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Abstract. The theoretical method developed in a previous paper is applied to the study 
of the sensitivity of Hanle resonances to the fluctuations of an intense quasi-mono- 
chromatic laser beam. The calculations are performed for the simplest possible transition 
J = 0 c--f J = 1. Quantitative expressions are derived for the level-crossing signals which 
appear to be quite perturbed by the fast phase fluctuations. 

1. Introduction 

In a previous paper (Avan and Cohen-Tannoudji 1977, to be referred to as I), the 
behaviour of a two-level atom in an intense fluctuating resonant laser beam has been 
studied. Two conditions were assumed about the mean Rabi nutation frequency wl, 
the natural width r of the excited state and the spectral width AV of the laser: 

These two conditions imply that several Rabi nutations occur during the correlation 
time l/Av of the laser beam (very high intensity) and that atoms are sensitive to the 
laser fluctuations during their lifetime (non-monochromatic laser light). It follows that 
usual treatments, such as rate equations or Bloch equations, cannot be applied. 

The method described in I starts from a description of the laser electric field E(t )  
as a classical random variable. For a laser well above threshold. E(t )  can be written as 

(1.3) 
where E ,  is the mean amplitude, coo is the mean frequency. e( t )  and @(t )  are the 
amplitude and phase fluctuations. It can be shown (see I, $3) that the phase exhibits 
two types of fluctuation: (i) slow fluctuations characterized by a time ed 

E( t )  = Re ( E ,  + e(t)) exp [ -i(w,t + @(t))] 

zd  = l /Av (1.4) 
and (ii) fast fluctuations characterized by a time z, << 5 4 .  The idea of the calculation 
presented in I is to apply two different approximations : the adiabatic approximation 
for slow fluctuations, and a perturbative treatment for fast fluctuations which appear 
as a relaxation mechanism. 
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This method has been applied in I to the computation of the fluorescence spectrum 
emitted by a two-level atom. In the present paper we study, by the same method, the 
sensitivity to the laser fluctuations of the level-crossing resonances which appear on 
the total fluorescence light when the static magnetic field is scanned around the value 
corresponding to a crossing between two excited sublevels (Hanle and Franken 
resonances). The shape of these resonances has been studied extensively in the two 
extreme cases of a broad line excitation (AV >> col) and of a pure monochromatic 
excitation (Ducloy 1973, Avan and Cohen-Tannoudji 1975) but the situation 
corresponding to conditions (1.1) and (1.2) does not seem to have been investigated. 

Such a problem is discussed in the present paper in the simplest possible case of a 
J = 0 to J = 1 transition which leads to a three-level system, as shown in $2. The 
problem is reformulated in $3 in terms of a fictitious spin 1. The fast phase fluctuations 
appear for the fictitious spin as a relaxation process which is evaluated in $4. The 
terms describing spontaneous emission are then included. Finally, expressions are 
derived for the level-crossing signals. The shape of these signals and their sensitivity 
to the laser fluctuations are discussed in 4 5. 

2. Notation; expression of the signals 

The scheme of the level-crossing experiment is the following: an atomic beam 
directed along Oz is irradiated at right angles by a fluctuating laser beam propagating 
along Oy, so that one gets rid of the Doppler effect. A static magnetic field Bo parallel 
to Oz is applied to the atoms (see figure 1). 

We consider the particular case of atoms having a ground state g of angular 
momentum J ,  = 0, and an excited state e of natural width r and angular momentum 
J ,  = 1. The energy of the transition g tf e in zero magnetic field is wo (we take ii = 1) 
and R, is the Larmor pulsation associated with Bo in the excited state e (see figure 2). 

The light wave, of mean pulsation wo in resonance in zero magnetic field with the 
e cf g atomic transition, has a polarization (polarization vector e ,  parallel to Ox); 
it therefore couples the ground-state Zeeman sublevel IO) (more precisely /g. mg = 0)) 
to the two excited-state Zeeman sublevels I & 1) (le, m, = f 1)). (The third sublevel 

Detect ion L, (e,) 

Detection L f  le,) exd /? 

