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Abstract. We present a detailed physical discussion of the contribution of non-relativistic 
modes of the radiation field to electron radiative corrections (Lamb shift, g - 2). We 
show that these corrections can be described by a simple effective Hamiltonian, derived 
from a single-particle theory, and that two main physical effects are involved: the vibration 
of the electron charge and spin moment due to vacuum fluctuations, and the radiation 
reaction of the charge. We find that the positive sign of g - 2 is entirely due to the 
radiation reaction which slows down the cyclotron motion, whereas the Lamb shift results 
from the averaging of the Coulomb potential by the vibrating electron (Welton’s picture). 
We discuss briefly many-particle effects and the contributions of relativistic modes. They 
do not seem to alter these conclusions. 

1. Introduction 

When an electron interacts with an electromagnetic wave, its position and the direc- 
tion of its spin vibrate at the frequency o of the incident wave. If, in addition, 
this electron is submitted to weak static electric or magnetic fields, a slow motion 
due to the static fields is superimposed on the high-frequency vibration. These two 
motions are actually not independent : the high-frequency vibration modifies the dyna- 
mical response of the electron to the static fields and perturbs its slow motion. 

In a previous publication (Avan et a1 1976) we have investigated this ‘renormalisa- 
tion’ of the electron properties induced by the interaction with an electromagnetic 
wave. The new dynamical properties of the electron are described by an effective 
Hamiltonian Pef, valid at the high-frequency limit (o large compared to the frequen- 
cies characterising the slow motion) and including all relativistic corrections up to 
1/c2. The incident wave is described quantum mechanically (for reasons which will 
be explained later). If one only keeps the terms of proportional to the number 
N of photons (stimulated terms), the quantum aspects of the electromagnetic field 
do not play any role. An identical expression for .Zeff would be derived from a 
semiclassical approach. Therefore, the semiclassical pictures given above to describe 
the electron motion are quite appropriate. 

In this paper we try to describe, by such simple physical pictures. the modifications 
of the electron dynamical properties due to its interaction with the vacuum 
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(‘spontaneous renormalisation’). The problem of the physical interpretation of radiative 
corrections has already received a lot of attention (Welton 1948, Koba 1949, Feynnian 
1962, Bourret 1973, Itzykson 1974, Senitzky 1973, Lai et nl 1974, 1975, Weisskopf 
1974, Grotch and Kazes 1975, 1977, Baier and Mil’Shtein 1976), but some points 
remain unclear (for instance, is there a simple explanation for the electron spin mag- 
netic moment anomaly?) 

We present here an approach to these problems based on a comparison between 
the N-dependent and N-independent terms of the effective Hamiltonian describing 
the effect of a given mode of the electromagnetic field. In more physical terms, we 
try to understand the spontaneous renormalisation of the electron properties by com- 
paring it with the stimulated one, which can be described by simple physical pictures. 
This is the reason why we have previously used a quantum description of the electro- 
magnetic field although it was not essential for discussing the stimulated terms: the 
same calculation gives simultaneously the stimulated and spontaneous corrections 
and allows a term to term comparison. As in the previous paper, we consider only 
a non-relativistic mode (hw << mc’), with a frequency much higher than the character- 
istic frequencies of the electron (high-frequency limit) and we keep all relativistic 
corrections up to order 1/c2. 

Of course, it could be objected that this approach to the electron radiative correc- 
tions is too naive. The covariant QED calculations of these corrections are well estab- 
lished and it seems more appropriate to try to extract directly some physical pictures 
from this theory. Actually, one cannot progress very far in this direction (Feynman 
1962). It seems that there are fundamental reasons for that: the boundary conditions 
of the Feynman propagator which simplify considerably the algebraic computations 
imply in counterpart that several distinct physical processes are described by the 
same diagram (emission and reabsorption of photons, virtual creation and annihila- 
tion of an electron-positron pair ). Furthermore, the explicit covariance of the 
theory does not allow an easy separation in a given reference frame between electric 
and magnetic effects (a given vertex describes the interaction of the electron charge 
and that of the spin magnetic moment as well). It is therefore not surprising that 
these covariant expressions can be discussed only in very general terms like emission 
and absorption of photons and that the connection with our naive daily image of 
the electron is difficult. 

In order to derive more elementary but more precise physical pictures, one is 
led to give up the explicit covariance of the theory and to analyse the radiative 
corrections in a given reference frame, generally chosen such that the electron is 
not relativistic?. Along these lines, one can mention the first evaluation of the Lamb 
shift by Bethe (1947) and its physical interpretation by Welton (1948), and the calcula- 
tion and interpretation of the electron self-energy by Weisskopf (1939). 

