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Abstract. A dressed-atom approach to resonance fluorescence in intense laser fields is 
presented. Simple and general results are derived which include the now well known 
predictions concerning two-level atoms but are not restricted to such simple cases. The 
positions of the various components of the fluorescence and absorption spectra are given 
by the allowed Bohr frequencies of the total system: atom + laser mode (dressed atom). 
The master equation describing spontaneous emission from the dressed atom is solved 
in the limit of high intensities. Simple expressions, taking into account the effect of cas- 
cades, are derived for the widths of the components. The intensities are related to the 
populations of the dressed-atom energy levels and to transition rates. Important differ- 
ences between fluorescence and absorption spectra are explained. The existence of amplify- 
ing components in the absorption spectrum is pointed out. 

1. Introduction 

The problem of the fluorescence spectrum L,(w) of a beam of two-level atoms irra- 
diated at right angles by an intense resonant laser beam has received a lot of attention 
(several theoretical references prior to 1975 are given in Cohen-Tannoudji 1975, 1976). 
The interest for this problem has been renewed by the recent experimental observation 
of such a spectrum on the sodium D, line by several independent groups (Schuda 
et a1 1974, Walther 1975, Wu et a1 1975). The first theoretical paper giving a complete 
calculation of the spectrum, including the non-resonant case, is Mollow (1969) which 
used a classical description of the laser field. Subsequent full quantum treatments 
have confirmed these results (Oliver et al 1971. Carmichael and Walls 1975, 1976, 
Hassan and Bullough 1975, Smithers and Freedhoff 1975, Kimble and Mandel 1976, 
Renaud et al 1976). See in particular Mollow (1975) in which the general quantum- 
mechanical applicability of the c-number applied field is pointed out. 

Most of these calculations have been restricted to the simple situation of a two- 
level atom although some authors have suspected the neglected atomic states to 
be responsible for some experimentally observed asymmetries which were not theore- 
tically predicted for a two-level atomic system. Furthermore, most of the quantum 
calculations which have been published, although giving correct results, do not seem 
to lead to simple general rules for evaluating the positions, the heights and the widths 
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of the various components of the fluorescence spectrum and which could be easily 
generalized to multi-level atoms. 

In this paper we try to present a dressed-atom approach to resonance fluorescence 
in intense laser fields from which general results applicable to multi-level atoms and 
having a simple physical interpretation can be derived. The general idea of this 
method is to neglect. in the first step, spontaneous emission, and to determine the 
energy levels of the total isolated system: atom + laser photons (dressed atom). 
Resonance fluorescence can then be considered as spontaneous emission from such 
a system. The great advantage of such a method is that the Bohr frequencies of 
the dressed atom corresponding to allowed electric dipole transitions immediately 
give the positions of the various components of the fluorescence spectrum (at this 
stage of the calculation, one only needs to know the energy levels, i.e. to diagonalize 
an r x r matrix where r is the number of levels of the multi-level atom). It is of 
course necessary to go further and the purpose of this paper is to derive simple 
rules for evaluating the widths and the heights of these various components. For 
example, cascade effects are very important and must be taken into account (Cohen- 
Tannoudji 1975, Swain 1975), which means that a careful description of spontaneous 
emission is required (a simple application of Fermi’s golden rule would be insufficient). 
We start in this paper from the master equation describing spontaneous emission 
for the dressed-atom density matrix (Cohen-Tannoudji 1976) and we show that 
in the limit of high laser intensity (Rabi nutation frequency (ol large compared to 
the natural width r) such a master equation has a very simple solution which allows 
a general discussion of the fluorescence spectrum of multi-level atoms. 

Let us emphasize that all the calculations presented in this paper can be transposed 
into a c-number description of the laser field. For example, one can also neglect 
in the first step the spontaneous emission terms in the equations of motion of the 
atomic density matrix 0 driven by a e-number field. This leads to a Hamiltonian 
equation of motion of CT which can be solved by diagonalizing the corresponding 
Hamiltonian (see for example Derbov et a1 1975). For a two-level system, and with 
the rotating-wave approximation. such a diagonalization amounts to finding the 
energy levels of the equivalent fictitious spin in the rotating reference frame. At 
high intensities, one can them simplify the spontaneous emission terms by keeping 
only the secular ones in this basis. It is clear, however, that the necessity of such 
a diagonalization appears in a more natural way in the quantum approach, especially 
in the multi-level atom case, since it corresponds to the determination of the energy 
levels of the dressed atom. The physical picture of the dressed atom cascading down 
its energy diagram shows also how the photons contained in the laser mode are 
progressively replaced by fluorescence photons. 

Another advantage of this approach, in our opinion, is that it leads to extremely. 
simple expressions for the intensities of the various components of the fluorescence 
spectrum in an intense laser beam. We show in this paper that the total intensity 
of a given component is proportional to the total number of transitions having the 
corresponding Bohr frequency and occurring during the time T spent by the atom 
inside the laser beam, a result which has an obvious physical meaning. It follows 
that for evaluating the intensities of the various components, it is sufficient to calculate 
the populations of the dressed-atom energy levels and the transition rates between 
them. Such calculations which are not limited to a two-level atom and which take 
into account the steady-state value of the populations as well as their transient 
evolution when the atom enters the laser beam, allow a simple discussion of various 
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asymmetries which are expected in the fluorescence spectrum. The corresponding 
calculations do not appear in a natural way in the classical treatment. 

Finally, the dressed-atom approach leads to very simple expressions for the 
absorption spectrum of a probe light beam by an atom interacting with an intense 
laser beam (in terms of transition rates and differences in population between the 
various levels of the dressed atom). This allows a clear understanding of the important 
differences between the fluorescence and absorption spectra, the first being, for 
example, a triplet in the case of a two-level atom, whereas the second is a doublet. 
One also easily predicts that at high intensities the absorption spectrum exhibits 
an equal number of absorbing and amplifying components. 

