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Abstract. A dressed-atom approach, introduced in a previous paper, is generalised for 
studying several effects which could be observed on  an atomic beam interacting with two 
monochromatic resonant laser beams saturating two atomic transitions sharing a common 
level, a situation which occurs frequently in stepwise excitation experiments. The problem 
of the optimisation of the population of the upper state is investigated. Analytical 
expressions are derived for the positions, the widths and the weights of the various 
components of the fluorescence and absorption spectra. The results obtained at the limit 
where one of the two lasers has a much weaker intensity than the other one are interpreted 
perturbatively by treating to lowest orders the scattering of the weak laser beam by the 
atom dressed by the intense one. 

1. Introduction 

When an atomic transition ab is saturated by a high-intensity resonant laser beam, a 
lot of interesting effects can be observed which have been extensively studied both 
theoretically and experimentally : for example, a triplet structure of the fluorescence 
spectrum Fa, ( (0) emitted from the same transition ab has been predicted theoretically 
(Mollow 1969; see also somC references to several subsequent works in Cohen-Tannoudji 
and Reynaud 1977a) and observed experimentally (Schuda et a1 1974, Walther 1975, 
Hartig et al 1976, Wu et al 1975. Grove et a1 1977). Another interesting effect is the 
doublet structure appearing in the absorption of a second weak laser beam (figure' 1) 
probing another atomic transition bd or ad sharing a common level with the saturated 
transition. Such an effect, which was first discovered in the microwave region (Autler 
and Townes 1955) has been extensivqly studied recently in the optical region both 
theoretically (see for example Mollow 1972, Feneuille and Schweighofer 1975) and 
experimentally (Delsart and Keller 1976a, b, Picque and Pinard 1976)P. 

Up to now, the consequences of the simultaneous saturation of two atomic 
transitions ab and bc sharing a common level b (figure 2) by two intense laser beams 
with frequencies wL and o;, close to the atomic frequencies coo and ob, have received 

i. Although we will consider only atomic beams in the following, we should mention that there are other 
theoretical and experimental works dealing with vapours and taking into account the Doppler effect 
(Beterov and Chebotaiev 1974 and references therein, Schabert et ai 1975, Delsart and Keller 1976a, b). 
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Figure 1. Saturation of an atomic transition a b  by a high-intensity resonant laser beam 
(full arrow). One can observe the fluorescence spectrum emitted from the same transition 
(wavy arrow) or the absorption spectrum from another transition starting from a or b (for 
example ad, dotted arrow). 

much less attention (see, however, Whitley and Stroud 1976) although such a situation 
occurs frequently in experiments using a stepwise excitation of atomic states. The first 
important question is to determine what the intensities of the two lasers should be in 
order to have the largest population for the upper level c. One can also observe the 
fluorescence spectra Fab(O) and Fbc(o )  emitted from the saturated transitions ab and 
bc; how the triplet structures observed for a single saturated transition are modified 
when the second transition is also saturated and how the splittings of the spectral 
lines are related to the Rabi nutation frequencies o1 and w; characterising the 
coupling of the atom with the two laser beams. Suppose now that one observes the 
absorption spectrum from another transition sharing a common level with ab or bc, 
for example ad (see figure 2). It may be asked whether or not the saturation of the 
transition bc which has no common level with ad has any influence on the Autler- 
Townes doublet structure of ad associated with the saturation of ab. 

Let us finally mention some intriguing questions which arise when one of the two 
lasers has a much weaker intensity than the other one. It occurs frequently that some 
answers which seem obvious are actually completely wrong. Consider for example the 
case where the ot laser saturating bc is much weaker than the other one and let us try 
to understand F b c ( o ) .  One knows, of course, that the role of the intense oL laser does 
not reduce to populating b. It also produces a splitting of the absorption spectrum of 
the weak laser beam probing bc. One could observe such a doublet by measuring the 
variation of the total fluorescence light f b c  (integral over o of F b c ( U ) )  as a function of 
the frequency ot of the weak laser beam. However our problem here is completely 

Figure 2. Simultaneous saturation of two atomic transitions a b  and bc with frequencies 
wo and ob by two intense resonant laser beams (full arrows). One can observe the 
fluorescence spectra emitted from these transitions (wavy arrows) or the absorption 
spectrum from another transition starting from a ,  b or c (for example ad, dotted arrow). 
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different. We are interested in the fluorescence spectrum, i.e. in the variation with o of 
Fbc(W), the laser frequency being fixed. A nahe  approach based on the idea that b 
is split in two states would lead to  the wrong conclusion that the fluorescence 
spectrum F b c ( o )  has the same structure as the absorption one. 

The case where the wL laser is the weaker one is still more delicate. Since the lower 
level a is not directly coupled to the intense o; laser, one is tempted to predict that, 
for sufficiently weak intensity of the oL laser, the fluorescence spectrum Fab(W)  is mainly 
elastic (Rayleigh scattering). Since the oL laser is too weak to split the level b, one 
would also think that the fluorescence spectrum Fbc (U) has the well known triplet 
structure of a single saturated transition, the role of the oL laser being just to populate 
b. We will see later on that these conclusions concerning F a b ( o )  and F b c ( o )  are both 
incorrect. 

As a final example of a wrong conclusion which can be derived from too crude 
an approach to the problem, let us mention the idea that, as soon as the two 
intensities are sufficient to saturate ab and bc, the three populations are more or less 
equalised. We will actually show that increasing the intensity of one of the two lasers 
too much considerably reduces the population of the upper state c (even if the two 
intensities are sufficient to saturate each transition individually). 

In this paper, we present a theoretical treatment of the various effects associated 
with the simultaneous saturation of two atomic transitions sharing a common level. 
We will follow closely the dressed-atom approach developed in a previous paper 
(Cohen-Tannoudji and Reynaud 1977a, to be referred to as I) and dealing with the 
interaction of an intense laser beam with multi-level atoms. 

We will consider an atomic beam irradiated perpendicularly by the two saturating 
laser beams so that one can eliminate the Doppler effect. 