In this paper we adopt this point of view and we introduce one more restriction 
by considering only. in a first step. the effect of non-relativistic modes (hw << m2). 
It is therefore clear that the interpretations which will be proposed are only valid in 
this limited domain and do not cover a priori the whole physics of radiative correc- 
tions. On the other hand, all the involved physical processes can be easily identified. 
In a second step, which will be considered in a subsequent paper, we will get rid 
of the restriction of non-relativistic modes and show that the contribution of the 
relativistic mode does not change the physical conclusions derived here drastically. 

+ This does not imply that i n  the virtual intermediate states the electron remains non-relativistic. 
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This paper is divided into four parts. After a brief outline of the effective Hamil- 
tonian method (8 2), the spontaneous terms of this Hamiltonian are displayed and 
their physical content analysed ( 3  3). Taking advantage of these results, we investigate 
in 44 the physical interpretation of two well known radiative corrections: the Lamb 
shift and the electron anomalous g factor. We compare our conclusions with those 
of various authors interested in these problems. Finally, we analyse in $ 5  the limi- 
tations of the present approach, and the improvements to be effected in the effective 
Hamiltonian method in order to establish closer connections with QED covariant 
calculations. 

2. The effective Hamiltonian method 

We present here a general outline of the theory. We give just the principle of the 
calculation and its physical basis rather than detailed expressions which are quite 
lengthy. More details can be found in Avan et a1 (1976). 

2.1. Notation and the basic Hamiltonian 

We consider an electron (mass m, charge e), subjected to static electric and magnetic 
fields ( E ,  and B o )  deriving from the potentials 4, and A. in the Coulomb gauge. 
The electron interacts with a mode of the electromagnetic field, quantised in the 
Coulomb gauge in a box of volume L3. The mode is characterised by its wavevector 
k ,  and its polarisation E ,  supposed to be real. We shall also use CO = ck and K = k /k .  
Annihilation and creation operators in the mode are a and a'. Since we want to 
include relativistic corrections, the Pauli Hamiltonian is not sufficient to describe 
the electron and its interaction with the static and radiation fields. Using the Foldy- 
Wouthuysen transformation along the line discussed by Bjorken and Drell (1964) 
(also Feynman 1961), it is possible to derive from the Dirac Hamiltonian a Hamil- 
tonian which acts only on two components spinors and includes all relativistic correc- 
tions up to l / c2 .  Since here the radiation field is quantised, some care must be 
taken when commuting the field operators. One finds that a constant term V o  (given 
in appendix 1) appears as well as the usual Hamiltonian (Pauli Hamiltonian + 
Darwin, spin-orbit and relativistic mass corrections) so that the total Hamiltonian 
X is: 

n2 eh eh 
2m 2m 8 I?? c2 X = lioata + mc2 + V 0  + - + eqho - -c, B,  - ----v. E ,  

2 c . ( E ,  x n - 71 x E, )  - eh -~ 

where 

n = p - eA,. 

The subscript ' t '  refers to the total field (static fields + radiation). 

2.2. The efectiue Hamiltonian 

The total Hamiltonian 2 can be split into three parts: the radiation field Hamil- 
tonian hoa'a, the electronic Hamiltonian in the external static fields y;",, and the 
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coupling .Y, between the electron and the radiation 

.Yf = / l O U t ( l  + .Yc + .Y,. (2 .3 )  

If 2, is neglected the energy levels of the total system are bunched in well defined 
multiplicities &. corresponding to a definite number of photons N .  X; has a diagonal 
part, operating inside each multiplicity &, and an off-diagonal part, coupling multipli- 
cities with a different number of photons. When 8 is taken into account, the eigen- 
states of the total Hamiltonian no longer correspond to a well defined value of 
N .  In the evolution of the electronic variables, some frequencies close to o and 
its multiples appear, corresponding to the classical picture of an electron vibrating 
at the field frequency. The energy levels in each multiplicity are also modified and 
this corresponds to a modification of the slow motion of the electron. This is precisely 
what we are interested in. It is certainly possible to determine the perturbed energy 
levels by ordinary second-order perturbation theory. However, it is more convenient 
to choose another method (Primas 1963) similar to the one used in solid-state physics 
to remove inter-band coupling or to describe multi-particle effects (Blount 1962, 
Nozieres and Pines 1958, see also Kittel 1963). The idea is to construct a unitary 
transformation which eliminates the off-diagonal parts of the total Hamiltonian, at 
least to a given order. The transformed Hamiltonian 2' has the same eigenvalues 
as the initial Hamiltonian and has the following structure: 