In 92 we introduce the energy levels of the dressed atom and the matrix elements 
of the atomic dipole-moment operator. It is then possible to write down in $3 the 
master equation describing spontaneous emission from such a system. This equation 
can be simplified in intense fields through the secular approximation which implies 
that the various components of the fluorescence spectrum are not overlapping. The 
results of the calculations will therefore be valid only at the lowest order in T/w,,  
where r and w1 have been introduced previously. As the energy diagram of the 
dressed atom has a periodic structure, some transfer coefficients between off-diagonal 
elements corresponding to the same Bohr frequency must be taken into account. 
The initial state of the dressed atom is defined in $4. The quasi-classical character 
of the laser field leads to a simple approximate solution of the equations of motion 
which exhibits a quasi-steady-state regime reached after a transient one and superim- 
posed on a slow general drift down the energy diagram corresponding to the scatter- 
ing of photons from the laser mode. This solution is used to determine the evolution 
of the populations and the mean dipole moment. One shows how the transfer coeffi- 
cients introduced above change the damping times of the various frequency com- 
ponents of the mean dipole moment, which solves the problem of the influence of 
cascades. These results are finally applied in # 5  and 6 to the determination of 
the fluorescence and absorption spectra. Simple rules concerning the positions, the 
widths and the intensities of the various components of these spectra are established. 
Finally, a summary of the results is presented in $7. 

2. Energy levels of the total system: atom + laser 

We consider an atomic system resonantly driven by a single-mode laser field. Let 
e, e‘, . . . be the sublevels of the upper state; g, g’, . . . be the sublevels of the lower 
one. 

In the absence of coupling, the energy levels of the total system (atom + laser 
mode) are labelled by two quantum numbers: e, e’, ..., g, g’, ... for the atom, n for 
the number of photons in the laser mode of frequency wL ( h  = c = 1). Since the 
irradiation is quasi-resonant, the levels I e, n ) ,  1 e‘, n ) ,  . . . , I  g, n + 1 ), lg’, n + l), . . . are 
quasi-degenerate and form an r-dimensional multiplicity 8,. The unperturbed energy 
diagram has a periodic structure, two successive multiplicities &, gn+ being separ- 
ated by w, . 

In the so-called rotating-wave approximation (KWA), one keeps only the coupling 
between states of a given multiplicity. When diagonalizing the coupling Hamiltonian 
I/ within the r-dimensional multiplicity 6,, one gets r perturbed states Ii,n). In the 
following, we will suppose that the energies n o L  + Ei of the 1 i, n )  states are known, 
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as well as the expansion of these states in terms of ie ,n) ,  ie’ ,n), .  . . , /g ,n  + l ) ,  

The Ii ,n) states may be considered as the energy levels of the atomic system 
‘dressed’ by the photons of the laser mode (dressed atom). 

For studying spontaneous emission from such a system, the matrix elements of 
the atomic dipole-moment operator D between the Ii,n) states are needed. Being 
an odd atomic operator, D cannot change the number n of photons and only connects 
a sublevel e of the upper state to a sublevel g of the lower state. From the expansion 
of l i ,n ) ,  one easily deduces that the non-zero matrix elements of D are between 
two states 1 i, n )  and lj, n i 1) belonging to adjacent multiplicities. We will put 

lg’, n + l), . .  .. 

( i , n I D I J , n  3 1) = d;. (2.1) 
Note that it should be, in principle, necessary to add an index n to d;,  but 

(see later $4.1) we only consider states of the laser field corresponding to a dispersion 
of the possible values of n having a small relative width An around the mean value 
i i ;  as dij  is a slowly varying function of n ,  one can ignore this variation and d; 
is an abbreviated notation for d$(fi). 

As D is Hermitian, it follows that 

dk I J  = ( d - )  j: *. (2.2) 
Remark: Because of the quasi-resonant character of the laser irradiation, the matrix 
elements of the coupling V between different multiplicities have been neglected (RWA); 
virtual transitions to other atomic levels have also been ignored. If these approxima- 
tions are relaxed, one finds that D has other non-zero matrix elements, for example 
between gn and 8nn+3. . . (matrix elements between gn and &n+2 remain excluded 
by parity considerations). The new Bohr frequencies appearing in the motion of D 
describe non-linear processes such as harmonic generation. 

3. Master equation describing spontaneous emission 

3.1. Strong coupling assuinption: secular approximation 

The energy splittings oiJ = E,  - E j  between two states Ii ,n) and ( j , n )  of the same 
multiplicity are supposed to be large compared to the natural width of the excited 
sublevels e, 

/Wi j l  >> r. (3.ln) 

This implies either large detunings between the laser and atomic frequencies or. 
if two states l e , n )  and Ig,n + 1 )  are degenerate in the absence of coupling, that 
the matrix element (e, nl V l g , n  + 1 )  is large compared to r. As V is a linear com- 
bination of the creation and annihilation operators at and a of the laser mode, such 
a matrix element is proportional to d n  + 1, i.e. to the amplitude of the laser electric 
field and is directly related to the Rabi nutation frequency col between e and g 
induced by the laser irradiation. At resonance, the laser intensity is therefore supposed 
to be sufficiently high to saturate the atomic transition. 