IAtomic beam 

Figure 1. Scheme of the possible experiment: the atomic beam, directed along Oz. is 
irradiated at  right angles by the fluctuating laser beam propagating along Oy and linearly 
polarized (polarization vector e,  parallel to Ox). A static magnetic field Bo is applied along 
Oz. One monitors the fluorescence signals &(e,) and &(e,) with linear polarizations e,  and 
e, .  
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Figure 2. Atomic energy diagram. r is the natural width of e.  The energy splitting in zero 
magnetic field between e and g is wo and the Larmor pulsation in the excited state e is Cl,. 
The m = 0 excited sublevel plays no role in the problem. 

le, me = 0 )  is not excited and can be forgotten in the following, so that we are led 
to the study of a three-level problem.) 

The coupling with the electric field E( t )  written in (1.3) is described by the 
interaction Hamiltonian 

where D,  = e , .  D is the component of the atomic dipole moment along the polarization 
vector e, .  The relative phases of the two excited sublevels 1+1) and 1-1) with 
respect to the ground state 10) will be chosen in such a way that the two matrix 
elements (1 1 D ,  10) and ( -  11 D, 10) (which have the same modulus) are real and 
positive: 

(+11D,lO) = (-11D,lO) = d real > 0. (2.2) 

We are interested here in the shape of level-crossing signals obtained when the 
magnetic field Bo is scanned around zero, and particularly in the variation with Bo 
of the fluorescence signals ,!,,(e,) and &(ey) detected in the respective directions Oz and 
Ox, with the respective polarizations e,  and eY parallel to Ox and Oy. 

These detection signals can easily be related to the elements of the atomic density 
matrix in the upper state (populations a+ + and a- - of I + ) and 1 -), Zeeman 
coherence a + - between I + ) and I - )): 

Lf(ex) = (01 D, 16) ( E /  a( t )  IC') (€'I D,  IO) €,E' = + 1, - 1. (2.3) 
y €,E' Y Y 

With the phase conventions (2.2) (which also fix the matrix elements of D )  one 
immediately gets 

&(e,) K a++ + a-- + 2 R e o + -  (2.4) 
&(e,) cc a + +  + a-- - 2 R e a + -  (2.5) 

I ,  - Z L = L f ( e , ) - L , ( e , ) x 2 R e o + - .  (2.6) 

As the transit time T through the exciting laser beam is generally long compared 
to all other characteristic evolution times, it will be possible in expressions (2.4), (2.5) 
and (2.6) to replace a+ +, a- - and a+ - by their steady-state values. 
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3. Theoretical method 

3.1. Formzilatioii of the problem in t e r m  of ajctitious spin 1 

The evolution of the atomic density matrix G is given by (for the moment we neglect 
spontaneous emission) 

, da  
dt 

1- = [ H , o ]  

where H is represented in the basis { 1 + l),  IO), I - 1)} by the following matrix (in the 
rotating-wave approximation): 

oo + R, xexp(-iw,t) 0 
H = 3:” exp(ioJ,t) 0 x” exp (iwot) 

( 0  3: exp ( - h o t )  coo - Q, 

where 

3: = @(E,  + e(t))  exp [ -iq5(t)] 

d being defined in equation (2.2). 
If to equation (3.1) we apply the unitary transformation 

, do” 
dt 

1 ~ = [H, + H,, a”] 
where 

and 

0 0 1  0 1 0  

(3.7) 

In analogy with the two-level problem studied in I, we call the new representation 

(i) a time-independent term H,, and 
(ii) a fluctuating term H ,  depending on the laser fluctuations. 

‘instantaneous representation’ C”. In C” the Hamiltonian is split into two parts : 
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The evolution of the three-level atom in C" can be described in terms of a 
fictitious spin 1 ( S )  having three levels 1+1), IO) and 1-1) corresponding to the 
respective atomic sublevels I + l),  10) and 1 - 1). The Hamiltonians H ,  and H ,  can 
be written as 

H ,  = R,S, + miSx (3.9) 

H~ = - $ ( t ) ~ :  + d q d e ( t ) ~ ,  (3.10) 

with 

w1 = d E o / J 2 .  (3.11) 

The evolution of the three-level atom in X" is therefore equivalent (see figure 3) 
to the precession of the fictitious spin 1 subjected to the following fields: 

(i) two static fields; a longitudinal magnetic field bo with an amplitude -Q/y and 
a transverse static magnetic field bl parallel to  Ox with an amplitude -wily, and 

(ii) two small fluctuating fields; a magnetic field bl l ( t )  parallel to bl with an 
amplitude -de( t ) l y4 '2  and an electric field ~ ( t )  parallel to ho and proportional to 
-dit). 