where Hefl, called the effective Hamiltonian, acts only within a given multiplicity, 
i.e. operates on electronic variables, and depends on field variables only through 
u'u and uu'. If we restrict ourselves to a second-order calculation with respect to 
the radiation field, 2& takes the following form in the multiplicity &: 

where R and S are pure electronic operators, given in appendix 1. The last two 
terms of (2.5) describe the modification of the electron dynamical properties due 
to the coupling with the mode ( k ,  E ) .  They include, in particular, the effects of virtual 
transitions to upper and lower multiplicities. 

3. Explicit form of the spontaneous terms: physical interpretation 

3.1. General structure 

In addition to the unperturbed Hamiltonian Ze, the effective Hamiltonian (2.5) con- 
tains a term proportional to N :  

N(R + S) (3.1) 

which represents the 'stimulated' corrections induced by the incident photons and 
discussed in detail in Avan et al (1976). 

The same calculation yields a N-independent term, R, describing the effect of 
the coupling with the empty mode, i.e. the contribution of the ( k ,  E) mode to the 
spontaneous corrections which we intend to study in this paper. 
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In order to make a connection with the physical pictures worked out for the 

(3.2) 

= $ ( R  + S), (3.3) 

stimulated corrections, it is appropriate to write the spontaneous corrections as : 

R = i ( R  + S) + $(R - S). 

The first term of (3.2), that we will call 

has the same structure as (3.1), N being replaced by 3. Its physical content is the 
same as the one of the stimulated terms (3.1)2 except that the energy Nhw of the 
incident N photons is replaced by the zero point energy iho of the mode. All the 
semiclassical pictures developed for the stimulated terms can therefore be transposed 
to @., by just replacing the incident wave by the vacuum fluctuations?. 

The second term 
Y', = i ( R  - S) (3.4) 

is new and its physical interpretation will be given below. Finally, the effective Hamil- 
tonian of the electron interacting with the empty ( k ,  E )  mode can be written as: 

Hcj, = .& + N,, + :e. (3.5) 

3.2. Characteristic energies 

The expressions giving R and S are quite complicated. In order to characterise the 
magnitude of the various terms appearing in these expressions, it is useful to introduce 
the characteristic energies of the problem which are: the rest energy of the electron 
mc2, the photon energy rim, an energy & characterising the coupling of the electron 
to the static fields, and finally 

representing the kinetic energy associated with the electron vibration in the vacuum 
fluctuations of the mode ( k ,  E). 

The high-frequency, weak-coupling and non-relativistic approximations which 
have been made in the derivation of Kl, are valid if 

In the various calculations, we keep: 
(i) all terms in l / c  and 1/c2; 
(ii) all terms linear in 6; (second-order calculation with respect to the radiation 

(iii) all terms linear in &, and the major quadratic terms such as &:/me2, 
field); 

6 pA$(riw)' (we neglect smaller terms of the order of bpdilhm"). 

i- Working in the Heisenberg picture. Senitzky (1973) and Milonni er ul (1973) have shown that there 
are some ambiguities when one tries to isolate vacuum fluctuation effects from those related to the radiation 
reaction. The effective Hamiltonian approach presented here seems to allow a clear separation: vacuum 
fluctuation terms are identified by comparison with the stimulated ones; the remaining terms will be 
shown to coincide with those describing radiation reaction effects in classical electrodynamics (see $3.4). 
The connection between these two different points of view will be considered elsewhere. 
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3.3. Terms analogous t o  stimulated terms: 

From the previous discussion, one can bypass the calculation of &, and simply 
replace 8, by 8: in the expression of the stimulated corrections. One gets?: 

where 

= p - eAo (3.9) 

8, 
m u  

v x A b  = +(E.V)2B0 

ie e W21. 

( 3 .  l o a )  

(3.10b) 

(3.1 1) 

The physical interpretation of these various terms is straightforward (see 43 of Avan 
et a1 (1976)). The vibration kinetic energy in the vacuum fluctuations, a,", adds to 
the electron rest mass mc2 and corresponds to a mass increase: 

dlnz = R:/c2. (3.12) 

The second term of (3.8) is the correction of the kinetic energy associated with 6,111. 