Condition ( 3 . 1 ~ )  gives the possibility of neglecting, in the master equation describ- 
ing spontaneous emission, any coupling between the diagonal elements of 0 (popula- 
tions) and the off-diagonal elements (secular approximation). This leads to a closed 

I-- 
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system of equations for the populations which, as shown in the next paragraph, 
have a very simple physical meaning in terms of transition rates. Condition ( 3 . 1 ~ )  
also means that the central component of the fluorescence spectrum at frequency 
oL (transitions Ii,n)+ Ii,n - 1 ) )  does not overlap the lateral components at 
oL + oiJ (transitions I i, n )  + lj, n - 1 ) ) .  

To simplify the discussion we will also suppose that the lateral components of 
the fluorescence spectrum are non-degenerate and not overlapping, i.e. that for any 
set of indices i , , j ,  k,1 (with i # j ,  k # 1, (i , j)  # (k ,1))  

(3.lb) 

It is therefore possible to neglect any coupling by spontaneous emission between 
the off-diagonal elements of cr corresponding to the different Bohr frequencies wL + wi j ,  
w, + okl , . . . of the lateral components. 

Note, however, that the central component at  frequency wL has an intrinsic r-fold 
degeneracy since it corresponds to r degenerate transitions Ii,n)+ / i , n  - 1 )  (with 
i = 1,2 ,..., r).  

All the calculations presented in this paper are therefore valid only at the lowest 
order in r/(oij), r/(wij  - okl). 

Condition (3.lb) is more stringent than ( 3 . 1 ~ ~ )  and we will indicate in the appendix 
how to generalize the calculations presented in this paper when several lateral 
components overlap. We will also describe briefly the modifications which must be 
introduced in the equations when condition ( 3 . 1 ~ )  is not fulfilled. 

1 wij - wkl 1 >> r. 

3.2.  Evolution of the density matrix elements 

The equations of evolution of g are easily derived from the general theory of damping 
(Louise11 1973, Agarwal 1974, Cohen-Tannoudji 1976). The various elements of the 
density matrix o(t)  will be noted 

(i, n I o(t)  l j ,  n - P )  = o$,(t). (3.2) 
Let us consider first the diagonal elements of cr, i.e. the populations &(t) (see 

figure 1 (a)). Because of the secular approximation, the coupling between populations 
and off-diagonal elements can be neglected in the master equation describing spon- 
taneous emission (the error made being of the order of r/loij/). cr:n decreases because 
of spontaneous transitions from I i , n )  to a lower level Ij,n - 1 )  with a rate given 
bYt 

rJi = l ( j , n  - 11D/i,n)12 = = l d ; l 2  (3.3) 
(note that in the notation Tji, the transition is from i to j ) ;  cr:n increases because 
of spontaneous transitions from upper levels I 1, IZ + 1) to I i ,  n )  with a rate Til (as in 
equation (2.1), the variation with n of the transfer coefficients rji and Til is neglected). 

t Several well known factors such as 271, the density of photon states at oL.. . are reincluded in the 
definition of D, in order to get a simple expression for r. 

Strictly speaking, D in (3.3) is the component of the vector operator D on one of the three unit 
vectors eq (q  = -1,OJ) associated with the three polarizations 0-, 71, g+ of the fluorescence photon. 
The three corresponding values of TJi must be added independently. Tji can be written as 1 d; I where 
d,; = ( j , n l D l i , n  + 1). 
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I i,n -1) 

ji, n -$ 
I Q )  lbl I C )  

Figure 1. (a)  The population of 1 i, i t )  decreases because of transitions to lower states 
(total transition rate ri) and increases because of transitions from upper states (with 
rates Ti,, Ti,, . . .). ( b )  The ‘coherence’ between i , n )  and i j ,  n - 1) with i # j is damped 
with a rate i(r, + rj). It is also coupled to the coherence between Ii ,n + 1 )  and l j ,n)  
corresponding to the same Bohr frequency. The coupling coefficient is proportional to 
the product dJ(d , t ) *  of matrix elements of D. (c) The coherence between li. n) and 
1i.n - 1 )  is coupled to the r coherences between l j ,n  + 1) and 1j.n) ( . j  = 1, 2.. . . , r).  

One gets therefore 

where we introduce 

(3.5) 

(ri is the total spontaneous transition rate from I i, n)) .  
For the evolution of the off-diagonal elements of o, for example for the elements 

o$;(t) = o;,,(t) appearing in the expression of ( D )  =,Tr  Da(t) we will consider separ- 
ately the cases for i # j  and i = j .  

In the rate of variation of oGn(t) there is first a term proportional to a n ( &  describ- 
ing the free evolution of a n ( t )  at  frequency wL + wij (the Lamb shifts of the atomic 
states are supposed to be reincluded in the atomic Hamiltonian) and the damping 
of aGn(t) which arises from spontaneous transitions from l i ,n )  or i j ,n - 1) to lower 
levels (the corresponding rate being i(ri + rj)). Furthermore, as the energy diagram 
has a periodic structure there is a coupling by spontaneous emission between a&,(t) 
and a&+l(t), the corresponding coupling term being (see also figure l(b)) 

(3.6) 
(when the polarization is taken into account, di;djij’ must be replaced by d i ; .  d i ) .  

As will be shown later, this coupling is very important for the determination 
of the widths of the lateral components at wL + wij .  Similar couplings appear in 
the master equation describing spontaneous emission from a harmonic oscillator 
which also has a periodic energy diagram (Cohen-Tannoudji 1976). Ignoring them 

( i .n lDl i ,n  + l ) ( i , n  + l i o l , i , n ) ( . j , n~Dl , i , n  - 1) = dl;dj:.a&,l(t) 
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would lead to a completely wrong result (dependence of the spectral width of the 
emitted light on the initial excitation). 