I =" 

Figure 3. Various fields 'seen' by the fictitious spin 1 in the instantaneous representation X". 
bo and b ,  are static magnetic fields with respective amplitudes :Qpb> and -ul>;. E is a 
fluctuating electric field collinear to bo,  proportional to -+(f); b , ,  is a fluctuating 
magnetic field collinear to b , ,  proportional to e ( t ) .  

3.2. Evolution of the fictitious spin 1 

The problem is now to determine the evolution of the fictitious spin 1 under the 
effect of these various fields. We will follow the method introduced in I. In the 
representation E", the fields E and b l l  associated with fast fluctuations (we neglect the 
contribution of slow phase diffusion to E) act on S as a relaxation process satisfying 
the motional-narrowing condition (see I, 93.3). To simplify, from now on we will 
suppose, as in I, that the laser field is very well stabilized in amplitude so that the 
effect of h l l  is negligible. The Hamiltonian in C" therefore becomes 

H ,  + H f  = R,S, + o l S x  - d(t)S,'. (3.12) 
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When coming back to the Schrodinger representation C, some phase factors 
depending on the phase diffusion $( t )  - $(O) can appear but we have shown in I that 
they are mainly sensitive to slow phase fluctuations and that they can be averaged 
independently provided that the condition 

w1 >> AV (3.13) 

is fulfilled (see I, 52). Actually it is easy to show, from (3.4) and (3.5) that the three 
matrix elements of cr, namely c+ +, cr-  - and c+ -, appearing in the fluorescence 
signals, are insensitive to the phase diffusion since they have the same expression in 
the two representations C“ and C : 

a;+ = cr,, 0:- = c r - -  0:- = c+-. (3.14) 

The signals studied in this paper are therefore insensitive to phase diffusion. Note 
the difference from the signal studied in I which was related to the correlation 
function of the atomic dipole moment, Here the total fluorescence light is a quadratic 
function of the dipole moment components evaluated at the same time (see expression 
(2.3)). 

4. Relaxation of the fictitious spin 

4.1. Diagonalization of the non-Juctuating Hamiltonian 

It will be convenient first to diagonalize the non-fluctuating Hamiltonian 

H ,  R,S, + o l S X  (4.1) 

corresponding to the two magnetic fields bo and bl of figure 3. This is easily done 
by performing a rotation around Oy which brings the Oz axis along the direction of 
the total field b = bo + b l .  Let P be the angle between Oz and b (see figure 3). This 
rotation R(P) is given by 

R(B) = exp (ips,> (4.2) 

and is such that 

The expression E?, of H ,  in the new frame 2’’ is easily calculated by first expanding 
H ,  in a set of irreducible tensor operators { T f ) }  (Messiah 1963, Omont 1976). As S l  
is a linear combination of T(0Z) and Tho) (see appendix 1 for the expression of T(4k) in 
terms of S,, S,) then 
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The transformation by rotation of T$“) is easily calculated in terms of the 
rotation matrices so that 

Rf  = R(P)H,R(- 

As S, is proportional to TL”, (4.3) may also be written as 

R, = RI TL’). 

Let us finally introduce the expansion of G” in the { T f ) }  basis 

4 

and the corresponding expansion of 

6” R(P)G”R( - P )  
which is given by 

with 

(4.9) 

(4.10) 

(4.1 1) 

In the absence of fluctuations, the evolution of in C” is very simple and is 

(4.12) 

The q = 0 components are static. The q # 0 ones oscillate at a very high frequency 

given by 

2; = - i q ~  1 ~k 4 ’  

4Ql. 

