(t) of the electric field of the 
laser wave, showing fast and slow fluctuations characterized by the correlation times t, 
and T ~ .  

classically such a light beam by the fluctuating electric field 

Re ( E ,  + e(t))exp[ -i(ot  + 4(t))l (2.1) 

where Eo is the mean amplitude of the field, e(t) is the fluctuating part of the 
amplitude and @(t) is the fluctuating phase. Due to these fluctuations, the light beam 
is no longer monochromatic and has a spectral width AV around its mean pulsation co. 

2.2. Geometrical representation of the problem 

We are interested in the behaviour of two-level atoms irradiated by such a light beam 
which is supposed to be resonant (o coincides with the energy splitting coo between 
the two atomic levels e and g ;  we take ti = c = 1). The evolution of the atomic density 
matrix B is given by 

d 
dt  

i - - a =  [H,-a] 

The rotating-wave approximation (RWA) has been used, d is the dipole matrix element 
between e and g. 

It is well known that such a problem can be formulated in terms of a fictitious spin 
3, S ,  having two levels 1 + ) and I - ) (corresponding to le) and Is)), and precessing 
around a longitudinal static magnetic field Bo of amplitude -cooly (y = gyromagnetic 
ratio of S )  and a transverse magnetic field B , ,  of amplitude -d(Eo + e(t))/y, and 
rotating with the phase m o t  + 4(t). 

In addition to the laboratory frame Oxyz (E), it will be convenient to introduce two 
reference frames : the coherent frame Ox’y’z’ (C’) rotating with angular velocity oo 
around Bo and the instantaneous frame 0x”y”z” (2”) which follows B , ,  i.e. which rotates 
around Bo with the phase coot + 4(t) (see figure 2). Applying the rotation 
exp[i(w,t + 4(t))S,] to equation (2 .2)  one easily finds that in E” the fictitious spin 
‘sees’ three fields (see figure 2): a large constant field B ,  parallel to Ox” with an 
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Figure 2. Coherent frame (Z’j and instantaneous frame (Z”j deduced from the laboratory 
frame (Z) by rotations around Oz with angles respectively equal to coot and oo t + &t), 
In the fictitious spin 4 representation. B ,  is associated in Z” with the mean amplitude E ,  
of E(t ) ,  b , ,  with the amplitude fluctuations. b ,  is the Larmor field associated with the phase 
variation c+h(r’j. 

amplitude - d E o / y .  and two smalljuctuating fields b , l  and b,  respectively, parallel and 
perpendicular to B ,  (along Ox” and Oz”) with amplitudes -de ( t ) / y  and &t)+ (the 
longitudinal field Bo disappears in C’; the rotation e’4(f)sz which carries from C‘ to C” 
introduces the ‘Larmor’ field b,). 

2.3. Evolution of the systeni. Statistical averages a i d  separation of fas t  and slowjuctuations 

Let S,? S; ,  Si be the spherical components of the fictitious spin ,in X, C’ and C” 
respectively (p = +, z ,  - ; Si = i vl’J(S, k isy)). To study the evolution of the spin 
in C or C’ (which are both non-fluctuating frames), we will first determine its motion 
in the instantaneous frame E”, and then return from C” to C’ by using 

(2.4) s;(t) = e - i ~ 4 ( O r  J t ) .  
In C”: S precesses around the three fields B , ,  b l  and bl ,  so that the transformation 
from S’JO) to S;(t) is equivalent to a ‘rotation’ {Rp4( t ) } :  

S i ( t )  = 1 Rpq(t)  Si(0). (2.5) 
4 

The elements Rpq(t) depend on B ,  and on the whole behaviour of b ,  (t’) and bL(t’), i.e. of 
e(t’) and &)(t’), between 0 and t. From (2.4) and (2.5) one easily derives the following 
relation between Sb(t) and S4(0): 

s;(t) = C ~ , ~ ( t )  e- ip4( f )  ei44(0) S‘ 
q (0) 