Finally one gets for b$,,(t): 

b&(t) = -[i(oL + wij) + f ( r ,  + rj)]o&(t) + di;d$oi;n+l(t). (3.7) 
The case of o:n(t) is a little more complicated. There are several matrix elements 

o$,,.+l(t) which have the same Bohr frequency coL as o&(t) and which are coupled 
to it with the coefficient (see figure l (c))  

( i , n lDl j , n  + l ) ( j , n ] D l i , n  - 1) = dI$d; = rI j  
(we have used (2.2) and (3.3)). 

Equation (3.7) becomes now 

b;,,(t) = -(ioL + ri)O;,,(t) + C r i j o i n + l ( t ) .  
.i 

(3.9) 

Except for the free evolution term: this equation is exactly the same as equation 
(3.4) for the populations. More generally, equations (3.7) and (3.9) can be extended 
respectively to oG(t)  and &(t) provided that the free evolution terms (oL + uij) 
and oL are replaced by (pa, + oij) and pa,. 

To summarize the results of this section, let us call o(n,t) an ensemble of matrix 
elements of o which are coupled together by the master equation describing spon- 
taneous emission. For each value of n, o(n, t )  is actually an ensemble of 1 or r matrix 
elements, for example { a , , ( t ) }  (1 element) or {oJ,,(t) i = 1, 2>.  . . ~ r }  ( r  elements). The 
master equation may be written as 

d 
- ( ~ ( n ,  t )  = -Ao(n, t )  + Bo(n + 1, t )  
dt  (3.10) 

where A and B are two matrices which are either of rank 1 (see for example (3.7)) 
or of rank r (see for example (3.4) or (3.9)). 

4. Initial conditions and evolution of the system 

4.1. Initial density matrix 

We suppose that convenient slits define an irradiation zone such that the light inten- 
sity experienced by the moving atom rises abruptly from 0 to a constant value and 
then, after a transit time T, goes back to 0. 

The state of the laser field is a quasi-classical one: the normalized distribution 
p o ( n )  of the possible values of the number n of photons in the laser mode has a 
dispersion An around the mean value ?i which is large in absolute value, small in 
relative value: 

An >> 1 (4 .1~)  

An << ii. (4.lb) 

Starting from the ground state g, the atom is suddenly coupled to the radiation 
field at t = 0 when it enters the laser beam. The initial state of the total system 
is therefore 

4 0 )  = Is>(g I @ ado) ( 4 4  
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where oR(0) is the state of the radiation field. Taking the matrix elements of (4.2) 
in the basis { l i ,n)}  of the energy levels of the dressed atom, and using the fact 
that po(n) varies very slowly with JZ (4.la), one easily finds that oGn(t = 0) may be 
written as 

OiPj"(t = 0)  = pfj(t = O)p,(n) (4.3) 

where the p$(t = 0) may be calculated from the expansion of li, n )  and from (4.2). 
In the condensed notation of (3.10), (4.3) reads 

& O )  = p(O)po(n). (4.4) 

4.2. Approximate resolution of the master equation 

As o(n,t) is a slowly varying function of n, the last term of the master equation 
(3.10) can be rewritten 

2 
?lZ 

Bo(n + 1, t )  = Bo(n, t )  + B-o(n, t )  

so that equation (3.10) becomes 

(4.5) 

d 0 
-a(n, t )  = - A c J ( ~ ,  t )  + Bo(n, t )  + B - c J ( ~ ,  t ) .  
2t Bn 

According to (4.4) the order of magnitude of the last term of (4.6) is (B/An)a(n,t) 
which is much smaller than Bo(n,t)  (see (4.1~)). It follows that the last term of (4.6) 
can be neglected in the first approximation and that the solution of this equation is 

a(& t) = po(n)p(t) (4.7) 

where p(t)  is the solution of the equation 

dp - - ( A  - B)p(t). 
dt 

After a transient regime which lasts a time of the order of l/r (- l/Re(A - B))  
the system reaches a steady state. It is now easy to understand the effect of the 
last term of (4.6): it produces a drift of the distribution po(n)  towards lower values 
of n with a velocity of the order of B. Such a decrease in the mean number of 
photons of the laser mode corresponds of course to the emission of fluorescence 
photons in all other modes. In actual experiments the incident photons are also 
permanently emitted by the laser source, so that it would be, in principle, necessary 
to add some source terms in the master equation. However, the losses introduced 
by the atomic beam are so small and the transient time so short that one can com- 
pletely ignore the last term of (4.6) as well as other new source terms and keep 
(4.7) and (4.8) as the solutions of the equation of motion. 

As mentioned in the introduction, equation (4.8) can be shown to be equivalent 
to the one which would be obtained with a e-number description of the laser field 
after diagonalizing the undamped part of the Hamiltonian and keeping only the 
secular spontaneous emission terms. 
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4.3. Evolution of the populations 

As a first application of the previous results, let us consider the evolution of the 
populations a:(n, t )  of the energy levels I i, n) .  In this case, equation (4.7) reads 

a:(ll, t )  = po(n)nj(t) (4.9) 
where Q ( t )  is an abbreviated notation for pi ( t )  

&(t) = II,(t). (4.10) 

Let n(t) be the r-component vector {ni(t)}, F the corresponding r x r matrix 
A - B appearing in (3.1Q. 

Equation (4.8) becomes 

(4.11) 

The elements Ti, of F are easily computed from (3.4) 

y . .=r.6. .-r . .  [ J  1 1J I J  (4.12) 

where T i j  and Ti are given in (3.3) and (3.5). 
It appears clearly from (3.5) and (4.12) that the sum of the r lines of F is zero. 

It follows that F has an eigenvalue which is zero and which corresponds to a steady- 
state regime for the populations. 