We will suppose that a is the ground state and that, by spontaneous emission, the 
atom decays from c only to h and from b only to a. so that the a-b-c system can be 
considered as closed. We will denote the natural widths of c and b by y’ and y .  

To simplify, we will also forget the Zeeman degeneracy of a, b, c. As in recent 
experiments (Hartig et al 1976, Grove et al 1977), optical-pumping methods can be 
used to concentrate atoms in a single Zeeman sublevel of each level a, b, c. 

Let us give a few examples of atomic transitions to which the calculations presented 
in this paper could be applied. One could first consider the two transitions 3s1,,, 
F = 2 c-) 3p3 2 .  F = 3 and 3p3 ,, F = 3 H 3d, 2 ,  F = 4 of Na. If the two lasers have 
right circular polarisation, optical pumping concentrates atoms in the higher mF sub- 
levels of each state. One is therefore led to a three-level system a = 3S1,2, F = 2, nzF = 2;  
b = 3p3 2, F = 3, rnF = 3; c = 3d5,,, F = 4, mF = 4, which obviously satisfies the 
assumptions made previously on spontaneous decay. The wavelengths of these two 
transitions are = 5890& 1.b = 8195A. It would seem easier to use the 3 p 4 d  
transition which has a more convenient wavelength (1-b = 5690w) for the presently 
available dye lasers, but the level 4d5,,, F = 4, mF = 4 decays not only to 3p but also 
to 4p so that the three-level system a, b, c would not be closed and so would require 
more elaborate calculations. Another interesting system is Li : the two transitions 
2s1,,, F = 2 c-$ 2p3,,, F = 3 and 2p3,,, F = 3 ++ 3d,,,, F = 4 have convenient wave- 
lengths (l.o = 6707& 1.b = 6103A) and one can neglect, during the interaction time, 
the spontaneous decay from 3d to 3p which has a very low probability. 

In 42, the general method developed in I is extended to the present case: the energy 
diagram of the atom dressed by two resonant laser modes (coL = o,, and 0;. = ob) is 
determined and the transition rates between the various energy levels are evaluated. 
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The resolution of the corresponding master equation allows a quantitative study of the 
population of the upper state (43) and of the fluorescence and absorption spectra ($4). 
In 45. the limiting cases where one of the two lasers has an intensity much weaker 
than the other are investigated and interpreted from a perturbative approach by 
treating to lowest orders the scattering of the weak laser beam by the atom dressed by 
the intense one. Finally (in 46), the results obtained in this paper are compared with 
those of previous publications. 

2. Extension of the dressed-atom approach to the interaction with two laser beams 

2.1. Unperturbed multiplicities 

In addition to the atomic quantum number, a, b or c, two quantum numbers are now 
necessary to describe the state of the two lasers. The ket I I ,  n, n ' ) ,  with 2 = a, b, c, will 
represent the state of the whole system corresponding to the atom in level 1 in the 
presence of n photons oL and 1%' photons w;, with an unperturbed energy 
El + n o L  + n'toi (we take /I = 1). 

We will suppose that the two atomic frequencies coo and wb are sufficiently different 
(a precise condition on loo - wbl will be given later on, see equation (2.3)) so that a 
given laser beam cannot be simultaneously resonant for these two transitions. In order 
to simplify the discussion, we will, in the following, restrict ourselves to the case of two 
resonant excitations 

= wo ot = wb (2.1) 

although the calculations presented in this paper could be easily generalised to a more 
general situation (Reynaud 1977). 

It will be useful to introduce the three-fold degenerate multiplicities 6Tn,n defined by : 

6fl,fl = { l a ,  n + 1. n') ,  Ib,n, n'), lc,n, n' - 1)). (2.2) 
The shape of the unperturbed energy diagram is given in figure 3 where some multi- 
plicities 8n.fl are represented by horizontal lines. 

Figure 3. Energy diagram showing some of the (three-fold degenerate) unperturbed 
multiplicities &,, . The thin arrows correspond to neglected non-resonant couplings (which 
should be taken into account when wo = U;). The wavy arrows pointing to the left or to the 
right describe the emission of a fluorescence photon from transitions ab or bc respectively. 
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I o,n+l ,n ’> Ib,n.n’) ~ I c ,  n. n’- 1 ) 
3, - f!q‘ 

Figure 4. Unperturbed degenerate states of the multiplicity 
the couplings between them, proportional to the Rabi frequencies w1 and 0;. 

The thin arrows represent 

2 . 2 .  Couplings 

The couplings between the three unperturbed states of gn,, are represented in figure 4. 
An atom in a can absorb an wL photon and jump in b, which couples the two states 
la, n + 1. n’ )  and lh, n. 1 2 ’ )  with an amplitude :CO, proportional to the Rabi nutation 
frequency col characterising the coupling of the wL laser with the transition ab?. 
Similarly the two states lb, n, n ’ )  and I C ,  n, n’ - 1) are coupled with an amplitude 
i w ;  (col and CO;, which are proportional to the amplitudes of the two laser waves wL 
and to;. will be supposed real and positive). 

Strictly speaking, an atom in a can jump to b by absorbing an w t  photon. 
This process corresponds to a coupling between two states la, JI + 1, n‘) and 
lb, n + 1, n’ - 1) which belong to two different multiplicities gn,,. and gn+ l , n  - (thin 
lines of figure 3). The amplitude of such a coupling is of the order of 0; (interaction 
with the 0;. laser) and can be neglected if the energy difference coo - ob between the 
two multiplicities is sufficiently large. Similar couplings, proportional to col, also exist 
between different multiplicities. We will suppose 

(2.3) 
so that one can neglect all these non-resonant couplings:. We therefore exclude the 
accidental case of three equidistant levels a, b, c, which would require to take into 
account the couplings between an infinite number of degenerate multiplicities (thin 
lines of figure 3). 