4 

= c R,,(t)exp[: - iP ($(t) - $(O))l exp[Ti(q - P)$(O)I Sh(0) (2.6) 
4 

which clearly exhibits the initial phase @O), the phase diffusion $(E) - +(O) during 0-t 
and the total precession in E’’ described by Rpq(t) .  Expression (2.6) must now be averaged 
over all possible realizations of the random functions e(t) and $(t)  in the interval 0-t. 
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We will see in the next section that, for a laser well above threshold, d( t )  
undergoes one-dimensional Brownian motion. The phase diffusion $(t)  - $(O) and the 
velocities4 (t‘)  for t’ > 0 (which are implicit in R,,(t)) are therefore non-correlated with 
the initial phase 4(0) and the average of expression (2.6) over 4(0) reduces to the 
average of exp[i(q - p)4(0)].  Since 4(0) is uniformly distributed between 0 and 277, one 
immediately gets 

so that expression (2.6) becomes 

The main problem which remains is to determine whether or not R p p ( t )  and 

The phase diffusion $(t)  - 4(0) which can be written as 
exp[ -ip(4(t) - 4(0))] are independent random variables. 

depends, as R,,(t), on the whole behaviour of &t’) between 0 and t ,  so that, a t  first 
sight, it does not seem possible to average independently the two terms R p p ( t )  and 
exp[ -ip($(t) - 4(0))] appearing in (2.8). It can be shown however that, as a consequence 
of condition (1.1) and for a laser well above threshold, R P P ( t )  and $( t )  - 4(0) are 
independent variables. Let us just give here a simple interpretation of this result. Some 
of the statistical properties of &)(t)  which are used in this discussion will be established 
in $3 where a quantitative description of phase fluctuations is presented. 

The general idea is to separate slow and fast fluctuations in &t) (see figure 1). This 
can be done by averaging 4(t) over a time interval 0 which is small compared to zd 
but large compared to T, .  More precisely we introduce 

(2.10) 

where the averaging function g(z) satisfies JI ; g(z) = 1 and has a width 8. and 

4 f a s t ( t )  = 4(t) - 4 s l o x ( t ) .  (2.1 1) 

Now one easily understands that the phase diffusion 4(t) - 4(0) is mainly correlated 
with the slow phase fluctuations dslow(t’) (with 0 6 t’ 6 t) ,  since for t >> z, 

(2.12) 

In fact, it is possible to show that 4(t) - 4(0) and qhfast(t‘) are, to a very good 
approximation, independent variables (see demonstration at the end of $3) .  It  follows 
that, if we show that R P P ( t )  only depends on dfast(t), Rpp(t)  is not correlated with the 
exponential of expression (2.8) and the two quantities can be averaged independently. 

In E’’ associated with dslow(t) is a field 

b ,  slow = (U)) AIow (2.13) 

which has a very small amplitude (the corresponding Larmor frequency being of the 
order of 1/zd) and very slow variations with characteristic times of the order of zd.  
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Let us first consider in Z" the motion of the spin around B ,  and bLslow. If B, is very 
large, more precisely if 

w1 >> l / z d  (2.14) 

where 

W, = yBl = dEo (2.15) 

is the Rabi nutation frequency associated with the average electric field E,, the resultant 
of B1 and bislow makes an angle with B ,  which always remains small and which 
fluctuates slowly with a characteristic time z d .  It follows that the spin precesses several 
times around B1 + 61s10\v before bLs,ow changes appreciably. The slow phase fluctuations 
are therefore so slow that they are followed adiabatically by the spin which is not 
affected by them. To summarize, if 0, >> 1/zd, R p p ( t )  does not depend on the slow 
fluctuations and is therefore not correlated with exp[ -ip(4(t) - 4(0))]. 