To  summarize, we can describe the evolution of the populations in the following 
terms. Starting from the initial values IIi(0)po (n), these populations reach a steady 
state I&( + oc)po(n) after a transient regime described by the ( r  - 1) non-zero eigen- 
values of F. On a much longer time scale ( t  > An/r), an additional variation appears 
due to the drift of p&) (see $4.2). The transient time T is supposed to be too short 
to observe this drift. T is usually longer than the time constants of the transient 
regime although in some cases a few eigenvalues of ,T can be sufficiently small 
that the steady-state regime cannot be reached in the time interval T. 

Finally, let us mention that the steady-state solution of (4.12) usually satisfies 

rjini(+ = r,,n,(+ x). (4.13) 

The number of transitions from i to j balances the number of transitions from 
j to i (detailed-balance condition). A necessary condition for (4.13) is that the r 
satisfy 

rijrjkrki = rikrkjrji (4.13') 

for all ensembles { i , j , k ) .  

4.4. Evolution of the mean dipole moment 

In the Schrodinger representation, the raising part of the atomic dipole operator 
can be written as 

D+ = 1 l i ,n ) ( i ,n lDl j ,n  - l ) ( j , n  - 11 = ED; 
iJ ,n ij 

where, according to (2. l), 

DA CJ = x d G l i , n ) ( , j , n  - 11. 
n 

(4.14) 

(4.15) 
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It can be shown from (4.7) that the mean value of 0; satisfies 

( D $ ) ( t )  = Tr o(t)Dif = 1 d;oji,,(t) = d;pji(t). (4.16) 

It follows that (D$) ( t ) /d$  and pJ;(t) = (p;(t))* satisfy the same equations of 

Let us first suppose that i # j .  According to (3.7) and (4.8), p; ( t )  is only coupled 

n 

motion. 

to itself. It follows that 

- ( D ; ) ( t )  d = iRij(D;)(t) 
dt 

(4.17) 

where 
Ri j  = wL + wij + iLij 

Li j  = 4(ri + rj) - d,d;. 

(4.18) 

(4.19) 

It may be easily shown (from the Schwarz inequality) that Lij > O t .  
Equation (4.17) shows that the component of the dipole moment oscillating at 

the Bohr frequency wL + wij is damped with a time constant l/Lij. Note that this 
damping constant Li j  is not the half sum of the natural width of the two dressed-atom 
levels connected by 0;. The transfer of coherence by spontaneous emission between 
two pairs of levels corresponding to the same Bohr frequencies changes the damping 
constant of (I);), This effect is the consequence on the mean dipole moment of 
the interferences between different cascade amplitudes of a system having degenerate 
Bohr frequencies. 

When i = j the r mean values (DZ)( t ) /d:  which correspond to the same Bohr 
frequency q, satisfy the coupled equations of motion of the p : .  Let us call ( 3 : ) ( t )  
the r-component vector { ( D ; ) ( t ) / d i } .  

From (3.9) and (4.8), one deduces 

(4.20) 
d 
z ( @ ) ( t )  = i%(%>(t) 

where Rc is the r x r matrix 
R, = oLZ + i 3  (4.21) 

Z being the unit matrix and .P being defined in (4.12). It follows that there are 
r independent possible oscillations of the mean dipole moment at the frequency wL 
which are damped with time constants given by the inverse of eigenvalues of F. 
Since one of these eigenvalues is 0 (see previous section) there is an undamped oscil- 
lation at frequency wL corresponding to the elastic component of the fluorescence 
spectrum. 

5. Spectral distribution of the fluorescent light 

5.1. Simple derivation of the essential results 

From the previous discussion on the evolution of the mean dipole moment one 
expects the following results for the fluorescence spectrum (they will be more rigor- 
ously derived in the next section). 

t In writing (4.18) and (4.19), we have supposed that d, and d;; are real, which is generally the case. 
Otherwise it would be necessary to separate the real and imaginary parts of L i j .  
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(i) The number of components in the fluorescence spectrum is the number of 
different Bohr frequencies appearing in the evolution of the mean dipole moment 
( D + ) ( t ) .  There is a central component at wL and r(r - 1) sidebands at frequencies 
wL + wij  symmetrically distributed with respect to wL since wij = -wji (less if there 
are some forbidden transitions for which d; = 0). Conditions (3.1) mean that these 
r(r - 1) + 1 components are supposed to be well separated. 

(ii) The width of the lateral component at  frequency wL + wij  is the inverse of 
the (single) damping time constant of (DG)( t ) ,  i.e. Lij. The two components at  fre- 
quency wL + wij and wL + wJi = uL - wij have the same width since Lij  = Lji (see 
(4.19)). 

(iii) The weight f ( o L  + wij) of this lateral component at frequency wL + wij ,  
i.e. the total area under this component is proportional to the total number of atoms 
undergoing a wL + wi j  transition (for example Ii ,n)-+ i,j, JI - 1)) during the transit 
time T, i.e. to t  

Usually the transit time T is much longer than the time constant associated 
with the transient regime of the atom entering the laser beam and the steady-state 
values n , ( m )  of ni(t) are not negligible. In such a case (5.1) reduces to 

(we have neglected the contribution of the transient regime). 

(5.2) and (4.13) that 
If in addition the detailed-balance condition (4.13) is satisfied, one deduces from 

f (w ,  + "ij = f ( W L  - COij). (5.3) 

The fluorescence spectrum is therefore completely symmetric with respect to wL. 
It results, however, from this discussion that such a symmetry is only approximate 
(since we have neglected the transient regime) and can disappear if the steady-state 
contribution is not predominant (some ni(x) being extremely small or one of the 
transient time constants associated with the eigenvalues of T being longer than T).  
We will discuss in forthcoming papers several examples of such asymmetries. 