Due to its vibration, the electron averages the static electric and magnetic fields 
over a finite extension. This introduces the corrections 4& and A b  to the static poten- 
tials 4' and A , .  wi is the diamagnetic energy associated with the electron vibration. 
The last term represents a modification to the spin magnetic energy. It shows that 
the electron g factor is reduced by the vacuum fluctuations and becomes anisotropic. 
This results from the combined effect of four different processes. First there is an 
oscillation and consequently a spreading of the spin magnetic moment due to its 
coupling with the magnetic vacuum fluctuations. An additional reduction of the g 
factor results from the mass increase 6,m which also affects the Bohr magneton 
eh/2m. Furthermore, as the electron vibrates in the electric field of the mode, it 
'sees' a motional magnetic field which is found not to average to 0 in the presence 
of the static field B o ;  similarly, it explores the magnetic field of the mode over a 
finite extension (the dipole approximation is not made'), and this can give rise to 
a 'rectification' of the magnetic fluctuations which is also proportional to B o .  These 
motional and rectified magnetic fields are coupled to the spin and contribute to 
the spin magnetic energy. 

i Since we have supposed the polarisation E to be real, several terms derived in Avan er al (1976) vanish 
in (3.8). Let us recall that. when E is complex, the electron vibration is circular or elliptical, giving rise 
to a magnetic moment p which is responsible for additional magnetic couplings. 
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3.4.  The new terms 

Under the approximations given in $3.2, there are four new terms: 

(3.13) 

The first term comes directly from the Foldy-Wouthuysen transformation used 
to derive the basic non-relativistic Hamiltonian (2.1). Let us recall that it originates 
from the non-commutation of the field operators. It is a constant and has no dynami- 
cal consequences. Furthermore, it represents a small correction to the rest mass energy 
of relative order W ? t i w / ( m ~ ~ ) ~ ,  so that it will be neglected in the following. 

The second term is the most interesting one. Let us remark that since 8; is 
proportional to 12 (see (3.6)), this term is actually independent of fi, so that it may 
have a classical interpretation. We claim that it represents the radiation reaction 
of the electron charge, more precisely, the contribution of the mode ( k ,  E )  to this 
effect. The current associated with the electron (velocity no/m) acts as a source term 
for the mode (k ,  E);  it gives rise to a vector potential, proportional to ~ ( c . 7 ~ ~ ) .  The 
correction to the total energy of the system, i.e. the energy of the generated field, 
plus its interaction energy with the electron, coincides exactly with the second term 
of (3.13). A complete classical derivation of this result is given in appendix 2. As 
a consequence of this effect, the electron inertia is increased along the E direction. 
There is a close connection between this extra inertia and the electromagnetic mass 
associated with the static Coulomb energy in the electron rest frame. We will come 
back to this point later. 

The third term appears, in the calculation, in the following form : 

(3.14) 

which suggests one can interpret it as the radiation reaction of the spin magnetic 
moment: this moment acts as a source term for the mode. When one takes into 
account the energy of the field so created, plus the interaction of this field with 
the spin moment, one finds (3.14) exactly (see appendix 2). This expression reduces 
to the third term of (3.13) if one remembers that for a one-half spin 0: is unity. 
Actually, from now on we will neglect this third term, for the same reasons as for 
the first one. 

The last term is a correction to the radiation reaction of the electron charge 
due to the Doppler effect: the mode frequency appears to be w[l - (K. no/mc)] when 
the electron moves with the velocity n,/m. 

Remark. The LO dependence of the radiation reaction is not the same for the charge 
and for the spin. The charge is coupled to the potential vector, whereas the spin 
is coupled to the magnetic field which has one extra w factor. Thus, the radiation 
reaction of the charge predominates at low frequencies, while that of the spin grows 
as w increases. Furthermore, the spin radiation reaction is a relativistic effect in 
1/c2 and vanishes in the non-relativistic limit. 
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4. Application to the interpretation of two radiative corrections: Lamb shift and g - 2 

Up to now we have considered the contribution of a single mode to the radiative 
corrections. The next step would be an integration over all modes which involves 
an angular averaging and a summation over 03 weighted by the mode density 
8 z k 2  dk(2z:L)- '. Since our calculations are not valid for relativistic frequencies. we 
will restrict ourselves to the angular averaging, which amounts to evaluating the 
mean contribution of a mode in the 'shell' of frequency w. Thus one keeps only 
the isotropic parts of e,, and one gets in this way the electron effective Hamiltonian: 

where 

28: w, = -e2B;. 
3m w (4.3) 

z.\ is the well known fine-structure Hamiltonian (independent of 8:) : 

The various corrections appearing in (4.1) are of two types: 
(i) Modification of the electron mass, due either to the electron vibration in the 

vacuum fluctuations, or to the radiation reaction. The spin g factor is sensitive to 
the first effect (the kinetic and spin magnetic energies both contain corrections in 
d?imc2), but not to the second one (corrections in @/hw only appear in the kinetic 
energy ) . 