Finally, the average appearing in (2.8) can be done in two steps: average of 
exp[-ip($(t) - 4(0))] over the slow phase diffusion, average of R p p ( t )  over fast 
fluctuations, which is equivalent to computing in C" the relaxation produced by the 
fluctuating fields b ( t )  and b ,  fast(t). We will assume that the fast fluctuations are so fast 
that they satisfy the motional-narrowing condition (Abragam 1961), so that the 
corresponding relaxation can be evaluated perturbatively. The condition of validity of 
such an approximation is 

(2.16) 

(2.17) 

Let us finally mention that it is easy to include the effects of spontaneous emission 
(which gives a natural width r to the excited state) just by adding the corresponding 
damping coefficients in the evolution of the components of the spin. Such a procedure 
is justified by the ultra-short correlation time of the vacuum fluctuations of the electro- 
magnetic field (which are at the origin of spontaneous emission). 

We now need a more precise model of the light beam in order to check the 
conditions of validity ((2.14), (2.16) and (2.17)) of the theoretical method described above 
and to get statistical information on 4( t )  and e( t )  which is necessary for computing 

For the sake of simplicity, from now on we will ignore amplitude fluctuations, 
assuming that they have been greatly reduced by some stabilizing device. It would 
however be quite easy to include their effect, which as seen above is equivalent to the 
relaxation produced by the fluctuating field b ll(t). 

Rpp(t) and exPt--iP(4(t) - 4(0))l. 

3. Quantitative description of phase fluctuations 

3.1. Analogy with Brownian motion 

For the evolution of the electric field from a single-mode laser, we will use the 
following simple picture which results from several quantum theories of lasers (see for 
example Haken 1970, Sargent et a1 1974). 

The motion of the point representing, in the complex plane, the electric field of the 
mode wo has the same characteristics as the classical motion of a fictitious particle 
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Figure 3. A symmetric vertical plane section containing Oz of the potential well in which 
the point representative of the laser electric field moves. Well above threshold, the 
equilibrium position corresponds to a non-zero amplitude E o .  

subjected to the two-dimensional potential represented in figure 3 and, in addition, to 
damping and fluctuating forces. The shape of the potential well of figure 3 has a very 
simple physical meaning. Due to the amplifying atomic medium, the amplitude of the 
electric field tends to increase, but, above a certain value, the non-linearities of the 
medium introduce saturations which are at the origin of the minimum of the potential 
well. The damping and fluctuating forces are a consequence of the coupling of the 
oscillator to various reservoirs (losses in the cavity, thermal noise, spontaneous 
emission,. . .). 

The radial oscillations of the representative point correspond to amplitude 
fluctuations around E ,  and are very small if the curvature of the potential well is 
sufficiently high (i.e. for a laser well above threshold). On the other hand, due to 
axial symmetry the tangential motion of the fictitious particle, which corresponds to 
the phase evolution, is free. It follows that the evolution of the phase 4(t) is analogous 
to one-dimensional Brownian motion on the circle V of radius E o ,  described by the 
Langevin equation 

(3.1) 4 + q!l = F(t) .  

In this equation the effect of the interaction with noise reservoirs has been split 

(i) a damping term with a friction coefficient IC, describing the mean effect of this 

(ii) an additional fluctuating force F(t) ,  of zero mean value: 

into two contributions: 

interaction, and 

F ( t )  = 0. (3.2) 
We assume that F ( t )  has an extremely short correlation time compared to all other 
characteristic evolution times of the system, i.e. 

F(t1) F(t2) = Cd(t2 - t l )  (3.3) 
where C is a constant giving the order of magnitude of F .  

Moreover it seems reasonable to assume that F ,  which results from the interaction 
of a large number of independent systems (atoms in the cavity,. . .), has a Gaussian 
probability distribution. According to the general properties of Gaussian distributions, 
the statistical behaviour of F is therefore completely determined by (3.2) and (3.3). 
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3.2. Slow phase diffusion; spectral distribution of the incident laser light 

The spectrum &(w) of the emitted light is given by the Fourier transform of the 
correlation function of the electric field (2.1): 

&(w) 3c j. eCiwr E(t) E*(t - z) dz. (3.4) 

If the amplitude fluctuations are very small, &(a) can be written as 

f ( w )  x E: j -exp[  - i (o  - o O ) z ]  exp[i(&t) - 4(t - z))] dz (3 .5)  

which shows that the spectral width AV of $(U) around coo arises from the phase 
diffusion [4(t) - 4(t - z)]. 

