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Abstract. In the process of cooling and trapping neutral atoms, we investigate a new laser 
configuration, which consists of two counterpropagating laser beams with orthogonal U+ 
and U- polarisations. We show that such a configuration looks more promising than an 
ordinary standing wave (where the two counterpropagating waves have the same polarisa- 
tion), and we explain this result as being due to angular momentum conservation which 
prevents any coherent redistribution of photons between the two waves. Our conclusions 
are based on a quantitative calculation of the various parameters (potential depth, friction 
coefficient, diffusion coefficient) describing the mean value and the fluctuations of the 
radiative forces experienced, in such a laser configuration, by an atom with a J = 0 ground 
state and a J = 1 excited state. 

1. Introduction 

A great deal of interest has been recently devoted to the study of the motion of atoms 
in a quasi-resonant standing light wave (Minogin and Serimaa 1979, Gordon and 
Ashkin 1980, Letokhov and Minogin 1981, Cook 1980a, b, Minogin 1981a, b, Kazantsev 
et al 1981). One of the main reasons for this interest relies upon the possibility of 
using this standing wave as an optical trap (Letokhov et ai 1977, Letokhov and Minogin 
1978, Ashkin 1978): the radiation pressures of the two counterpropagating waves 
forming the standing wave compensate, while dipole forces add and may lead to a 
trapping of atoms. Unfortunately, such a scheme also leads to a diffusion of atomic 
momentum, and therefore to a heating of the atoms, which is prohibitive in view of 
trapping as soon as the atomic transition is saturated (Gordon and Ashkin 1980, Cook 
1980a, b, 1981a, Kazantsev et a1 1981). 

We can understand the leading term of the atomic momentum diffusion coefficient, 
in the saturating case, in terms of coherent redistribution of photons between the two 
waves (Arimondo et al 1981, Bernhardt and Shore 1981): the atom, initially in its 
ground state, can first absorb a photon in one of the counterpropagating waves and 
then emit a stimulated photon in the other wave; it thus gains the momentum 2 Zzk, 
where Ak is the momentum of one photon. Since the number of such processes per 
unit of time is not limited, the resulting component of the momentum diffusion 
coefficient does not saturate when the light intensity increases. 

The purpose of this paper is to present a new scheme which has the same trapping 
capabilities as the previous standing wave, but in which coherent redistribution 
processes cannot occur. It consists in two identical counterpropagating waves with 
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orthogonal polarisations, respectively U+ and U- (figure l (a ) ) .  For the sake of sim- 
plicity, we will choose a J = 0 (ground level) to J = 1 (excited level) atomic transition 
(figure 1 ( b ) ) .  It is then obvious that such a scheme does not allow coherent redistribu- 
tion processes between the two waves: after the absorption of a U+ photon for instance, 
the atom is in the ( e ,  m = +1) level and, because of angular momentum conservation, 
it cannot emit a stimulated U- photon in the other wave. 

(a )  (bl 

Figure 1. ( a )  Laser configuration studied in this paper: superposition of two focused U+ 

and U- counterpropagating waves (with eventually ‘infinite’ beam waists: plane waves). 
( 6 )  Zeeman optical components of the J = 0 to J = 1 transition, excited by the v+ and (T- 

waves. 

In 0 2 of this paper, we give our notations and our hypothesis. We then calculate 
the radiative forces acting, in the (++-U- configuration, on an atom at rest (0 3.1), or 
moving with a velocity U (B03.2 and 3.3). Section 4 is devoted to the study of the 
momentum diffusion coefficient. Finally, the implications of this work concerning the 
radiative trapping are discussed in 0 5 ,  where numerical estimations are given. 

2. Notations and assumptions 

The total Hamiltonian is the sum of four parts: 

H = H A  + H F  + VA-L + VA-F. 

H A  is the atomic Hamiltonian, HF the’quantised-field Hamiltonian. The laser field is 
supposed to be in a coherent state, so that we can treat it as a c-number field, and 
then split the atom-field coupling into two parts (Mollow 1975), the first one (VA-L) 
describing the atom-laser coupling, and the second one ( VA+) the atom-quantised-field 
coupling; the quantised field is taken in its ground state. 