(ii) Electric and magnetic form factors due to the vibration of the charge and 
of the spin magnetic moment. 

Let us now apply these general results to the interpretation of two important 
radiative corrections. 

4.1.  ElectroM in n Coulomb static f ield.  Lamb shift 

Omitting the constant terms (mc2  + G!'), using the fact that A, = Bo = 0, one gets 
for Hc,, : 

The correction to the kinetic energy term is the contribution of the modes o 
to the mass renormalisation. It does not change the relative position of the energy 
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levels and, in particular, does not remove the degeneracy between the 2S,,2 and 
2P,,, states. The only remaining radiative correction is the third term, which we 
have interpreted as due to the averaging of the electrostatic potential by the electron 
vibrating in the vacuum fluctuations. We arrive in this way at the well known inter- 
pretation of the Lamb shift (Welton 1948). Let us remark that the high-frequency 
condition (3.7) implies here that hw is larger than one rydberg. 

4.2. Electron in a static magnetic field: g - 2 anomaly 

Keeping only the significant terms, we get for the effective Hamiltonian of an electron 
in a uniform static magnetic field B o :  

The first term describes the cyclotron motion of the electric charge. Radiative 
corrections reduce the cyclotron frequency by a factor 

The second term describes the spin Larmor precession, the frequency of which is 
also reduced by a factor 

(1 -; $1. 
Going through the calculations, one easily identifies the P;p/nzc2 terms as due to 
vacuum fluctuations, and the €:/hw terms as due to the radiation reaction of the 
charge (see equations (3.8) and (3.13)). 

It is clear that neglecting the radiation reaction would lead to a Larmor frequency 
less than the cyclotron frequency ( 5  is larger than 1) and consequently to g - 2 < 0. 
Therefore, any attempt to understand the g - 2 anomaly as resulting from the 
vibration of the electric charge and of the spin moment in the vacuum fluctuations 
is doomed to failure. 

The important point to realise is that the radiation reaction further reduces the 
cyclotron frequency and does not affect the Larmor frequency. In addition, in the 
non-relativistic limit where hw is much smaller than mc2, this effect is by far the 
most important. Thus, when the radiation reaction is included, the net effect of non- 
relativistic modes is to reduce the cyclotron frequency more than the Larmor one, 
and consequently their contribution to g - 2 is positive. 

To summarise, the positive sign of g - 2 appears in the non-relativistic limit 
as due to the fact that a charge is a source more efficiently coupled to the radiation 
field than a magnetic moment; this explains why the radiation reaction slows down 
the cyclotron motion more than the spin precession. 

4.3. Discussion about some previous interpretations of g - 2 

Numerous attempts have been made to give a simple explanation of g - 2, at least 
of its sign. Without pretending to give an account of all of them, we discuss here 
some of the physical ideas which have been put forward. 
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After the success of the Welton’s picture for the Lamb shift, models only taking 
into account the magnetic coupling of the spin moment with the radiation field 
have been considered (Welton 1948, Senitzky 1973). As mentioned above, one finds 
in this case a negative g - 2, unless unrealistic frequency spectra are introduced 
for the magnetic vacuum fluctuations (Bourret 1973, Itzykson 1974). 

This failure led to the idea that the positive sign of g - 2 has something to 
do with the complex dynamics of the Dirac electron, requiring the introduction of 
negative energy or multi-particle states. This point of view, suggested by Welton 
(1948), has been investigated by Koba (1949), and later on by Weisskopf (1974), 
Lai et a1 (1974), Grotch and Kazes (1976). The physical idea developed by Koba 
is that the electron spin magnetic moment is related to the Zitterbewegung (see also 
Huang 1952), which can be visualised as a small ring current. Under the effect of 
vacuum fluctuations, this ring current not only rolls and pitches, which reduces its 
magnetic moment, but also vibrates in its own plane, increasing its surface. and 
consequently its magnetic moment. The second effect is expected to predominate, 
which explains the positive sign of g - 2. Actually, Koba does not calculate precisely 
the perturbed magnetic moment, but something like the ‘delocalisation’ of the elec- 
tron, which is, of course, increased. In our opinion, this delocalisation does not imply 
necessarily an enhancement of the magnetic moment : if, for instance, the fluctuations 
of the electron position and velocity are in quadrature, the mean magnetic moment 
remains unchanged. Furthermore, this model seems questionable for frequencies 
smaller than me2: in this case, the electromagnetic field appears as constant both 
in space and time on the Zitterbewegung scale and one would rather expect the 
ring current to be displaced as a whole, without change of its internal structure?. 