As F(t) is a random Gaussian function, it follows from (3.1) that 4(t) is also 
Gaussian (Chandrasekhar 1943), so that one can easily show from the general 
properties of Gaussian functions that 

Finally the phase diffusion (+(t) - q5(0))2 can be computed from the Fourier transform 
of the Langevin equation (3.1). One finds that for t larger than l / ~ ,  (4(t) - 4(0))' 
increases linearly with t: 

which gives the possibility of defining precisely the slow diffusion time z d  as 

Sd = 12/c. (3.8) 
Introducing (3.8) into (3.7). (3.6) and (3.5) gives for &(U): 

1 
(3.9) (w - wo)2 + (1/22,)2' 

The conclusion of this simple calculation is that the slow diffusion time is nothing but 
the inverse of the spectral width AV of the laser light: 

AV = 1/zd. (3.10) 

The condition of validity (2.14) of the adiabatic approximation can therefore be written 
as 

w1 > > A V  (3.1 1) 

which is precisely what we have supposed in the introduction (see (1.1)). 

3.3. Fast  phase fluctuations 

To define precisely the short correlation time z, introduced in $2.1 let us consider the 
correlation function $(t)$(t - T) of the time derivative of dJ(t). This correlation function 
is readily computed from the Fourier transform of the Langevin equation (3.1). One gets 

(3.12) 
~ _ _ _  
$(t)$( t  - z) = 4. AV e-KT. 



Two-level atom saturated by a laser beam 163 

This result shows that z, is nothing but the inverse of the damping coefficient I C :  

T, = 1/K.  (3.13) 

To have an order of magnitude of K ,  i.e. of z,, let us return to the simple model 
studied by Haken (1970) where the atomic medium consists of motionless two-level 
atoms with natural width y contained in a cavity of width < ( K  is found in this case to 
be equal to y + c). Well above threshold the spectral width AV of the emerging laser 
light is much smaller than the atomic and cavity widths y and 5, which shows that z d  

is much longer than z,. Such a result ( T ~  >> zc) certainly holds for other types of lasers 
where the lasing atoms or molecules have an inhomogeneous width. 

From equation (3.12), one also derives 

(d(0))’ = ti AV (3.14) 

which gives the possibility of checking the motional-narrowing condition (2.17). 
According to (3.13) and (3.14), this condition can be written as 

(d(0))’ T: = 3. AV (1/x2) = $-(AV/.) << 1. (3.1 5) 

Such a condition is obviously fulfilled since z, = l/ti is much smaller than zd  = 1 / 4 v .  
Finally, the conditions of validity of the general method presented in $2 (separation 

of fast and slow fluctuations, motional-narrowing condition) are satisfied in the limit 
w1 >> AV expressed by condition (1.1). Since we can add independently the damping 
terms representing the effect of spontaneous emission (because of the ultra-short 
correlation time of this process), the method of $2 applies whether r is large or small 
compared to AV. However let us recall that the case AV << r is more simply treated by 
Bloch’s equations, since in that case the light perturbation appears monochromatic to 
the atom. (When AV << r, the slow fluctuations are negligible during the radiative lifetime 
l/r, and the relaxation rates associated with fast fluctuations, which will be shown later 
to be of the order of AV (see (4.9)), can also be neglected in comparison to r.) This is 
why the calculations presented in this paper are essentially useful when 4 v  2 r 
(condition (1.2)). We will of course check at  the end (see 54.4) that the results of 
these calculations reduce to the ones given by Bloch’s equations when AY << r. 