4.2. EfSect of thejluctuating jields 

The relaxation induced by the fluctuating field ~ ( t )  introduces a coupling between the 
various components of 6 : 

(4.13) 

As shown in the following, the coupling coefficients r$ are of the order of AV, and 
consequently (see (3.13)) much smaller than the free evolution coefficients -iqR1. It is 
therefore a good approximation to neglect the coupling between coefficients evolving 
at different frequencies (secular approximation), and (4.13) can be replaced by 

(4.14) 

Furthermore, it will be shown later (when the effect of spontaneous emission will be 
added, introducing some damping and source terms in equation (4.14)) that the 
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steady-state value of c': is larger than the steady value of 2," by a factor 

It is therefore sufficient in the computation of the steady-state value of the detection 
signals (2.4), (2.5) and (2.6) to keep only the contribution of ?;. 

?: is actually a constant since it is proportional to the total population of the 
energy sublevels: 

(4.15) /- 2: = l / d 3 .  

It follows that is sufficient to study the relaxation of E ;  and 2;. 

appendix 2; one finds 
The relaxation equations of 2; and E ;  under the effect of R ,  are derived in 

(4.17) 

where i i  is the inverse of the correlation time 5, of fast phase fluctuations. 

coefficients is AV. 
It appears clearly in (4.16) and (4.17) that the order of magnitude of the i' 

4.3. Effect of spontaneous emission 

As in I, spontaneous emission is described by adding to the master equation some 
new terms which have a very simple form when written in C" in the atomic sublevel 
basis : 

(4.18) 

The first three expressions describe the damping of the excited state e (r is the 
natural width of this state); the fourth expression describes the damping of optical 
coherences (with a rate r /2) ;  the last expression describes the transfer of atoms from 
the upper to the lower state. 

It is easy to express each of the matrix elements appearing in (4.18) in terms of 
the coefficients c," (see appendix 1, (A.6)). Equations (4.18) can easily be transformed into 

(4.19) 

(4.20) 
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where A(’) and A(2) are the two following diagonal matrices 

- r  o 0 0  

(4.21) 
o - r / 2  o o 
0 0 - 1 - 0  

o - r / 2  0 0  o - r / 2  o 
0 0  o o -r 

and where is a source term given by 

This source term has a very simple physical meaning: spontaneous emission tends 
to accumulate atoms in the IO) ground state, creating a longitudinal alignment of 
the equivalent fictitious spin 1. 

It remains now to transform equations (4.19) and (4.20) into the E’’ representation. 
Using (4.1 l), one immediately gets 

(4.23) 

with 

= ~ ( k ) ( p ) ~ ( k ) ~ ( k ) (  - p). (4.24) 

Since r is. as AV, small compared to col,  and therefore to Q,, it is justified to neglect 
the non-secular terms (coupling by spontaneous emission between coefficients ?! 
evolving at different frequencies). 

To summarize, spontaneous emission is included just by adding to the relaxation 
equations of tk and tg the secular terms Ab2J(p) and Abld(p), the source term of 
equation (4.23) appearing only in the equation giving 2b2): 

C O  ‘1 - - + A(l))*l 0 0  C O  (4.25) 

:g = ( v i 2  + Ab2J)Ei + RbZ,’(P)/?O. (4.26) 

The two terms AbiJ and AL2J are readily evaluated from (4.21), (4.24) and (A.8); one gets 

(4.27) 

(4.28) 

By equating to zero the rates of variation of 2; and E ;  in equations (4.25) and (4.26), 

E:, = 0 (4.29) 

A(1) o0 - - -1 2(1 + cos2p)r 

A ( 2 )  o0 - - -1 [(3 cos2 f l  - 1)2 + 6 cos2 p sin2 /3 + 3 sin4 p] l-. 

one immediately gets their steady-state values and 3: 
- 

(4.30) 

The steady-state value of the atomic density matrix in the representation E’’ is 
therefore given by 

(4.31) 
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i.e. coming back to the C” representation 

(4.32) 

5. Shape of level-crossing signals 

5.1. Calculation of the signals 

The total population a‘: + + 0’: - of the two sublevels I & 1) and the Zeeman coherence 
d -  between them which appear in the detection signals can first be expressed in 
terms of the c,” components of d’ by using relations ( A d )  given in appendix 1 : 

.;+ + .!- = 3 + &; 
2 2  2Rea;-  = c 2  + c T 2 .  