To summarise, we do not think that it has been really demonstrated that the 
positive sign of g - 2 is related to a modification of the Zitterbewegung by the 
vacuum fluctuations. This picture is certainly wrong for non-relativistic modes and 
its validity at higher frequencies is not obvious. 

In fact, these various treatments overlook an important point. It is not sufficient 
to consider the modification of the spin magnetic moment. The perturbed Larmor 
frequency has to be compared to the perturbed cyclotron frequency, as was done 
in Avan et a1 (1976) and in this paper. In other words, the mass renormalisation 
has to be performed as has been emphasised by Grotch and Kazes (1975). With 
such a point of view, we have shown in this paper that the positive sign of g - 2 
arises quite naturally, even for non-relativistic modes. Using a slightly different 
method, Grotch and Kazes (1977) arrive at the same conclusion. 

5. Some critical remarks 

As mentioned in the introduction, the approach followed in this paper has its own 
imperfections and limitations. In this section, we analyse them and discuss some 
possible improvements. 

t In this matter we are actually following Weisskopf (1974) who considers that only high-frequency modes 
(hw > me2)  could change the Zitterbewegung. 

Another argument for the non-enhancement of the spin magnetic moment can be derived from the 
calculations of Avan er al (1976), which are in the non-relativistic limit strictly equivalent to the ones 
in the Dirac representation, and which do not predict any effect of this type. 
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5 , l .  Lack of couariance 

The  first anomaly to be noted is the absence in (4.1) of a correction to the rest 
mass energy of the order of mc2&'/hw. Since the radiation reaction increases the 
electron inertia by a 4m&'/3hcu term, a similar correction should also be present 
for the rest mass energy. It is easy to understand that such a correction does not 
appear in the theory because we have discarded from the beginning the electron 
Coulomb self-energy. Radiation reaction and Coulomb self-energy are in fact closely 
related : radiation reaction only expresses that, for accelerating the electron, one must 
also push the Coulomb field associated with it, and this results in an extra inertia. 
However, in the Coulomb gauge, the Coulomb self-energy is infinite and cannot 
be incorporated in our point of view where the contribution of each mode is isolated. 
The solution to this difficulty would be to leave the Coulomb gauge and to introduce 
longitudinal and temporal modes to describe the total field associated with the elec- 
tron. The mean correction to the electron energy due to the w longitudinal and 
temporal modes can be worked out without great difficulty. This additional correction 
results in a single term: 

B,o 
mc - 

hw 

which must be added to the effective Hamiltonian (4.1). Thus we get a term with 
the correct order of magnitude, but not with the 4 factor expected. Actually, one 
must not be surprised by this lack of covariance of the effective Hamiltonian. We 
have only considered the effect of a shell of modes with frequency w, and this is 
obviously not a Lorentz invariant object. The covariance can be restored only when 
the contribution of all modes is taken into account (i.e. when the integration over 
w is performed), and this cannot be done here as a consequence of our non-relativistic 
approximations. 

5.2. Many-particle efects 

A single-particle theory has been used throughout this paper. It seems generally 
accepted that for smoothly varying external fields (i.e. when the electron energy spec- 
trum can be split in two well separated positive and negative energy multiplicities), 
the single-particle Dirac theory gives sensible results. However, when the interaction 
with the quantised radiation field is considered, as we do here, negative energy states 
cannot be so easily discarded. They have to be occupied in order to avoid radiative 
decays from positive to negative energy states. It is also well known that many-particle 
effects are essential to get an electron self-energy which diverges only logarithmically 
(Weisskopf 1939). Since we have included, in our single-particle theory, dynamical 
relativistic corrections up to 1/c2, it is not obvious that many-particle effects do 
not introduce in the contribution of low-frequency modes additional corrections of 
the same order of magnitude as those already considered. Thus, starting from a 
single-particle Dirac equation for dealing with electron radiative corrections has to 
be justified. 