1 0 0  - wbl >> w,,w;  

2.3. Perturbed multiplicities 

The diagonalisation of the coupling I/ inside each multiplicity 8n,n. is straightforward. 
One first introduces two linear combinations of la, n + 1, n ’ )  and IC, n, n‘ - 1) 

which are respectively coupled and uncoupled to lb, n, n ’ ) .  Putting 

R, = (w: + c o ; y  

cos SI = o1/R, sing = w;/R, 

/U, n, n’) = cos M la. n + 1, n’) + sin SI I C ,  n, n‘ - 1) 

I C ,  n, n’ )  = -sin M la, n + 1, n ’ )  + cos ct I C ,  n, n’ - 1) 

(2.6a) 

(2.6b) 

t As in I, we will restrict ourselves to quasiclassical states of the two laser fields: the distributions p o ( n )  
and pb(n’) of the numbers I Z  and n’ of wL and 0; photons have widths An and An’ very large in absolute 
values, but very small compared to the mean values 12 and 8. All the energy diagrams represented below 
are therefore limited to values of n and n’ close to f i  and n‘ (within An and An’) and they have a periodic 
structure in this range. 

I: We have also neglected non-resonant couplings between $,,. and dnt2,.. or 8n,,.i2 (rotating-wave 
approximation, which has a condition of validity wl, w; << w o ,  wb much broader than (2.3)). 
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4 I 1. n,n’) 

c 12, n.n‘) 

in“ I 3, n,n’ ) 

Figure 5. Perturbed states of the multiplicity gn,, , with a splitting determined by 
0, = (0: + ,;2y *. 

one easily checks that jv, n, n’) is not coupled to Ib, n, n’) while lu, n, n’) is coupled 
to this state with an amplitude $Ql. It follows that gn,,. splits in three perturbed states 
li, n, n’) (i = 1, 2, 3) 

1 
11, n, n’) = 

(2,  n, n’) = jv, n, n‘) 

13, 71, n‘) = - (- Ib, n, id) + Iu, n, n’)) 

(Ib, n, n’) + / U ,  n, n‘))  
J 2 

1 
v f2 

with energies (measured with respect to the unperturbed energy of g,,,.) respectively 
equal to : 

(see figure 5). 
The equidistance between the three perturbed levels is a consequence of the 

simplifying assumption (2.1). In the general case, the three energy levels obtained by the 
diagonalisation of a 3 x 3 matrix are not equidistant. Let us note finally that, as long 
as oL + ot = w,, + ob, the two states 1 a, n + 1, n’) and 1 c, 11, n’ - 1) remain degenerate, 
so that the introduction of lu, n, n’) and lv, n, n‘) leads to a two-level problem 
(jv, n, n’) is an eigenstate of the perturbed Hamiltonian). 

2 .4 .  Spontaneous transition rates 

As a consequence of the assumptions made on the spontaneous decay of the three-level 
system a-b-c, the only non-zero matrix elements of the atomic dipole moment B are: 

d = ( a l B l b )  d‘ = ( b 1 9 1 ~ ) .  (2.9) 

From the expansion (2.7) of the dressed atom states, and from (2.9), one easily 
derives that 53 couples &n,n. only to adjacent multiplicities (gn* or gn”,,,. l). When 
the number IZ (n’) changes by one unit, this coupling describes the spontaneous 
emission of one photon with a frequency close to oL(oi) (wavy arrows of figure 3 
pointing to the left (right)). 
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I 1  
2 

1 3  

Putting : 

dij = ( i ,  n - 1, n / 9 / j ,  n, n’) 

dlj = (i, n, 71’ - 11 g l j ,  n, 11’) 

one gets: 

d i j  = (i, n - 1, n‘la, n, n’) d (b, n, n’lj, n, n ‘ )  
dij = ( i , n ,  n‘ - lib, n,n‘ - 1) d ‘ ( c ,  11, n’ - ll,j, 11, n‘) 

fcosci  0 - $ C O S %  
~ 

sin a __ a 0 
sin a -~ 
$ 

fcosa 0 -$COS% 1 

which, according to (2.7), gives: 

1 

2 

- dij _ -  
d 

cos a 
~ fsin ci fsin c( 

Jiz 

0 0 0 
d! . _ -  I’ - 
d‘ 
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(2.10) 

(2.11) 

(2.12) 

Since 12, n, a‘)  does not contain lb, n, n’) (see (2.6) and (2.7))T: 

The transition rates 

between (j, n, 71’) and li, n - 1, TI’), lj, 11, n’) and ti ,  71, 71’ - 1) are immediately 
calculated from (2.12). Using 

7 = / d i 2  y’ = I d 1 2  (2.15) 

t The orthogonality between 12, n, n’} and jb, n, n’). and consequently the property (2.13), remain valid as 
long as wL + w; = wo + wb. 
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one gets 

2 3  

(2.16) 

All possible spontaneous decays from the three perturbed states of &,. to lower 
multiplicities are represented in figure 6. 

2.5. Evolution of the populations of the dressed-atom states 

We will suppose in the following that: 

RI  >> y, 7’ .  (2.17) 

This condition is the basis of the secular approximation which, as explained in I, allows 
a simple resolution of the master equation describing spontaneous emission from the 
dressed atom. 

In particular, this approximation leads to a closed system of equations for the 
populations O!(IZ, n’, t )  of the levels li, it, n’) which have the simple physical meaning 
of rate equations: o!(n, n’, t )  decreases because of spontaneous transitions to lower 
states (with a total transition rate X I y l i  + and increases because of spontaneous 
transitions from the upper states i j ,  n + 1, 11’) and 1 j ,  I?, M’ + 1) (with transition rates 
respectively equal to y i j  and y i j ) :  

d 
- a;(n. I?’, t )  = -2 (yI i  + y i i ) ~ E . ( ~ ? ,  I?’, t )  + 1 yijajOj((n + 1: TI’, t )  + 
d t  I j j 

yljojOj((n, n’ + 1, t).  

(2.18) 

As in I, one can show that, to a very good approximation. the populations can be 
factorised as : 
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E",",., 

Figure 6. Possible spontaneous decays (wavy arrows) from the three perturbed states of 
ha,,, to the lower multiplicities. 

where p,(n) and pb(7z') are the distributions of the numbers iz and 11' of wL and ot 
photons and where the q ( t )  satisfy the rate equations 

(2.19b) ki  = -rini + 2 rijnj 
j 

with : 

Equations (2.19) have a steady-state solution which is found to be 

7' cos2 SI 

;J sin2 SI + 2y' cos2 ii 
y sin' SI 

y sin2 a + 27' cos2 x '  

7c1 = x3 = 

712 = 

One can check that such a solution satisfies the detailed-balance condition? 