From (3.14), the steady-state values of cr+ + + o- - and cr+ - are the same in C and 
X” and can therefore be evaluated from (4.32). The expressions of Rb2d(p) and R\2(p) 
are given in appendix 1 (equations (A.8)). Putting into (4.32) the values (4.22), (4.17) 
and (4.28) of io, Y;’ and Aio,  one easily calculates the steady-state values of c;, c:  
and c! which can be inserted in (5.1) to give 

O A +  + o - -  = - + - - -  2 1  (3 cos2 p - 1)2 
3 3 -3cos4p + 3COS2p - 2 - 3 s i n 2 ~ c o s 2 p ( 1 / T T , )  

(5.2) 
(3 cos2p - 1) sin2 p 

-3cos4p + 3cos2p - 2 - 3s in2pcos2f l (1 / rT)  
2 R e a + -  = 

where 

it2 AV 
- 

1 
TI ti’ + R: (5.3) 

The level-crossing signals L,(e,), L,(e,) and Ill - I ,  given by equations (2.4) (2.5) 
and (2.6) follow immediately from (5.2): 

L,(e,) 0; 3 + 5 (3 cos2 f i  - I)/D(j) 

&(e,) cc 4 + 3(3cos2p - 1)(3cos2p - 2)/D(p) 

I - 1, 0; (3 cos2 p - 1) sin2 p/D(p) 

with 

D(p)  = - 3 cos4 p + 3 cos2 p - 2 - 3 sin2 p cos2 p/TT, (5.7) 
and, of course (see figure 3) 

0: 
nj + w t .  

and cos2/ = 4 
R; + w: 

sin2 p = 

5.2. Physical discussion 

The angle f l  appearing in (5.4), (5.5) and (5.6) depends on R, (Larmor precession 
proportional to the static magnetic field) and on 0: (proportional to the mean laser 
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ne/ r 
Figure 4. Set of level-crossing resonances detected on L,(e,), for a fixed value of the laser 
intensity (o:'2r2 = 10'). Each curve corresponds to a different value of the parameter 
Ar,/T indicated on the figure. (QeK is a normalized Larmor frequency; ic/r = 100.) 

intensity). All the effects of the laser fluctuations are contained in the parameter l/Tl 
which is proportional to the spectral width AV. 

One first checks that for a non-fluctuating laser beam (l/Tl = AV = 0), expressions 
(5.4), (5.5) and (5.6) reduce to the ones obtained in the case of a pure monochromatic 
laser beam (in the limit o1 >> r). 

We have represented in figures 4, 5 and 6 the shape of level-crossing signals, i.e. 
the variation with Q, of &(e,), &(e,) and (Ill - I J ,  for a given value of the parameter 
w:, i.e. of the mean laser intensity, and for increasing values of the parameter Av/T 
characterizing the spectral width of the fluctuating laser light (note that AV remains 
always smaller than col so that the validity condition (3.13) is always fulfilled). The 
parameter K (inverse of the correlation time z, of fast phase fluctuations) appearing in 
the expression (5.3) for 1/T, has been chosen as equal to 100r. 

One first notices that the various curves of each set have several common points: 
(i) They all have the same values for R, = 0 and Qe = a, i.e. according to (5.8),  

for /l = 4 2  (cos P = 0) and /3 = 0 or TC (sin P = 0). Mathematically, the coefficient of 
1/TT, in D(P)-3 cos' P sin2 P-vanishes when P = 0, n/2, TC. The physical inter- 
pretation of this result is that the fluctuating electric field ~ ( t )  cannot, for these three 

1 W 

-1000 0 1030 

ne/ r 
Figure 5. Set of level-crossing resonances detected on L,(e,), for a fixed value of the laser 
intensity (w:/2r2 = lo6) Each curve corresponds to a different value of the parameter 
AvlT indicated on the figure. 
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I 
-1009 0 1000 

n,/r 
Figure 6. Set of curves giving the difference Ill - I ,  between the two signals L,(e,) and 
L,(e,,) represented in figures 4 and 5 

values of p. destroy the alignment of the fictitious spin along the total field b = bo + b l ,  
so that the level-crossing signals are insensitive to the laser fluctuations. Let us call 
I -r) ,  10) and 1i-i) the energy levels in C”, which are the eigenstates of the com- 
ponents of S along b .  When /3 = 0 or n, e and b are parallel or antiparallel and the 
perturbation - dS; associated with E cannot induce any transition between the 161) 
states. When /3 = 4 2 ,  e and b are perpendicular and the perturbation -4s; connects 
only the two sublevels 1-1) and l+i) without changing their total population 
6+ - + 6- - and consequently the alignment along b .  