We will end this section with a brief discussion on the problem of the statistical 
independence of 4(t) - 4(0) and dfdSt(t”) with 0 d t” d t. We shall first calculate 
(&t) - 4(0))dfast(t”). From (2.9), (2.10) and (2.11), one gets 

= J: dt‘ d(t’)d(t’’) - f dt’ JT dz g(z) &E’)  d(t” - T). (3.16) 
0 - x  

We will suppose that t 2 td since, for t << T d ,  the phase diffusion $(t)  - 4(0) is negligible 
and the exponential of expression (2.8) is equal to unity, so that the average of (2.8) 
reduces to  Rpp(t) .  Using (3.12) and the fact that the width 0 of the averaging function 
g(z) is large compared to zc and small compared to zd. and therefore to t. one 

A \I P (8) 10 2--U 
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immediately gets 

= o  if 0 < t” < t - 0. (3.17) 

We have used S I :  ds g(s) = 1. So, except when t” lies in two small regions of width 
8 near the two extremities of the interval 0-t, we have 

(3.18) 

(3.19) 

Using the properties of random Gaussian functions, the average appearing on the 
right of (3.19) can be factorized in products of second-order correlation functions. 
Let us consider a ‘mixed’ correlation function of the type &(tl)dfast(t!j). The same 
calculation as above shows that the integral over tl of this correlation function gives 
0 (except when ty lies in two small regions of width 0 near 0 and t). It follows that all 
the mixed correlation functions give no contribution and that 

which proves the statistical independence of #( t )  - 4(0) and dfast(t”). 

4. Spectral distribution of the fluorescence light 

4.1. Expression of the signal 

We are interested in the spectral distribution LF(o)  of the fluorescence emitted by a 
two-level atom irradiated by the quasi-monochromatic light described above. In order 
to get rid of the Doppler effect, the atoms form a beam irradiated at right angles by 
the laser beam and the fluorescence is detected in the third perpendicular direction. 

It is well known that LF(w) is given by the Fourier transform of the correlation 
function of the atomic dipole moment (Mollow 1969). As such a dipole is related to 
the transverse component S, of the fictitious spin, it may easily be shown that 

rT r T  
dt’ (S’+(t) S’-(t’)) exp[-i(o - w o )  ( t  - t’)]. (4.1) 

0 
LF(w) Jo dt J 

In (4.1), S’*(t’) are Heisenberg operators in the coherent frame E’. The average is taken 
in the time-independent Heisenberg state of the system. T is the observation time, i.e. 
the transit time of atoms through the laser beam diameter. T is generally sufficiently 
large so that most of the time spent by an atom within the laser beam corresponds 
to a steady-state regime. In such a case (S’+(t) S’-(t’)) only depends on t - t’ and the 
expression (4.1) of LF(m) may be reduced to 
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4.2.  Computation of the correlation function 

The equation written above in (2.6) is valid for Heisenberg operators and may be used 
to compute the correlation function (S’+(z) SL(0)) : 

(S:,(z)s’(O)) = R+ + ( W P [ - i ( 4 ( 4  - 4(0))l (S;(oK(o)). (4.3) 

We have shown in 452 and 3 that R + +(z) and exp[ -i(4(z) - 4(0))] could be averaged 
independently. Before doing these two averages, let us evaluate (S’+(O) Sl(0)) which 
is also equal to  + + (Sk(0)) (for a spin 4, S + S -  = 3 + S z ) .  Since we assume a steady 
state is reached, and w ,  is assumed to be very large, the atomic transition can be 
considered to be completely saturated (equalization of the populations of e and g) so 
that (Si(0)) = 0 and 

(S’+(O) SL(0)) = 3. 
Now, from (3.6), (3.7), (3.8) and (3.10) we have 

exp[ -i(4(z) - 4(0))] = exp[ -3(C/lcZ)z] = exp(- 7 / 2 4  = exp( - Avz/2) 

(4.4) 

(4.5) 

so that (4.3) may be rewritten as 
__ 

(S’+(z) S l ( O ) >  = 3 exp( - Avz/2) R ,  L(z). (4.6) 
~ 

To evaluate R +  +(t) ,  let us take the average of equation (2.5) giving the motion of 
the spin in the instantaneous frame Y’:  

As explained in 42, averaging over fast fluctuations is equivalent in the fluctuating 
frame C” to computing the relaxation produced by the fluctuating field bifast .  