(2.20) 

(2.21) 

r..71. IJ J = r..71. J I  1 .  (2.22) 

2.6. Damping of thefiequeizcy components of the dipole moment 

The various frequencies appearing in the motion of the dipole moment are the various 
Bohr frequencies corresponding to the allowed transitions represented on figure 6. 

The periodic structure of the energy diagram is responsible for some important 
couplings between different optical coherences (off-diagonal elements of the density 
matrix CT) evolving at the same frequency (cascade effects). 

Let us consider for example the case of the off-diagonal element (3,1z, n' - 1101 1, i t , 12 ' )  

evolving at & + 0, (see figure 7). This coherence is first damped with a rate i(r, + I-,) 
(half sum of the transition rates from the two connected states: wavy arrows of 
figure 7). But it is also coupled to (3, i i  + 1, iz' - ljoll, IZ + 1, n ' )  (with a coefficient 
d 3 3 . d l l )  and to (3, n, i z ' l ~ ~ l l ,  n, n' + 1) (with a coefficient d133.d'11) (thin arrows of 
t The detailed-balance condition is no longer satisfied when the resonance conditions oL = wo, 4 = ob are 
released. 
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Il.nt1.n’) 

+I, n‘-1 ) 

Figure 7. Various terms describing the evolution of the off-diagonal element (3, 11, 

n‘ - l lu l l ,  11, n’). In addition to the damping due to the transition rates r3 and r l  from 
13, n, 12’ - 1) and 11, 12, n’) (wavy arrows), this off-diagonal element is coupled (thin 
arrows) to (3, n + 1, n’ - lIu(1, ii + 1, 1 2 ’ )  (with a coefficient d l l . d 3 3 )  and to  (3, n, 
n‘lull, n, a’ + 1) (with a coefficient d ; ,  

figure 7). A calculation similar to that of I shows that the (ot + R,) frequency component 
of the dipole moment is damped with a rate L13 given by: 

(2.23) 

More generally, one can show that the components of the dipole moment evolving at 
o; + Ei  - E j  or oL + Ei - E j  with i # j are damped with a rate: 

(2.24) 

It could appear surprising to obtain such a simple formula for LIZ or L Z 3 :  since 
El - E 2  = E 2  - E 3 ,  the off-diagonal elements (2, n, n’ - 11 G 11, n, n ’ )  and (3, n + 1, 
n‘ - 11 G 12, n + 1, n’) evolve at the same frequency ot + $2, and it seems necessary to 
take into account their coupling. However such a coupling vanishes as a consequence 
of (2.13). 

L13 = +(rl + r,) - d l l  . d 3 3  - dl, . d i 3 .  

L. .  = L . .  = 1 r + r .)  - d . . d . ,  - d ! . J  ... 
ij j 1  2( i j 11 J J  11 J J  

Finally, the component of the dipole moment is proportional to 

d;i  (i, n, n‘ - I IGli ,  12, 12’). 
n i  

Taking into account all the couplings by spontaneous emission and using (2.13), one 
shows after a calculation similar to that of I (see also Reynaud 1977) that this central 
component (as well as the oL component) is damped with a rate L, : 

(2.25) L, = rl = r3. 

3. Optimisation of the stepwise excitation of the upper level c 

The purpose of a stepwise excitation is generally to populate appreciably the upper 
level c of figure 2. 

If one can use pulsed lasers, the best thing is of course to make first a n pulse of the 
oL laser which transfers all atoms from the ground state a to b ;  then a TC pulse of the 
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w t  laser brings all these atoms to c (such a sequence should of course take a time 
short compared to the radiative lifetimes). 

We will consider here the situation where both lasers ojL and 0;. have been 
simultaneously applied for a long time (steady-state regime) and we will determine 
under what conditions the population 71, of c is a maximum. 

Such a population, in the presence of the two lasers, is given by: 

n, = Trlc) ( C I D  = 1 (c, n, IZ’IOIC, 11, n’) 
nn‘ 

where D is the density matrix of the dressed atom. 

can be easily derived from (2.6) and (2.7): 
The expansion of I C ,  I Z , ~  - 1) in terms of the perturbed states l i ,  n, n ’ )  ( i  = 1, 2, 3) 

(3.2) 
sin a 

Ic ,n ,n’ -  1) =7(l l ,n , i t ’ )  + j 3 , n , n ‘ ) ) + c o s a l 2 , i z , n ’ ) .  

Inserting (3.2) into (3.1), using the diagonal character of D in the steady-state regime? 
and expression (2.19a), one gets: 

J 2 

.ne = +sin2 x (7tl + n3) + cos2 x n2 (3.3) 
which. when one uses the steady-state values (2.21) of the .ni, gives : 

(3.4) 
(7 + ?‘)sin2 a cos2 x 
:,sinz% + 2y’cos2 c( 

71, = 

An atom of the atomic beam which, after having reached a steady state, leaves the 
irradiation zone sharply delimited by convenient slits (the intensities of the two lasers 
are supposed to be constant in this zone), has a probability ne that it has been 
excited into the upper state c. Expression (3.4) is therefore a quantitative measure of the 
efficiency of the stepwise excitation. 

As it appears from (3.4), this efficiency depends only on the two ratios ypp’ and 
wl/o; (through the parameter a defined in (2.5)). The maximum of n,, for a given value 
of y / y ’ ,  is 

and corresponds to 

One easily shows from (3.5) that is always larger than the value f which would 
correspond to an equalisation of the three populations. 