(ii) Two other common points symmetric with respect to 0 correspond to values 
of /3 such that 

3 cos2 p - 1 = 0. (5.9) 
This is obvious from (5.4), (5 .5)  and (5.6) since in that case Lf(ex) = &(e,) = 3, 
I ,  - I -  = 0 whatever Ab). the corresponding values of the matrix elements of G being 

O + -  = 6-+ = 0. (5.10) 1 
O + +  = B - -  = J 

Such a result can be interpreted in the following way. In C” the source term for the 
alignment along b is proportional to Rd2d(p) (see equation (4.32)), i.e. to 3 cos2 p - 1. 
For the values of /3 corresponding to the zeros of 3 cos’ /3 - 1, the fictitious spin is 
not prepared with a longitudinal alignment in E”. The steady-state value of its density 
matrix is isotropic and not affected by the relaxation produced by e. This explains 
the steady-state values (5.10) corresponding to a completely unpolarized spin. 

(iii) Finally, two more common points symmetric with respect to 0 appear in the 
curves giving &(e,) (see figure 5). From the expression (5.5) of &(e,) these points 
correspond to 

(5.11) 

This result is associated with the geometry of the detection. Let us first express the 
two detection signals L,(e,) and Lf(e,) in terms of the fictitious spin observables. Using 
expressions (A.4) and (A.6) of appendix 1, one easily derives 

3 cos’ p - 2 = 1 - 3 sin2 f l  = 0. 

L,(ex) x 1 - (S2,) (5.12) 

&(e,) 1 - (e).  (5.13) 



Hanle resonances for  laser-excited transitions 183 

&(ey) is therefore proportional to the alignment of S along Ox. The steady-state value 
of this alignment is deduced from the steady value of the alignment along b by a 
rotation around Oy with an angle in - p (see figure 3) which introduces a detection 
factor 

R(2) O O ( T ~  1 - p) - 3sin’p - 1. 

Such a detection factor does not appear for Lf(e,), which is proportional to the 
alignment along Oy, since the angle between b and Oy remains constant when p varies. 

Except for Qe 2 0 or !2, >> w1 ( p  = 71/2,0, n), the level-crossing signals when AV 
is very large tend to the value corresponding to the common points 3 cos’ f l  - 1 = 0, 
i.e. according to (5.10), to the value corresponding to a completely depolarized spin. 
This means that, when the action of E ( t )  is not inhibited by geometrical factors, the 
corresponding relaxation equalizes the populations of the three sublevels I + l),  IO) 
and 1 - l ) ,  and destroys the coherences between 1 + 1) and 1 - 1). 

More precisely, near R, = 0 and with the approximation sin2 p E 1. 
cos’ p N !22/wl, one finds for example 

This is a Lorentzian shape with a width given by 

(5.14) 

(5.15) 

At first sight, this result seems quite surprising since it implies that the width of 
the level-crossing resonance decreases when AV increases (U: being constant). Actually, 
this behaviour can easily be understood. The fluctuations of #I are always inefficient 
for !2, = 0. The larger the fluctuations, i.e. the larger that AV is, the smaller is the value 
of Re at which the fictitious spin begins to be affected, which explains the narrowing 
of the level-crossing resonances near Re = 0 when AV increases. 

T o  conclude, one can say that the shape of level-crossing resonances are quite 
sensitive to the fast phase fluctuations of the laser beam. To our knowledge, their 
effects have not been investigated experimentally. They could provide interesting 
information on the higher order correlation functions of the light beam. Such a study 
would also fill the gap between the two extreme situations which are well known and 
which correspond respectively to a pure monochromatic light beam or to a very 
broad band excitation (AV >> col). 