This can be done in the following way. Working in the second quantisation pic- 
ture, one concentrates on states where all negative energy levels are occupied and 
where one extra electron has a positive non-relativistic energy. Such states are coupled 
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by the radiation field to other ones in which electron-positron pairs and photons 
have been created. In  the non-relativistic limit used here, all these states have an  
energy quite different from the initial one. Thus one can take into account these 
non-resonant couplings by introducing an effective Hamiltonian for the original elec- 
tron. In  this way, the one-particle states are decoupled from many-particle ones, 
the effect of virtual transitions to these states being described by an  effective Hamil- 
tonian which is ail ordinary one-particle non-relativistic Hamiltonian. 

We have done such a calculation and u.e have found that the effective Hamiltonian 
describing the dynamics of the extra positive-energy electron is actually almost identi- 
cal to the one used in this paper (2.1) (when the same non-relativistic approximations 
are made). This result is not too surprising: when n d  is much larger than any 
other energy involved in the problem, the coupling with negative-energy states simu- 
lates quite well the coupling with many-particle states. There are, however, two differ- 
ences. First, the correct theory contains the photon renormalisation and vacuum 
polarisation effects? which are absent here. Secondly, the V o  term in (2.1)> which 
arises from the quantum Foldy-Wouthuysen transformation, appears in the many- 
particle theory with a negative sign. This last point is consistent with the fact that 
many-particle effects reduce the electron self-energy. Let us recall that the I/' term 
has finally been neglected (see > 3.4). 

In conclusion. the results of the calculations presented here appear to coincide 
with those derived from a consistent QED approach and hence are quite reliable. 
This would not have been the case for terms of higher order in 6: or 1/c2. 

5.3. Effect of relaticistic inodes 

We have repeatedly emphasised that our conclusions only concern the effect of modes 
with a frequency much smaller than i w 2 .  If it happened that the main contribution 
to g - 2 comes from relativistic or ultra-relativistic modes, then the physical pictures 
developed here would be of little interest, since they are not relevant for them. Hence 
it seems very desirable to extend the previous calculations, particularly the effective 
Hamiltonian method. to all frequencies, within a many-particle theory. It is clear 
that such calculations would be less elegant than those of covariant QED. One  can 
hope, however, that they would provide more physical insight into electron radiative 
corrections. We will consider such a generalisation in subsequent publications. 

Preliminary results concerning g - 2 have already been obtained. The contribu- 
tion of each shell of modes to g - 2 has been calculated. It appears that the main 
contribution comes from frequencies smaller than me2. The integration over cc) gives 
the correct result u,'2rr. Thus the physical pictures given here are not invalidated 
by the contribution of relativistic modes. 

6. Summary 

(i) The contribution to radiative corrections of the non-relativistic modes of the 
radiation field has been determined. The corresponding modifications of the electron 
dynamics are detailed explicitly in the form of a simple effective Hamiltonian derived 
from a single-particle theory in the non-relativistic limit. 

i Let us recall that vacuum polarisation effects represent only 3",, of the Lamb shift and do not contribute 
to g - 2. 
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(ii) A term to term comparison between the effective Hamiltonians describing 
stimulated and spontaneous corrections provides a clue to the physical interpretation 
of radiative corrections. Two main physical effects are involved: the vibration of 
the electron charge and spin moment due to vacuum fluctuations and the radiation 
reaction of the charge. 

(iii) It is shown that non-relativistic modes of the radiation field contribute with 
a positive sign to g - 2. The radiation reaction is found to play an essential role 
in the explanation of g - 2 whereas the Lamb shift is simply interpreted by the 
averaging of the Coulomb potential by the vibrating charge (Welton’s picture). 

(iv) Many-particle effects and contributions of relativistic modes do not alter these 
conclusions significantly. 
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Appendix 1 

We give here some intermediate steps in the calculations which lead from the basic 
Hamiltonian (2.1) to the effective Hamiltonian (3.8) and (3.12). Further details may 
be found in Avan et al (1976). 