It is well known that such a relaxation can be described by two relaxation times 
T, and T, (Abragam 1961) giving the damping of the components of S” respectively 
parallel and perpendicular to the large and non-fluctuating field B1 seen by the spin in 
C”. As the motional-narrowing condition is satisfied (see 43.3), the longitudinal relaxation 
time T, associated with the fluctuating field bLfast with an amplitude = $(t)/y 
is easily shown to be 

+ E  

1/T, = 1 j &t) &t - z) dz. (4.8) 
2 - E  

Let us recall that w ,  is the Larmor frequency around B , .  Using the expression (3.12) 
for the correlation function of &)(t) finally gives 

1 1 I C 2  AV. - 
T, 2 K’ + w: (4.9) 

Since amplitude fluctuations are neglected, the only fluctuating field appearing in C” 
is b r f a Y t ,  perpendicular to B , .  It follows that 

1/T’ = 1/2T,. (4.10) 

This results from the fact that there is no adiabatic contribution to T,  (the 
>,} of eigenstates of S,, fluctuating field bfast has no diagonal elements in the basis { 1 
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i.e. in the energy levels of the fictitious spin interacting with B, ) .  It  follows that 1/T2 
is equal to half the sum of the transition rates from 1 f )x which are both equal to 1/2T1. 
This proves (4.10). 

The previous discussion clearly shows that it would be easy to include the effect of 
fast amplitude fluctuations associated with the fluctuating field b l,(t), parallel to B , .  
This would not change the value of T ,  but would add an 'adiabatic' contribution to 
T2 (Fourier transform of the correlation function of the amplitude fluctuations e(t), 
taken at frequency 0). 

Finally, after averaging over fast fluctuations, equation (4.7) becomes 

(S':(z)) = e- r'T1 (Si(0)) (4.1 1) 

and 

((S Y -  + is') (T)) = eFlult e-T'TZ ((S; i is') (0)). (4.12) 
__ 
R _  (7) is easily obtained by rewriting equations (4.11) and (4.12) in the basis 

(SI; = T is:), x) and is found to be 
__ 
R ,  ,(T) = *(e-' + cos wlz  cCT T 2 ) .  (4.13) 

Inserting (4.13) into (4.6) finally gives for the correlation function : 

(S',(z) S'(0)) = ;{exp[-z(l/T, + Av/2)] + cos olz exp[-z(l/TZ + Av/2)]}. (4.14) 

Remark. It could appear from the previous discussion that amplitude fluctuations 
cannot be neglected since they are responsible for an adiabatic contribution in 1/T2 
(Fourier transform at frequency 0), whereas phase fluctuations appear in a Fourier 
transform at frequency w1 (see (4.8)). Actually, coming back to figure 3, one sees that the 
spectrum of amplitude fluctuations is centred not on zero but around a frequency 
corresponding to the radial oscillation in the potential well. From the simple model of 
Haken (1970) one can show that such a frequency is much higher than ol, which 
considerably reduces the effect of amplitude fluctuations on T,. 

4.3. Inclusion of the effect of spontaneous emission 

Spontaneous emission transfers atoms from e to g with a rate r equal to the natural 
width of e and damps the dipole moment with a rate r/2.  Such a process is described 
in E" by the following rate equations: 

(4.15) 

which can be added independently to the other causes of evolution. 
Since w1 is supposed very large compared to r, S" make? several precessions 

around B ,  before being damped by spontaneous emission. It follows that one can 
neglect any coupling introduced by spontaneous emission between Si + is:, S; - is' 
and Si (which precess around B ,  with different frequencies U,, -ol, 0). Keeping only 
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the secular terms in (4.15) gives 

d 
- (s!) = -$r (s!) 
dt 

d 
- (S; f is:) = -$r (S; 2 is:,). 
dt  

(4.16) 