Appendix 1. Some useful relations on irreducible tensor operators 

The irreducible tensor operators TF’ can be expressed in terms of the three 
components S +  = S ,  i is,, S,  of the spin 1 S .  With the normalization condition 

Tr  Tik)Tf,!k’)  = 6 kk’  6 qq’ 

T p  = (1/J3) 1 (‘4.2) 

TL” = (l/$)Sz * 1  + T S ,  

(‘4.1) 
one gets 

(‘4.3) 

(A.4) 

T(1) = - 1 

7 3 2 ’  = - 1 7-g’ = T (SZ - 5, * I  + T ( S Z S f  + S,SJ i 2  - 2 i.‘ 7-‘” - ‘S’ 6 2  
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It follows that, in the expansion of the atomic density matrix 0’’ on the basis (see (4.8)); 

4 

the coefficients c t  are related to the matrix elements of a’’ by the following relations: 
- 

C: = ( l / J j ) ( ~ : +  + 0:-  + ~ g 0 )  = 1/J3 C A  = ( l /J’2)(0$ + - 0: - )  
r 

c: = -(l/J2)(0’& + og-) and c t ,  = (1/4’2)(0;+ + aLO) 

(A.6) 
c; = JT(a:+ + 0 L )  - 47 13 

c : = d -  and c - ~ = c J ? + .  2 I 

r 
c: = (l/$)(& - C T : ~ )  and c!,  = -(1/\/2)(0L0 - og+) 

In the rotation R(P) = exp (ips,) introduced in (4.2), the T f )  operators transform 
according to the relation 

R(p)Tf ’R(-p)  = 1 T$’R$h(p). (‘4.7) 
q’ 

Explicit values of some coefficients R$h will be useful, particularly in the study of the 
relaxation of the fictitious spin 1, for example: 

Rg&?) = $(3 cos2 p - 1) 

Appendix 2. Relaxation equations under the effect of the fluctuating fields 

We have to determine the equations of evolution of the two coefficients and of 
the density matrix 3 (E” representation) under the effect of the two Hamiltonians 
A, and E?,: 

8, = R I  VI2 TL” 64.9) 

(A.lO) 

According to equations (A.6), it is equivalent to determining the equations of relaxation 
of the three populations 8+ +, 8- - and 800.  Since we have seen that the fluctuating 
Hamiltonian satisfies the motional-narrowing condition, the usual relaxation theory 
can be applied. One immediately gets for the coupled evolution of these three 
populations : 

(A. 1 1) 
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where the two coefficients y 1  and y z  are the transition probabilities between levels 
Ib) 1 + 1) or Id) I - T), and 1 - 1) I + 7 )  respectively, induced by the fluctuating 
Hamiltonian A, (Abragam 1961), i.e. 

y1 = j o ~ d r ( l ~ ~ , ( ' ) i b ) ( U ~ A , ( r  - z ) / I )  exp(-iR,z) + Hermconj (A.12) 

y 2  =/os dz(ilE7,(t)I-l)(-?IA,(t  - ~ ) l T ) e x p ( - 2 i Q ~ ~ )  + Hermconj. (A. 13) 

In these two expressions, one must average over fast fluctuations &t). Using 
equations (A.lO) and (A.8), and equation (3.12) of I which gives the correlation 
function of 4: 

4(t)$(t - T) = ~ K A V  exp ( -  K T )  

one readily gets the explicit values of y 1  and y 2 :  

.2 
K 

y1 =isin2flcos2P--- AV 
K 2  + n: 

. .2 
K 

y 2  = $sin4p 
K 2  + 4n:. 

(A.14) 

(A. 15) 

(A. 16) 

The system (A.11) giving the evolution of the populations in 2'' can be simply 
rewritten as 

a + +  - 2a00 + L = -3y , (8++ - 2800 + 8 - - )  

a + +  - a - -  = - ( y 1  + 2y2)(8++ - 8 - - )  

which, according to (A.6), gives immediately 

tg = - 3 y , E i  

= -())I + 2y2)Eh. 

Finally, coming back to the notation used in 54 (4.14), one finds 
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