(iv) The central component is a superposition of r components centred on wL 
but having different widths corresponding to the eigenvalues of T. One of them 
is extremely narrow (width determined by the transit time, or by the laser linewidth) 
and corresponds to elastic scattering. The total weight of the central component 
is proportional to the total number of atoms undergoing an wL transition 

t If the fluorescent light is detected with a given polarization iD,  the coefficient r',, in (5.1) must be 
replaced by IiD.d;I2. The fluorescence photons corresponding to a given transition l i, n )  +j,n - 1) 
have a given polarization dLT. 
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5.2.  More rigorous treatment 

The spectral distribution of the fluorescent light L,(w) is given by the Fourier trans- 
form of the correlation function of the atomic dipole moment. More precisely 

1 
L,(o) = -Re g(w) (5.5) n 

where 

g ( o )  = JoTdt’ /o:dt(Di(t)D-(t’)) exp[-io(t - t’)]e(t - t). (5.6) 

D’(t) and D-(t’) are the raising and lowering parts of the Heisenberg atomic dipole 
operator; O ( t  - t’) the Heaviside function?. 

According to (4.14) 

(D’(t)D-(t’)) = 1 (DG(t )D-( t ’ ) )  + 1 (D;( t )D-( t ’ ) ) .  (5.7) 
i # j  i 

Let us call gij(w) and g,(o) the quantities obtained when replacing in (5.6) 
(D+(t )D-( t ’ ) )  respectively by (D;( t )D-( t ’ ) )  and &(D;(t)D-( t ’ ) ) .  One gets 

= 1 gij(W) + gc(w) (5 .8)  
i # j  

g i jo ) ,  g,(w) corresponding to the contribution to L,(o) respectively of the (wL + wij) 
transitions and of the oL transitions. 

The problem is therefore to evaluate the correlation functions (DG(t )D-( t ’ ) )  of 
the atomic dipole moment. From the quantum regression theorem (Lax 1968), which 
has been the basis of Mollow’s and most subsequent papers, it is well known that, 
for t > t‘, the two times average (DG(t)D-( t ’ ) )  satisfies the same equation of motion 
as the one time average (Di; ( t ) ) ,  so that one can use the results of $4.4. It follows 
from (4.17) and (4.20) that for t > t’ 

(5.9) 

(5.10) 

d 
- (0; (t)D -(t’))  = iRij(D$(t)D - (t’))  
dt 

d 
- (9: ( t )D-( t ’ ) )  = in,( g:(t)D-(t’))  
dt 

e(t - t‘)(D;(t)D-(t’)) = exp[iRij(t - t’)](D;(t’)D-(t’))Q(t - t’) (5.11) 

O ( t  - t’)(g,?(t)D-(t‘))  = exp[iR,(t - t’)]( g,‘(t’)D-(t’)>Q(t - t’). (5.12) 

Let us first integrate (5.6) over t - t’, the upper bound of the integral being 
extended to +m (the finite value T of the real upper bound introduces a small 
additional broadening of the order of 1/T which affects essentially the elastic com- 
ponent). 

which can be integrated to give 

We will first evaluate gij(w). (5.11) leads to 
I *T 

J ~ dt’(DG(t’)D-(t’)). 
1 

i(w - Rij) gij(0) = (5.13) 

t In writing (5.6) we suppose that the fluorescent light is collected during the whole transit time T of 
the atom through the laser beam. Convenient slits remove the light emitted by the atoms having left 
the laser beam. 
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From (4.15) and (4.7) 

(D$(t‘)D-(t’))  = C T r  o(t’)d& n ) ( j ,  n - llD- 
n 

(5.14) 

If 1 # i it may be easily shown from (4.8) that 

p;(t’) = exp( - ioli t’) exp( - ~, , t ’ )p; (O)  (5.15) 

(pE(t’) is only coupled to itself). The steady-state value of pE(t’) is zero so that 

(5.16) 

(we have used condition (3.1) for neglecting Lfi  in comparison to coli). The diagonal 
terms p,”i(t’) = ni(t’) have a steady-state value which contributes to (5.14). Even if 
the steady-state value is negligible, the integral over t’ of the transient regime is 
of the order rIi(0)/ri which is much larger than (5.16) according to (3.1). It is therefore 
possible to neglect all the off-diagonal terms of (5.14) and to write (we use equations 

JOT dt’(DG(t‘)D-(t’)) = dt’d;d;ni(t’) = rji ni(t) dt. (5.17) 

This shows that the integral in (5.13) is real. Finally the contribution of 0; to 

(3.3)) 

JOT JOT 
L,(o) is, according to (5.13), (4.18) and (5.5) 

(5.18) 

which confirms the previsions of the earlier sections concerning the positions, the 
widths and the weights of the lateral components of the fluorescence spectrum. 

The same method applies to the central component, the only difference being that 
R, is now an r x r matrix. (5.12) leads to 

(9: (t’)D -( t ’ ) ) .  
1 

i(o - R,) 
loz d(t - t’)(g:(t)D-(t’)) exp[-iw(t - t’)] = 

Coming back to the definition of $3; 

one gets 

The same considerations as above lead to 
P T  r T  

J dt’(Di(t’)D-(t’)) = dAdjj  J nj(t’) dt’. 
0 0 

Equation (5.21) simplifies to [ 1 ] d j j  jOT n j ( t ‘ )  dt’. 
g c ( 0 )  = Ed; 

i j  i(w - 0,) i j  

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 
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Inverting the matrix w - R, gives the explicit form of the central component 
of the fluorescence spectrum. The elastic part of this component which is associated 
with the eigenvalue oL of R, (eigenvalue 0 of F) can be evaluated from the residue 
at o = o, of expression (5.23). A simple calculation (Reynaud 1977) gives? 