The atomic Hamiltonian is the sum of the kinetic energy of the atom and of its 
internal energy: 

where we have introduced the general notation 

Qab =la)(b (2.3) 

with la), lb) internal atomic states. In equation (2.2), we have only taken into account 
the excited level le) ( J  = 1)  coupled to the ground level 18) ( J  = 0) by the laser light, 
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and the summation is taken over the three Zeeman sublevels le,) (with m = +, m = 0, 
m = -) of l e ) ;  wo is the atomic frequency. 

The electromagnetic field is quantised on a complete set of orthonormal field 
distributions b , ( R ) ,  for example the plane waves of wavevector k,, frequency W ,  = ~lk,l 
and polarisation E,. The Hamiltonian HF of the quantised field is thus: 

where a,, and a,' are respectively the destruction and creation operators of a photon 
in the mode A. 

The atom-quantised-field coupling VA-F can be written in the electric dipole 
approximation: 

V A - F = - I ) *  E ( R )  (2.5) 

where I) is the atomic dipole operator and E ( R )  the quantised electric field taken for 
the position operator R of the atom: 

E ( R )  = E  (%A(R)aA +%T(R)al ) .  (2.6) 
h 

The atom-laser coupling is also taken at the electric dipole approximation: 

VA-L = -I) * &laser (&  t )  (2.7) 

where cTlaser( r, t )  is the classical function describing the laser electric field. blaser( r, t )  
results from the superposition of the two identical counterpropagating waves along 
the Oz axis, with U+ and v- polarisations: 

blaser(r3 t ) = b l ( r ,  t ) + b z ( r ,  t )  

% ( r )  

2 h  
b l ( r ,  t )  = - - - - ~ + e x p [ - i ( w ~ f - k z ) ] + c c  

% ( r )  

2 J 2  
b 2 ( r ,  t ) = - - ~ -  exp[-i(w,t+kz)]+cc 

where w L  is the laser frequency. 

vectors along Ox and Oy):  
The complex unit vectors E +  and E -  can be written in terms of E ,  and E ,  (unit 

E +  = -2-1 '2(~,  +iEy) E -  = 2-1 '2(~ ,  -iEY). (2.9) 
Introducing now the r-dependent set 

E ' = & ,  sin kz+Ey cos kz=2-1'2i[E+exp(ikz)+E-exp(-ikz)] 

E " = - & ,  COS kz+Ey sin kz=2-1'2[&+exp(ikz)-E- exp(-ikz)] 

the laser field can be written: 

(2.10) 

blaser ( r ,  t )  = '8(r)E 's in(wLt) .  (2.1 1) 

The resulting beam alaser then has at each point an amplitude 42 times larger than the 
one of each initial beam b 1  and 8,. Note in particular that this resulting amplitude 
does not present any important variation of the scale of a wavelength, as would be 
the case in a standing wave resulting from the superposition of 8, and 6, with the 
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same polarisation. On the other hand, the resulting polarisation E ‘  is linear and rotates 
along the Oz axis. 

In order to describe the atom-laser coupling, it is convenient to introduce the 
following r-dependent basis for the atomic excited state (compare with equation (2.10)): 

le’) = 2-1’2i[le+) exp(ikz) + le-) exp(-ikz)] 

le”)=2-”’(le+) exp(ikz)-le-) exp(-ikz)] 

I eo) 

so that the atomic dipole reads: 

D = d ( Q g e + E + + Q g e - E -  + Q g e a ~ O )  + H C  

= d ( Qge,&’ + Qge,x” + Qgea~O)  + HC 

where d is the electric dipole moment of the transition. 
The atom-laser coupling can finally be written with these notations: 

(2.12) 

(2.13) 

VA-L= -d8(R)(Qge,+ Q e , g )  sin(wLt). (2.14) 

Let us mention at this point that, in some parts of this paper, we will be interested in 
the particular case of ‘plane U+ and U- waves’: this means that the waists of the two 
U, and U- waves are very large so that we can neglect the dependence on R of 8 ( R ) .  