The quantum regression theorem (Lax 1968) can now be used for computing the effect 
of spontaneous emission on two-times correlation functions, and one easily shows 
from (4.16) that it is sufficient to add two damping factors to equations (4.1 1) and (4.12): 
e-rr32 for the first one, e-3rr/4 for the second. Finally the correlation function (S&(T) 
S’- (0)), including the effect of spontaneous emission, is given by 

(S’+(.r)S’-(O)) = d{exp[-z(l/T, + + A V  + $I-)] + coswlzexp[-T(l/T, + + A V  + $F)]) 
(4.17) 

4.4. Shape of thefluorescence spectrum 

The Fourier transform of equation (4.17) is readily evaluated and leads to the fluorescence 
spectrum &(CO) represented in figure 4. 

+r + A V  + 2 / T, r + a v + 2 q  +r + A V  + 2  / G  
Figure 4. Spectral distribution of the fluorescence light emitted by a two-level atom 
irradiated by a fluctuating laser wave (well above threshold). r, natural width; AV, spectral 
width of the laser; TI and T 2 ,  longitudinal and transverse relaxation times associated ui th  
the fast phase fluctuations. 

One gets three Lorentzian components: 
(i) a central peak around w o ,  with a halfwidth l/Tl + + A V  + +r and a height 

(l/Tl + $AV + +r)-l and 
(ii) two sidebands centred on wo f wl, with a halfwidth 1/T2 + $AV + $r and a 

height 4(1/T2 + +AV + $c)-’. 
For a monochromatic non-fluctuating laser light (AV = l/T1 = 1/T, = 0), these 

results coincide with the well known conclusion concerning the fluorescence spectrum 
for a two-level atom resonantly irradiated by an intense monochromatic wave 
(Mollow 1969). Since l/T1 is of the order of or smaller than AV (see (4.9)), the same 
results holds as long as AV << r. We therefore check that, when AV << r, the present 
treatment leads to the same conclusions as the one based on Bloch’s equations. 
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The results obtained above show that the effect of a finite spectral laser width 
AV > r does not simply reduce to a broadening of the three components by an amount 
AV. An additional broadening arises from fast fluctuations and affects the central 
component and the two sidebands differently. Measuring this extra broadening could 
provide interesting information on the dynamics of fast fluctuations (correlation function 
of &t) and e(t)). 

In the limiting case of a large spectral width (AV >> r), r can be neglected in (4.17). 
If, in addition, K is assumed to be large compared to col, l/T1 coincides with Av/2 (see 
(4.9)). As 1/T2 is equal to 1/2Tl. it follows that in such a limiting case the central 
component has a width 2Av larger than the one of the two sidebands which is 3Av/2. 
The ratio of the heights is 3 (instead of 4 in the absence of any fluctuation). 

From an experimental point of view, such a study clearly shows that, for a 
verification of the theoretical predictions concerning resonance fluorescence in intense 
monochromatic fields, one must avoid not only spatial inhomogeneities of the laser 
beam, but also reduce the slow and fast temporal variations to an acceptable level. 

4.5. Comparison with a Gaussian light beam having the same intensity and spectral width 

In order to illustrate the sensitivity of LF(w) to higher order correlation functions, it 
will be interesting to discuss in a qualitative way the shape which would be obtained 
for LF(w) with a Gaussian light beam, with the same intensity and spectral width as 
the laser beam considered above, i.e. the same lowest order correlation function. 