When one of the two laser intensities becomes much larger than the other one, 
i.e. when w1 >> w ;  (sin2 a << 1) or w ;  >> w1 (cos2 a << l), the steady-state value of ne 
given in (3.4) tends to zero. Such a result only depends on the ratio wl/w; and remains 
valid even if the smallest Rabi frequency is larger than y and y’. We therefore conclude 
that, even ifthe two lasers are sufficiently intense to saturate each transition individually, 

t The approximate resolution of the master equation for U, by the method described in I, shows that the 
off-diagonal element ( i ,  it, n‘ ld j ,  n; n’) with i # j is damped to zero with the rate Lij  given in (2.24). 
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Figure 8. Schematic representation of the fluorescence spectra F o b ( o )  and Fbc(c9). At 
resonance (wL = wo, w t  = ob) each spectrum exhibits five equidistant Lorentzian com- 
ponents with the same splitting Analytical expressions are given in the text for the 
width and the weight of each of these components. 

the stepwise excitation may become completely inefficient if the two laser intensities 
are too unbalanced (w:/o;’ too far from the optimum value (3.6)). We will return to 
the physical interpretation of this unexpected result in 95. 

4. Fluorescence and absorption spectra 

4.1 .  Fluorescence spectra Fab(w)  arid Fbc(w) 

A straightforward extension of the results of I shows that the fluorescence spectrum 
Fab(w) observed on the transition b-a exhibits several components at frequencies 
wL + E ,  - E j .  i.e. five components at frequencies wL, wL in,, wL i R,. A similar 
result holds for Fbc(w) which exhibits five components at w t ,  w t  i &2,, w t  i Dl 
(figure 8). We conclude that, when two transitions sharing a common level are simul- 
taneously saturated by two resonant laser beams, the fluorescence spectra observed 
from these two transitions have the same quintuplet structure? with a splitting Cl,, 
depending on the Rabi nutation frequencies associated with both lasers through 

The widths of the lateral components wL + E ,  - E j  and 0; + E ,  - E j  (with i # j )  
R, = (Lo: + o;2)”’. 

are the same and are given by (2.24). Using (2.12), (2.16) and (2.20), one gets: 

L , ~  = ~ 3 1  = $.42 + cos’ x )  + $y’ sin2 x 

~ 1 2  = Lzl = L23 = L32 

(4.1) 

(4.2) +! + &?’(I + cos2 a). 

Similarly, the two central components at oL and 0; have the same width L,  given by 
(2.25) and equal to:  

L, = +y + f.)‘ sin2 a. (4.3) 

It follows that the width of each component of the fluorescence spectra depends on 
the natural widths y and y’ of both excited states b and c in a proportion related to 
o1 and w ;  through the angle a = tan-’ w;/wl. Such a result was expected for Fbc(w) 
since this spectrum involves spontaneous transitions between c and b. The fact that the 
fluorescence emitted on ba depends on the natural width y’ of c seems, at first sight, 

f When the resonance conditions (2.1) (oL = oo, ot = wb) are released: the three levels li, i t }  ( i  = 1, 2, 3) 
are no longer equidistant and the fluorescence spectra exhibit seven unequidistant components. Let us note 
however that as long as wL + wt = wo + ob (two-photon resonance condition) equations (2.13) remain valid 
(see footnote, p 2317) so that on each spectrum, two non-symmetric components disappear, and this leads 
to two asymmetric quintuplets (Reynaud 1977). 
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more surprising, but it is a consequence of the simultaneous saturation of ab and bc 
which mixes all natural widths. 

It is also interesting to note that. in our particular case (wL = wo, 0;. = wb, 
12, >> 7 ,  y’), the central components at wL and w; have a Lorentzian shape; in 
particular. we do not find any elastic contribution (which would correspond to an 
undamped component of the dipole moment). The absence of elastic components is a 
consequence of the secular approximation (Q, >> y, 7’). These components actually exist 
but are of higher order in y/Ql or ?’/12,. 

The weights of the various components of Fab(W)  and Fbc(w) can be derived as in I. 
The total number of photons emitted from a given component is equal to the total 
number of atoms undergoing the corresponding transitions : 

i 

It appears clearly from (4.4) and (4.5) that, contrary to what happens for the 
positions and the widths, the results concerning the weights are not the same for both 
spectra (since y j j i  # in general). Using the steady-state values (2.21) of the populations 
ni and the expression (2.16) of the y i j  and y i j ,  one gets: 

&(UL) = +cos2 a g 
&(OL * Q,) = +cos’ a JJ 

&(U, f +al) = tsin2 a 2 
?‘ . $(ut) = - sin2 a f 
2Y 

Y’ 
4Y 

&(ut i. 12,) = -sin2 SI 2 

where 
y l  cos2 x 

7 sin2 x + 2y’ cos’ M 
& = y T  . 

(4.6) 

(4.7) 

is the total number of photons emitted on the ab transition ( T  is the transit time of 
atoms through the laser beam; the transient regime has been neglected). 

We first note that F a b ( u )  and Fbc(CC)) are symmetric with respect to wL and w t .  It 
must, however, be mentioned that such a symmetry completely disappears when the 
resonance conditions (2.1) (oL = coo, 0;. = cob) are released. 

The expression (4.7) of the total intensity J? emitted from the ab transition, as well 
as the corresponding expression: 
3‘ = %(Ut) + 2JJ(w;. + 40,) + 2j(ot + Q,) 

(;I + ?’)cos2 a sin2 x 
y sin2 x + 2y’ cos’ x 

= y’T 
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of the total intensity emitted from the bc transition, have a simple physical inter- 
pretation: let us calculate the reduced population nb of the unperturbed level b (as 
we have done it for 71, in $3). One gets 

‘J’ cos2 s( 

y sin’ a + 2y’ cos’ a 
n b  = 

and one easily checks that 

(4.9) 

(4.10) 

which means that f and &’ are respectively proportional to the total number of atoms 
in b and c, and to the transition rates ’J and ‘J‘. 

It seems also interesting to study the behaviour of the weights (4.6) when one of the 
laser fields becomes much weaker than the other one (ol << o; or CO; << col). This 
problem will be considered in detail in $ 5 ,  

4.2. Absorptioiz spectrum of a new traizsitioiz starting from a, b or c 

We consider now a third laser beam having a sufficiently weak intensity and probing 
a new transition starting from a, b or c. One measures the absorption of this laser 
light as a function of its frequency. 