In the basic Hamiltonian (2.1), one isolates the unperturbed electronic Hamil- 
tonian 

(A. 1.1) 

where 

no = p - e A ,  (A.1.2) 

and the coupling % between the electron and the radiation field is written in the 
following form: 

3, = vo + v-a + v + a +  + v - + a a +  + I/+-a’a + . . .  . (A.1.3) 

Terms in a2, at’ and of higher order in a and a’ are neglected. One finds: 

(A. 1.4) 



576 J Dupont-Roc, C Fabre and C Cohen-Taiwoudji 

ih 
- E .  no exp(ik. 1’) - -a. ( k  x E )  exp(ik , I,) 

2 
I/- = (V+)+ = 

eh ih w 
+ 4mc 4mc ( E ,  x E )  exp(ik . Y) - 7a. ( E  x no) exp(ik . r )  

1 + j;;;;i[ [2E .no exp(ik. 1’) + iha  , ( k  x E )  exp(ik. U)] 

x (-- ni - eh a. B o )  + sym]] 
2m 2m 

(A.1.5) 

8: (..no)2 h2w2 v-+ = (v+-)+ = 8 0  - “ a . B 0 )  - mc2 -(- m + 42) + . . .  (A.1.6) 

8: is defined by formula (3.6). When the ‘off-diagonal’ elements of & are removed 
by a unitary transformation, one gets (2.4) and (2.5), where 

1 
2h 0 

-__ 3(2g[xe, V - ] V +  - V - [ H e ,  V + ] %  + V - s e [ x e ,  V + ]  

- [Xe, V-]xev+)  + . . . . (A.1.7) 

S is identical to R with the exchange of + and - superscripts, and the change of 
the sign of w and Vo.  

Appendix 2 

In this appendix we derive the radiation reaction of a particle with charge e and 
magnetic moment p interacting with the mode ( k ,  E )  of the electromagnetic field. 
The particle, as well as the radiation field, are treated classically. In order to make 
the parallel with the quantum calculation, we use the Hamiltonian formalism and 
we develop the electromagnetic field on the same plane-wave basis as in the quantum 
theory. However, the operators a and a’ are here classical variables c( and SI*. Despite 
the presence of h in the intermediate calculations, due to the particular choice of 
the basis functions, it should not be overlooked that our point of view here is entirely 
classical. 

The development of the electromagnetic field on the plane waves is the following: 

(A.2.1 a) 

(A.2.lb) 

(A.2.1~) 
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where 

E exp(ik. p )  

(A.2.2) 

The current density associated with the electron is the source of the field. It contains 
two terms, .I(') associated with the charge and 5"' associated with the magnetic 
moment: Y being the electron position and no/m its velocity in the external fields, 
.I(1) and .I(') are given by (see for instance Jackson 1971): 

110 

m 
J'"(p)  = e -6(v - p )  (A.2.3) 

J y p )  = v, x [pC(u - p)]. (A -2.4) 

We need essentially the projections of these currents onto the mode (k ,E) ,  defined by 

(A.2.5) f k , E  = 1 d3p dk,E(P)*J(p). 

We find 

f ( 2 )  - 
k , s  - p * w r , e ( v ) *  

With these notations, the Maxwell equations reduce to:  

(A. 2.6) 

(A. 2.7) 

(A.2.8) 

Since we assume that the frequencies associated with the motion of the electron in 
the static fields are low compared to 0, an approximate solution of (A.2.8) is 

(A .2.9) 

From this equation, using (A.2.1~4 b, c), one gets the radiation field associated with 
the electron. 

The energy of the total system is given by 

where A(v) ,  B(Y) and ~ W C I ; , , M ~ , .  are calculated from (A.2.9), (A.2.7), (A.2.6), (A.2.la, b,c) 
and (A.2.2). 

The energy correction 

8X=&?--  

6.X due to the radiation reaction is defined by 

(A.2.11) 
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Keeping only terms of second order with respect to the coupling between the electron 
and the radiation field, one gets for 63%": 

(A. 2.12) 

63%" is simply interpreted as the interaction energy of the charge and magnetic moment 
with the field which they have created, plus the energy of this field. From (A.2.9), 
the coefficient of X k , €  i n  the bracket is simply hoaz, , ,  so that 63%" appears to be 
negative and equal to 

(A.2.14) 

Replacing rk , ,  by its expression (A.2.9) as a function of the electronic variables, 
one gets 

(A.2.15) 

The first term is the correction to the kinetic energy due to the radiation reaction of 
the charge. Introducing 8," (see formula (3.6)), one finds the corresponding term of 
(2.7) exactly: 

(A.2.16) 

The second term of (A.2.15) represents the radiation reaction of the magnetic 
moment. For the electron, we have 

so that we find again the third term of (2.7): 

- 6yIm/(2mc2). 

(A.2.17) 

(A.2.18) 

It is worth noting that there is no cross term between the charge radiation 
reaction and the spin one. 
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