As usual, all the calculations will be done using the rotating-wave approximation, 
which consists in keeping only the resonant terms in the atom-laser coupling (2.14): 

VA-L = $d8(R)(oge ,  - oe,g) (2.15) 

where we have put: 

(2.16) 

In this paper, we will also use the semiclassical approximation, which consists in 

This is legitimate as soon as the spatial extension Ar of the atomic wavepacket is 

Arc< A. (2.17) 

On the other hand, we will use the notion of atomic velocity and we will, in 
particular, consider atoms at rest, i.e. with a velocity spread A V  such that the Doppler 
effect k h v  is very small compared with the natural linewidth of the excited level r: 

kbv <( r. (2.18) 

One then immediately notes that the two conditions (2.17) and (2.18) are compatible 

m A r A v 3 h  (2.19) 

replacing the atomic position operator R by its average value r = ( R ) .  

much smaller than the laser wavelength A :  

with the Heisenberg inequality: 

only if the following relation holds: 

h2k2/ m K hT. (2.20) 

This validity condition for the semiclassical calculation means that the recoil energy 
has to be very small compared with the natural linewidth, or, in other words, that the 
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atom is still in resonance with the laser light after a single photon absorption or 
emission. Note that when condition (2.20) is fulfilled, one can show (Cohen-Tannoudji 
1983, Dalibard and Cohen-Tannoudji 1984) that the forces and the diffusion coefficient 
appearing in the Fokker-Planck equation describing the atomic motion, in a fully 
quantum treatment, are the same as the semiclassical ones, which we will calculate here. 

3. Radiative forces in the u+-u- configuration 

As usual in the semiclassical theory of radiative forces (see, for example, Cook 1980a, 
Gordon and Ashkin 1980), we will calculate these forces in the Heisenberg point of 
view. We first define a force operator as the time derivative of the atomic momentum: 

(3.1) 

This force can be expressed in terms of atomic and field operators; using (2.1), 
(2.5), (2.12) and (2.15), we get: 

with 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 

Fvac results from the gradient of the quantised-field-atom coupling, while Fin, and Fpol 
both come from the laser-atom coupling; more precisely, Fint and Fpol are respectively 
due to the R dependence of VAWL via % ( R )  and via Qger- Qerg. 

As mentioned above, we will do a semiclassical treatment, and replace the position 
operator R by its average value r. Furthermore, we will actually be interested in the 
average f of F over both field and internal atomic state: 

3.1. Radiative forces on an atom at rest 

If one considers an atom at rest at point r,, it is clear from the expression of the 
laser-atom coupling (2.15) that only the sublevel le') (at point ro) is coupled to the 
ground state. It follows that a ( J  = 0)-(J  = 1)  atom at rest in the U+--(+- configuration 
behaves as a two-level system. More precisely, the evolution of 
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is given by the usual optical Bloch equations: 

(3.6a) 

(3.6b) 

( 3 . 6 ~ )  

where we have put 6 = wL - o,,. Using the stationary solution of these equations, we get: 

where we have introduced the r-dependent saturation parameter: 

(3.7) 

It is important to note that this force is exactly equal to the usual dipole force (or 
gradient force) found for a two-level system. 

We now turn to the calculation of fpol and fv,,. The result for fpol is immediate: 
since the level le") (at point ro) is not coupled to the laser field, the average value of 
Qge8. is zero, and using (3.3b): 

f p o l =  0. (3.9) 

In order to calculate f v p c ,  we first remark that the quantised field E can be written, 
in the Heisenberg point of view, Efree + EsoUrce, where E,,,,,e is the field radiated by 
the atom, and Efree the field that would exist in the absence of a source. Since the 
source field has no gradient at the atom position (Tanguy 1983) one gets: 

(VEr) = (VEzfree) = 0 (3.10) 

since the quantised field is taken initially in its ground state. It follows that: 

L a c  = 0 (3.1 1) 

so that 

(3.12) 

For an atom at rest, the only contribution to the average force is then Ant. In the 
perspective of using this force to trap atoms, it is useful to notice that this force derives 
fram the potential: 

(3.13) 

and to optimise the potential well depth. For a given laser power and waist, i.e. for a 
given maximal field amplitude 8,, one finds the optimal values: 

U(r )  = & 6  In( 1 + s) 

s, = 4  or 6 -0.35 d8,lii (3.14) 
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leading to the optimal well depth: 

U,,-O.3 d8,. 