Let us consider for example the transition ad of figure 2. Since the two intense 
oL and ot lasers are not resonant for the transition ad, the state Id, 11, 11’) can be 
considered as an eigenstate of the dressed atom (atom dressed by the coL and o; 
photons). The frequency components appearing in the absorption spectrum A , ,  (0) of 
the ad transition are given by the Bohr frequencies corresponding to the allowed 
electric dipole transitions between Id, i t ,  n‘) and any dressed-atom state belonging to 
the multiplicities W introduced in (2.3). Since Id, 11, n’) is only connected to la, iz. n’), 
which only appears in the expansion of the perturbed states l i ,  iz - 1: 11’) of & - l , n , ,  

one immediately deduces that A a d ( o )  exhibits three components at frequencies : 

(4.1 1) 

(where oa is the frequency of the ad transition) and corresponding to the three 
allowed transitions ( i ,  n - 1, iz ’ )  - -+Id,  n, ti’) ( i  = 1, 2, 3). It can be easily shown 
(Reynaud 1977) that the width of the ob: - Ei component is simply given by +(ri i- r,) 
where Ti and rd are the total transition rates from the two connected levels Ii,iz - 1, n’) 
and Id, i t ,  n’). Finally, the weight fA(co: - Ei) of each component cob: - Ei is propor- 
tional to the population of the absorbing level I i, i t  - 1, i t ’ )  and to the absorption rate 
I(i ,n - 1 , d  91d,n,iz’)1’ which leads to:  

f A ( ~ a  - Ei) n i / ( i , ~ ~  - 1,1~’(~,i2,n’)(’l(U(~ld)l’. (4.12) 

We therefore conclude that the saturation of bc transforms the well known Autler- 
Townes doublet observed from ad and associated with the saturation of ab into a 
triplet. Although the 0;. laser does not act directly on level a, it modifies drastically 
the absorption spectrum observed on ad: not only the splitting changes from o1 to 
RI ,  but a third new component appears. Similar results are obtained on the 
absorption spectra starting from level c. It must however be mentioned that the 
absorption spectra observed from b, for example on a transition be, remain as a 

- El  = 06 - + i l l  - E 2  = mg 06 - E ,  = U $  + Jill 
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doublet: this is due to the fact that the weight of the transition j 2, n, n’) + 1 e, n, n‘), which 
is proportional to 1 ( 2 ,  n, n‘I h, n. 12’) 1 ’. vanishes as a consequence of (2.6) and (2.7) (such 
a doublet structure remains as long as oL + ot = U,, + cob, see footnote p 2317). 
Paradoxically, it is for level b, which is directly coupled to both lasers, that the 
modifications of the absorption spectra are the smallest. 

5. Discussion of two limiting cases (ol << o’, and o’, << ol) 

5.1. Limiting case uI << o; 

We consider first the behaviour of the fluorescence spectra F a b ( W )  and Fbc(CC)) at the 
limit where the wL laser driving the ab transition has a much weaker intensity than 
the other one: 

0 1  << 0;. ( 5 . 1 ~ )  

The 0; laser. however, is supposed to be sufficiently intense so that the secular 
approximation (2.17) remains valid: 

(5.lb) R1 2 0; >> y ,  y’. 

In such a case, expressions (2.5) may be written as: 

cos r 2: co1/0; sin x 2 1 (5.4 
so that the weights of the components of the spectra are, according to (4.6) and (4.7): 

(5.3) 

The corresponding shapes of F a b ( o )  and Fbc(oj) are sketched on figure 9. These 
results do not fit at all the conclusions which would be suggested by a naive approach 
to the problem (a single elastic Rayleigh component for Fab(W) ,  and a triplet for F b c ( u ) ,  
see introduction): the spectrum F a b ( W )  contains essentially two components in 0: at 

Figure 9. Fluorescence spectra Fab(w) and Fbe(w) at the limit o1 << 0;. The splitting is now 
iw ; .  Fab(W) exhibits two components in at wL i i w ;  and three smaller ones in w‘: at 
wL,  wL + 0;. The five components of Fbc(w) at U ; ,  w t  + *U ; ,  w t  + w ;  are all in 0:. 
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WO 

v 

Wb 

I +, n’) 
I -,n’) 

I +,n’-I ) 
I - , n - l )  

I +.n’-2) 
I-.n’-2) 

/o,n’- l )  

Figure 10. Energy diagram of the atom dressed by the o; photons. From the populated 
level la, 17’). the dressed atom absorbs one cgL photon (full arrow) and falls back to la, n’),  
1 +. 11’ - 1) (xavy arrows). The corresponding Rayleigh and Raman processes take place 
through two possible intermediate states 1 +. n’).  Subsequent decays from the unstable 
states 1 k, 11’ - 1) (reached after the Raman process) are indicated by wavy arrows. 

q. k )CO; (three other components in OJ;‘ appear around coL, C O ~  & CO;)+. The spectrum 
F ~ ~ ( w )  contains five components all in 0:. 

Let us now show how a correct perturbative treatment of the problem allows a 
simple interpretation of all these results. Considering that the intense CO; laser splits the 
level b is too crude. The correct approach is first to treat to all orders the system 
‘atom + intense CO; laser interacting together’ (atom dressed by the w; photons), which 
has an infinite number of energy levels. One can then describe perturbatively the 
scattering of the weak wL laser by such a dressed atom. 

In figure 10 some energy levels of this dressed atom are represented: the perturbed 
levels I +, i t ’ )  of the right column originate from the unperturbed states lb, IZ’), 
I C ,  12’ - 1), . . . etc. They are given by 

1 
1 i, 11‘)  = 7 ( 1  C, 11’ - 1 ) i 1 b, 1 2 ’ ) )  (5.4) 

\I 2 

and are separated by CO;. The left column contains the states la, n ’ )  which are not 
perturbed by the non-resonant coupling with the CO; laser. 