When the steady-state contribution is predominant, (5.24) becomes 

CO) 6(w - j U L ) .  (5.25) 

Integrating (5.21) over w gives the total weight of the central component 
T 

dt’(D;(t’)D-(t’)) = rii 1 dt’ni(t’). (5.26) 
i i 0 

6. Absorption spectrum 

In addition to the strong laser light which saturates the atomic transition, we now 
consider a second tunable monochromatic laser beam irradiating the atomic beam at 
right angles. We are interested in the absorption spectrum observed on this probe 
beam which is supposed to have a sufficiently weak intensity not to perturb the 
dressed-atom evolution. The absorption spectrum is given by the Fourier transform 
of the correlation function (Mollow 1972) 

< [ D  - (0, (”. (6.1) 

The first term D-(t)D’(t’) is associated with absorption processes whereas the 
second one -D’(t’)D-(t), which has an opposite sign, corresponds to stimulated 
emission. 

The calculation of the absorption spectrum from (6.1) follows the same lines as 
in $5.2 and we will give only the results. The various components have the same 
positions and widths as in the fluorescence spectrum. The central component at 
CO = oL disappears. The total weight of a lateral component at oL + oij is given 
by 

jd(wL + wjj) = K 1 i(i, nlDlj, n - l)i2 [ajOjn-l(t) - ~ E n ( t ) ]  dt (6.2) 
n 

i.e. according to (3.3) and (4.7) 
,.T 

2 a ( ~ ~ L  + wij) = K r j i  J [lTj(t)  - lTi(t)] dt (6.3) 
0 

where K is a coefficient proportional’to the probe light intensity and to the optical 
depth of the atomic beam. 

The interpretation of (6.2) and (6.3) is straightforward (see figure 2). The total 
absorption at coL + w i i  is proportional to the difference between the total number 
of absorption and stimulated emission processes at frequency mL + wij (upward and 

t Strictly speaking, the 6(w - oL) function has a finite width (1,’T). 
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Figure 2. The total absorption at oL + oii is given by the difference between absorption 
processes from 1 j ,  n )  to  1 i, n + 1) (upward full arrow) and stimulated emission from li, n + 1) 
to I j ,  n) (downward full arrow). 

If, as supposed on the figure, rIj z I&, absorption is predominant. It follows that 
for the symmetrical component a t  oL + wji = oL - wij (dotted arrows), stimulated emis- 
sion is predominant. 

downward full arrows on figure 2) occurring during the transit time T. As the stimu- 
lated emission and absorption rates are equal, this explains why the difference of 
populations (nj - ITi) between the lower and the upper levels appears in (6.3). This 
also explains why the central component vanishes in the absorption spectrum. This 
component is associated with the transitions I i, n )  + 1 i ,  n - 1) (i = 1,2, .  . . , r )  and 
according to (4.7) the two levels 1 i, n )  and I i ,  n - 1) are equally populated (the differ- 
ence between po(n) and po(n - 1) is completely negligible). Let us recall, however, 
that due to the secular approximation, the previous results are only valid to lowest 
order in r//Cciij(. Higher order terms would give a non-zero contribution to the 
central component. From (6.3) we also deduce: 

(6.4) 
This shows that one of the two symmetrical components wL + coij and coL + cop 

When the steady-state contribution is predominant, (6.3) can be replaced by 

rijya(% + wij) = -rjiya(mL + wji). 

is necessarily amplifying whereas the other is absorbing. 

$ a ( ~ L  + oi ,~)  = Krji[nj(+x) - n i ( + x ) l ~ .  (6.5) 
If the detailed-balance condition (4.13) is fulfilled, one easily derives from (6.5) 

which shows that the absorbing component is more intense that the amplifying one. 
Finally, the dressed-atom approach leads to very simple results for the absorption 

spectrum in an intense laser field. It explains why the central component disappears 
(leading to a different number of components in the fluorescence and absorption 
spectra). It predicts also an equal number of absorbing and amplifying components. 
For example, for a two-level atom, the fluorescence spectrum exhibits a triplet whereas 
the absorption spectrum contains one absorbing and one amplifying component 
which disappear (at zeroth order in T/ol) at  resonance (coo = oL) since r12 = r21, 
n1 = nz. 
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Similar conclusions concerning the possibility of amplification by a medium which 
is not inverted but saturated by a strong resonant beam have been derived by various 
theories (Haroche and Hartman 1972 and references therein, Mollow 1972). The gain 
is, however, very small either as a consequence of Doppler averaging, or due to 
the fact that the pump irradiation is supposed to be resonant in which case the 
absorption of the probe vanishes in the zeroth order in r/col. We predict here that 
in the off-resonant case and for an atomic beam, the population difference llj - ni 
can be quite important, leading to a significant gain per atom. 

Note that we have considered the fluorescence and absorption spectra on the 
same atomic transitions as the one excited by the strong laser light. Transitions 
to atomic levels other than e, e', . . . and g, g', . . . exhibit only an r-component structure 
both in fluorescence and absorption spectra, all components being either absorbing 
or amplifying (Autler-Townes splitting) (Autler and Townes 1955). 

The formalism developed in the present section could also be applied to the 
determination of the RF absorption spectra (transitions between states of the same 
multiplicity c?,,), This would allow a quantitative interpretation of double resonance 
experiments performed with very intense laser beams (in the limit of weak probing 
KF fields). 