In the complex plane, the electric field of the light beam is represented by a point 
which now moves in a harmonic potential well centred at the origin. The steady-state 
distribution is Gaussian and symmetric around 0. If one starts at a certain time from a 
distribution represented by a 6 function (pure coherent state), the distribution moves 
toward 0 along a logarithmic spiral with a characteristic time zd = 1 /AV, and its width 
gradually increases from 0 to the steady-state value with the same characteristic time 
(Louise11 and Marburger 1967). Such a result clearly shows that for a Gaussian field, 
not only the phase but also the amplitude exhibit (in addition to fast fluctuations) 
important slow fluctuations characterized by a time zd which is the inverse of AV. 
Instead of a well defined Rabi nutation frequency wl, there is now a distribution of these 
frequencies characterized by a large width. of the order of (Z)’l2, and a correlation 
time l/Av. Two more averages are needed in the evaluation of the correlation function 
(S’+(T) Sl(0)): an average over the initial value of w,  and an average over the slow 
amplitude fluctuations. 

Starting from (4.3): 

(S’+(T)  S’(0)) = iR+ +(+=PC-i(4(4 - 4(0))l. (4.18) 

Consider first a time interval [O, z] which is short compared with the characteristic 
time l /Av of slow fluctuations. In this interval, the amplitude and phase of the 
electric field can be considered as constant and the correlation function can thus be 
rewritten as 

(S+(z) S’(0)) N 4R+ +(z). (4.19) 

As the relaxation times associated with fast fluctuations are of the order of l/Av, one 
can also neglect their effect during the time interval (0, z << l/Av). R ,  + is therefore 
only determined by the precession of S” around B ,  at the frequency col, and 
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Figure 5. Time dependence of the correlation function of the dipole moment of a two-level 
atom resonantly driven by an intense Gaussian light &am of spectral width AV. Two 
characteristic times appear: 1/Av and (CO?)-”’, where (U?)’ is the mean Rabi nutation 
frequency. 

(S+(z) Sl(0)) is readily found to be 

(S>(z) Sl(0)) = +(l + cos 017). (4.20) 

Averaging cos wlz over the initial value of o1 gives for (S’+(z) S’-(0)) a function which 
decreases - from 3 (value at t = 0) to $ in a very short t ime interval of the order of 
(cot)-’”. (S’+(z) Sl(0)) does not change as long as (of)-”’ 5 z < l / A v ;  then one 
must take into account the relaxation produced by fast fluctuations and the effect of 
the slow diffusion of phase and amplitude, which both imply a decay of (S’+(z) S’-(0)) 
to 0 with a characteristic time of about l/Av. 

In conclusion, the correlation function (S‘+(z) SL(0)) exhibits two decays of equal 
amplitude but corresponding to quite different time constants (q)-’/’ and l /Av (see 
figure 5). Its Fourier transform &(U) is therefore made of two peaks of equal area 
centred at o = coo: 

(i) a sharp peak, with a width AV, and 
(ii) a wide peak, with a width (a1/’. 

The ratio of their heights is ( c ~ ~ ) ~ ’ ’ / A v ,  inverse of the ratio of their widths (see 
figure 6). 

Figure 6. Spectral distribution of the fluorescence light emitted by a two-level atom irradiated 
by an intense Gaussian beam of spectral width AV.  The three-peak structure disappears. 
A narrow centralcomponent of width about AV is superimposed on a broad background 
of width about (o:)~’’. 
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Due to the large dispersion of the amplitude of the light electric field. the three- 
peak structure in the fluorescence spectrum which appeared when a laser beam of very 
well defined amplitude was used for the excitation, is now completely washed out in 
this limiting case. 

The disappearance of the three-peak structure clearly shows the sensitivity of the 
fluorescence spectrum to higher order correlation functions of the light electric field. 

So far, we have only considered two-level atoms. It is well known that.' when a 
structure exists in e or g, other interesting signals can be studied, such as for example 
level-crossing resonances, or double resonance,. . . , on the total fluorescence light 
(integrated over frequencies). It seems interesting to investigate the sensitivity of such 
signals to the fluctuations of the laser beam. As mentioned in the introduction. they 
cannot be computed from rate equations or Bloch-type equations. We show in a 
forthcoming paper that the method described in this paper can also be applied to these 
problems. 
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