In the absence of the uL laser, the la, i z ’ )  states are the only ones to be stable and 
therefore populated. Let us now consider the scattering of a single wL photon 
(lowest-order processes, with amplitudes proportional to wl). After absorbing one oL 
photon from the la, 11’) state (upwards full arrow on figure lo), the dressed atom can 
fall back either to 1 a, 11’) (elastic Rayleigh scattering), or to 1 f , 71’ - 1) (Raman scat- 
tering) with the emission of photons at frequencies equal to oL, CO; f *CO; respectively 
(wavy arrows on figure 10). One must not forget, however, that these three scattering 
processes can take place through two intermediate states 1 &: n ’ )  so that the 
corresponding scattering amplitudes result from the interference between two paths. 

For example, the total Rayleigh scattering amplitude is, to the lowest order in wl, 
proportional to 

(5 .5)  
(an’ 1 D l e d )  (En’ 1 D 1 an’) 

E = +, - Ea,,, + uL - Een, + i i  Ten, CO1 c 
t Note that the elastic component remains absent in Fab(u): the discussion in $4.1 concerning this 
component only refers to the secular approximation and to the resonance conditions, which remain valid 
in the present case (see 5.lb). 
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Figure 11. Inverse Rayleigh and Raman processes occurring from level 1 f ,  11’ - 1):  
emission of a fluorescence photon (wavy arrows) followed by the absorption of one oL 
photon (full arrows), the final state of the dressed atom being 1 f .  11’ - 1) or 1 -, n’ - 1). 

where D is the atomic dipole operator (since a, b, c are non-degenerate, we forget all 
polarisation effects), Eun, and E,,. are the energies of la, n’)  and I E ,  i d ) ,  I-,,. the natural 
width of I E ,  11’) which is easily found to be equal to f(y + 7’) .  From the expression 
(5.4) for 1 f, n’) and from the resonance conditions (2.1) which imply Eu,, + wL - E,,,. 
= (see figure lo), one immediately deduces that (5.5) is proportional to 

which vanishes when we neglect non-secular terms in ( y  + 7’)lco; (secular approxi- 
mation). We therefore interpret the absence of the elastic Rayleigh component as being 
due to an interference between two different paths which is completely destructive at 
resonance (coL = wo, w t  = cob) and for high intensities of the co; laser (0; >> 7 + y’). 
Such an interference also exists for the Raman processes of figure 10 but it is 
constructive, as it can be shown by a calculation very similar to the previous one. 
This explains the presence in Fbc(m)  of the components 0 ;  & with a weight 
proportional to 0:. 

Once the dressed atom is in 1 +, n’ - l) ,  it can decay to lower states la, n’ - 1) or 
1 +, n’ - 2), spontaneously emitting photons with frequencies coL i. f co;  or w; ,  
w t  i: OJ;. This explains the three other components in cot of F b c ( 0 )  at w t  and cot f w;,  
as well as the two major components (also in CO:) of Fab(CL)) at oL L- t w ; .  

It remains for us to explain the three small components of Fub(co) at w L ,  oL + U;.  

Since they are in w;, they imply a second interaction with the col. laser (see figure 11). 
Once the dressed atom is in I +, n’ - 1) after the Raman process of figure 10 (eventually 
followed by one or several cascades along the right part of the energy diagram of 
figure lo), it can emit a spontaneous photon (wavy arrows of figure 11) and then 
reabsorb a photon of the coL laser which puts it back into 1 +, n‘ - 1) or I -, n’ - 1) 
(full arrows of figure 11). These ‘inverse’ Rayleigh and Raman processes, which can also 
occur from I - ,  12’ - 1). are at the origin of the three components of F a b ( W )  at wL, 

i. 0 ; .  

We have therefore been able to understand the main features of the spectra 
represented in figure 9. By pushing a little further the previous perturbative considera- 
tions, it would be possible to derive all the expressions (5.3) for the weights of the 
various components. 

The inefficiency of the stepwise excitation of level c at the limit co; >> col. pointed 
out at the end of $3, can be easily understood from the previous discussion. We see 
from figure 10 that the levels j +, 12‘) cannot be appreciably populated from la, n’) by the 
absorption of an photon, since this absorption is no longer resonant as a consequence 
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1 

Figure 12. Fluorescence spectra F a b ( o )  and F b c ( o )  at the limit w\ << ul. The splitting is 
now iol. Fnb(u)  exhibits three large components (to zeroth order in U; )  at oL, (oL & o1 
and two smaller ones in a;’ at oL &-$U,. The five components of Fbe(u)  at wl, col +io,, 
to; + o1 are all in w;’. 

of the splitting w; appearing between the I +, n’) and 1 -, rz’) levels. Increasing the 
intensity of one of the two lasers too much suppresses the resonant character of the 
second laser excitation (let us recall that, in the previous discussion, we have assumed 
wL = coo, w t  = wb. It appears clearly on figure 10 that when w; >> wl, the efficiency of 
the stepwise excitation can be improved by tuning the wL laser to wL = wo 50;). 
5.2. Limiting case wi << w1 

The equivalent of conditions ( 5 . 1 ~ )  (5.lb) and (5.2) are now: 

w; << w1 (5.7a) 

R, 2L w1 >> 7 ,  y’ (5.7b) 

cos ct 1 1 s inx z w; /w l .  ( 5 . 8 )  

In this limit, equations (4.6) and (4.7) become: 

The corresponding spectrum Fab(w), represented in figure 12, consists mainly of three 
components at wL, wL & w1 (to zeroth order in ai), as it should be in absence of the 
CO; laser. Two additional components, in U;’, appear, at wL i fal. The spectrum Fbc(w) 
is less obvious. Instead of the doublet suggested by the naive approach (see introduction), 
one gets five components. all in w:’. 