7. Conclusion 

From the previous discussion, the following procedure can be derived for the compu- 
tation of the fluorescence spectrum of a multi-level atom irradiated by an intense 
laser beam. 

(i) Determination of the energy diagram of the dressed atom, i.e. diagonalization 
of the coupling Hamiltonian I/ in each multiplicity 1 e: n ) ,  I e', n ) ,  . . . , 19, n + 1): 
lg',n + 1)3 . . .  which gives the energies Ei and the expansion of the perturbed states 
i i ,n ) .  One gets immediately in this way the position of the various components 
of the fluorescence spectrum wl, + wij = coL + Ei  - E j .  

(ii) Computation of the matrix elements of the dipole moment in the { 1 i, n ) }  
basis: d, = ( i , n  - 1 l D ( j , n )  (2.1), and of the transition rates Tij, Ti (from expressions 
(3 .3 )  and (3.5) Tji = IdJ; 1 ', Ti = Zjrji). This gives immediately the width of the lateral 
components (through expression (4.19) Lij = $(ri + rj) - dL;d;). 

(iii) Resolution of the master equation (4.1 1) for the populations. This gives the 
weights of the lateral components 

&(% + uij) = rji 
of the elastic component 

and the total weight of the central component 
" T  

Y ( q )  = rii J ni(t) dt. 
i 0 

The comparison between the contributions of the transient and steady-state regimes 
gives indications about possible asymmetries. 
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(iv) If one is interested in the detailed shape of the central component, expression 
(5.23) must be explicitly evaluated. 

(v) The absorption spectrum from a weak light probe beam is easily determined 
from the knowledge of the population differences I1, - lli and transition rates T j L  
(expression (6.3)). 

Let us recall that all previous results are only valid if the splitting between the 
components is large compared to their width (conditions (3.1)), and if the laser is 
in a quasi-classical state (conditions (4.1)). 

The application of the general method presented in this paper to the particular 
case of a two-level atom leads to results in quantitative agreement with the now 
well known predictions concerning such a spectrum at high intensities. Since the 
dressed-atom approach to the fluorescence spectrum of a two-level system has already 
been discussed by Cohen-Tannoudji (1976), we will not come back to this problem 
(see also Reynaud 1977). 

Our results will be applied in forthcoming publications to some problems involv- 
ing the resonant interaction of multi-level atoms with intense laser beams. One of 
these problems is the modification of Raman scattering at very high intensities. 
Another one concerns polarization effects in resonance fluorescence (excitation and 
detection with different polarizations for example). A slight generalization of the pres- 
ent formalism also allows us to study the dynamic Stark splitting of two atomic 
transitions sharing a common level and simultaneously driven by two intense laser 
beams. 

Let us finally mention the application of this approach to the interpretation of 
some asymmetries observed in the fluorescence spectrum of sodium. In contradiction 
with the results of Higgins (1975) using a three-level model, we have found that 
the neglected hyperfine levels can be responsible for some of the observed asymmetries 
(Reynaud 1977). This problem requires further study, however, since it has been shown 
recently (Wu et a1 1976) that the laser intensity gradient plays an important role. 

Appendix. Possible generalizations 

We will first discuss the situation where (3.lb) is not fulfilled, (3 .1~)  being maintained. 
More precisely, we consider the possibility of overlapping lateral components remain- 
ing however well separated from the central component. Such a situation can occur, 
for example, when three levels i ,  j ,  k of the same multiplicity are equally spaced 
(oij = ojk), the spacing being large compared to r. 

The method for dealing with an s-fold degenerate (or quasi-degenerate) lateral 
component follows closely the treatment given in $5.2 for the v-fold degenerate 
central component. One introduces an s-component vector 9: = D$/d!: where 
( i , j )  indicates the s degenerate (or quasi-degenerate) transitions I i ,  n )  + Ij, n - l),  
I k ,  n )  --+ 11, n - 1) .  . . and one can easily, as for (4.20), derive the following matrix 
equation for (L%;(t)) 

? 

where Ql contains the various Bohr frequencies of the components of 9; and the 
various couplings between these components. A straightforward calculation following 

5 M P ( e )  I0/3--s 
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the same steps as in $5.2 leads from (A.l) to 

. 4 . J  

I UA, - (oXii 5 r 
the shape of the degenerate lateral component being given by 2Reg,(o). As ( 3 . 1 ~ )  
is maintained, the last integral of (5.28) can be transformed (see equation (5.17)) 
into 

d; JOT nk(t‘) dt’ 

which finally gives 

Integrating (A.3) over o, as for (5.26), one gets the total weight of the degenerate 
lateral component: 

P 7  

A = rii n,(t’) dt‘. 
i J  0 

Releasing condition ( 3 . 1 ~ )  leads to a more difficult situation. In the master equa- 
tion describing spontaneous emission the populations a&, can now be coupled to 
off-diagonal elements a:, between two states of the same multiplicity. Transfers are 
possible between c$,,+~ and a&, or between and a!,. It is still possible to  
factorize a(n.t) as in (4.7) but the equations obtained for p(t) (equation (4.8)) cannot 
be separated into independent blocks of smaller dimensions. It is in general necessary 
to keep all the couplings between the various elements of p(t). Because of these 
couplings one must drop the simple physical picture of a system flowing from one 
energy level to the other with definite transition rates. When (3 .1~1)  is not fulfilled, 
the dressed-atom approach does not introduce any simplification. 

It is actually better in this case to work in the bare-atom basis { I e, n ) ,  I e’, n ) ,  . . . , 
/ g ,  n + 1 ), I g’, n + 1 ), . . . )  since spontaneous emission is described by simple equa- 
tions in this basis. However the difficulties reappear, of course, in the terms describing 
the coupling with the laser. 
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