For interpreting the spectra of figure 12 perturbatively, we consider first the atom 
dressed by the intense o, laser. Some energy levels of this system are represented 
on figure 13. The left column now contains the levels: 

1 
I &, 7%) = --(la, 7z + 1) i Ib, n ) )  

\ 15 (5.10) 

separated by wl, while the right column consists of the levels IC, r z )  not resonantly 
coupled to the wL laser. 
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I 

Figure 13. Energy dlagram of the atom dressed by the oL photons. The cascades between 
the populated levels 1 +, n )  are represented by vertical wavy arrows. From 1 +. n ) ,  the 
dressed atom can absorb one wt photon (full arrow) and fall back to /+, n )  or I - ,  n )  
(Rayleigh and Raman processes represented by wavy arrows). 

To zeroth order in o;, only levels 1 f, n )  are populated. They can decay only to the 
lower states of the left column of figure 13, and the corresponding cascade accounts 
for the well known triplet wL, wL i o1 of Fab(w) (vertical wavy arrows of figure 13). 

Suppose now that the dressed atom in 1 +, n )  absorbs an w; photon (leaning full 
arrow of figure 13), and then falls back to I +, 11) or 1 -, n) (leaning wavy arrows). 
These Rayleigh and Raman first-order processes, which can also occur from 1 -, JZ), 
explain the presence of the three components w i ,  w t  i w1 of Fbc(wl), with an intensity 
proportional to ai2. Because of the natural widths of 1 +, n )  and 1 -, 11) these Rayleigh 
and Raman components have a finite width. 

Figure 14. Inverse Raman processes occurring from 1 +, n )  or 1 -, n ) :  emission of one 
fluorescence photon (vertical wavy arrows) followed by the absorption of one 4 photon 
(fujl arrow), the final state of the dressed atom being I C ,  n - 1). Subsequent decays from 
Ic*n- 1) are indicated by wavy arrows. 

Finally, let us consider the inverse Raman processes represented on figure 14 and 
occurring from 1 +, n) or 1 -, i t ) :  emission of a spontaneous photon from 1 +, 11) or 
1 -. M) (vertical wavy arrows) and absorption of a photon of the & laser (leaning 
full arrow) which puts the dressed atom into I C ,  n - 1). One immediately understands 
in this way the last two components of Fab(w) at wL & io1 (which require the 
absorption of one 0; photon and which therefore have an intensity proportional 
to CO;’)?. From lc,n - l),  the dressed atom decays to I f, 11 - 1) by emitting 

t There are two Raman amphtudes, corresponding to the two intermediate states 1 +, IZ - l),  but a simple 
calculation shows that they interfere constructively. 
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spontaneous photons at k io1 (leaning wavy arrows) which explains the last two 
components of Fbc(o) .  

A discussion similar to the one given at the end of 35.1, explains the decrease of 
the efficiency of the stepwise excitation of level c at the limit w1 >> w;: the splitting 
w1 appearing between j +, i z )  and j -, i z )  prevents a resonant ot excitation of level 
IC, 71) from the populated levels 1 j-, 11). 

6. Comparison with previous works 

It is interesting to compare the results derived above with the ones obtained by 
Whitley and Stroud (1976) from an integration of the equations of motion of the atomic 
density matrix driven by two c-number applied laser fields. 

Let us first emphasise the complete equivalence between both methods at the 
high-intensity limit. As mentioned in I, the dressed-atom approach can be exactly 
transposed into the semiclassical one: in the present case of three atomic levels, there 
are nine evolution equations for the atomic density matrix elements. In a first step, 
one could neglect the damping terms and diagonalise the Hamiltonian part of the 
evolution equations which is exactly equivalent to finding the three dressed-atom states; 
if y and y’ are sufficiently small, it would be then a good approximation to keep 
only the secular part of the damping terms, which is strictly equivalent to the secular 
approximation used in the dressed-atom approach. 

Requiring only the diagonalisation of a 3 x 3 matrix (instead of a 9 x 9 one), 
the dressed-atom approach leads at the high-intensity limit to simpler calculations and 
to explicit expressions for the positions, widths and weights of the various componentst. 
This allows a quantitative and physical understanding of the influence of the various 
parameters, more conveniently than from a computer integration of the nine evolution 
equations. 

Of course, these results are only valid to zeroth order in y/R,, y‘lR,. If one is 
interested in higher-order corrections or if the various components overlap (which means 
that y/Ql or y’/R1 are not small), the secular approximation cannot be done and it is 
necessary to solve the whole set of nine equations. 

Finally it should be noted that the calculations presented here generalise to some 
extent those of I where a single laser beam was considered, saturating the transitions 
between the various sublevels of two atomic states. The method of I has been first 
applied to the study of the modification of the Raman effect in intense laser fields 
(Cohen-Tannoudji and Reynaud 1977b) by considering an atom having a single 
excited and two quasi-degenerate ground-state sublevels. Here two laser beams (instead 
of one) are saturating a three-level atom (the three levels being distinct and not quasi- 
degenerate) and it is the presence of two types of photons which requires a 
generalisation of the formalism of I (compare for example equations (2.18) for the 
evolution of the populations and (2.23) for the widths of the lateral components with 
the corresponding equations (3.4) and (4.19) of I). 

t For length considerations, we have only studied the resonant case for which the diagonalisation of the 
3 x 3 Hamiltonian is trivial (see equation (2.7)), but obviously, this diagonalisation can be done in the general 
case. For the same reasons, we have only considered the steady-state contribution to the fluorescence spectra 
although the transient one could be studied from the results of I (see equation (5.1) of I). 
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7. Conclusion 

To summarise, we have shown that the dressed-atom method can be applied to the 
problem of the simultaneous saturation of two atomic transitions sharing a common 
level (the particular case of three equidistant levels, which requires a more elaborate 
treatment, is not considered in this paper). 

We have derived analytical expressions for the positions, the widths and the 
integrated intensities of the various components of the fluorescence and absorption 
spectra, in the simple case where the laser excitations are both resonant. New structures, 
such as quintuplets, triplets (or even septuplets when the resonance conditions are 
released) have been predicted. The efficiency of the stepwise excitation of the upper 
level c has been analysed in the steady-state regime. 

Finally, the limiting case where one of the two lasers has a much weaker 
intensity than the other one has been studied in detail. A simple interpretation of the 
corresponding results has been given by treating perturbatively the scattering of the 
weak laser by the atom dressed by the intense one. 
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