4583 

(3.15) 

3.2. Radiative forces on slowly moving atoms 

We now suppose that the atom is moving with a velocity U, and we want to calculate 
in this section the first order velocity dependence of radiative forces, in the U+--(+- 

configuration. 
It is clear that fv,, is still zero (quantised field in its ground state), but the values 

of Xnt and fpol are now changed, since the atomic motion implies a time dependence 
of the laser-atom coupling via $( r( t ) )  and Qge8 - QeSg. This motion will in particular 
cause a coupling of the level le") with the ground level, and the results will therefore 
be quite different from the two-level atom case. In order to calculate the average values 
of QeJg, Qe, ,g, .  . . , appearing in the force, we shall use the general Heisenberg equation 
for a time-dependent observable: 

dA aA i 
dt a t  h 

- +-[H,A]. (3.16) 

3.2.1. Calculation offpol. Applying (3.16) to the operator Qetrg and taking the average 
value, we get: 

(3.17) 

where we have put, as in (3.5): 

and where we have used (see 2.12): 

a 
a t  
- 1  e") = k - U (  e'). 

We write the equivalent equation for petet,: 

(3.19) 

(3.20) 

We now want to extract from equations (3.17) and (3.20), the stationary values of 
pge,, and pe,e,8, to order one in velocity. We first remark that these stationary values are 
at least of order one in U ,  since they are zero for an atom at rest. Consequently, the 
time derivatives of these stationary values are at least of order two in U :  the time 
derivative of a stationary quantity A is indeed (U - V)A. The first-order velocity depen- 
dences of the stationary values of pge,. and pefe,. can then be obtained from: 

(3.21) 
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We finally solve this system to get f,,,, to the first order in velocity: 

f p o , = h k ( k *  u)- S s/r 
1 +s (62/r2) +${I +s[(s2/r2)+$]}2’ (3.22) 

3.2.2. Calculation off;,,,. Applying (3.16) to Q,,,, Qe.g ,  Qe,e, and Qgg, one gets the same 
result as (3.6), to the first order in U. The supplementary terms resulting from the 
component aA/at in (3.16) are indeed all equal to k -  U times the average value of a n  
operator where e” appearst .  These supplementary terms are then at least of order two 
in U, and d o  not contribute. It follows that the only U dependence of the system giving 
pe,g, pge,, peCe’ and pgg is due to 8( r (  t ) ) ,  and consequently, Ant at  first order in velocity 
is the same as for the two-level atom case. The result is found to be (see also Gordon 
and Ashkin 1980) 

2sZ+(s-  1 ) r  ). s ++r2 
v s  

1 + S  4 r  s ( i  +s)3 

h6 Vs( U + Vs) 
f = -$h6---- 

int (3.23) 

3.2.3. Physical discussion. (i) Looking at  the general structure of the results, one can 
note that there is no ‘crossed’ term as ( k  * v ) V s  or k(  U * Vs) in the expression of the 
total force. This is simply due to the physical invariance of the system by changing k 
in - k  (or, which is equivalent, by exchanging the polarisations for the waves U, 

and U-). 

(ii) We will not discuss here the result for Jnt  (3.23) since it is a well known 
expression, and  we will rather focus on fpol. We first note that fpol can be a damping 
or an accelerating force depending on the sign of the detuning 6. If 6 is negative, for 
example, the force is a damping one and this agrees with the following qualitative 
argument: an  atom moving towards the right on figure 1 ‘sees’, because of the Doppler 
effect, the (T- wave closer to resonance than U+, and then ‘experiences’ a total force 
towards the left which damps its motion. In the case where the two waves (++ and U- 

are plane progressive waves, it is also interesting to note that there is no change of 
sign of the forcef=fpo, when the intensity of the waves varies. This has to be compared 
with the result obtained for a plane standing wave, where the sign of the force could 
change with the light intensity for a constant detuning (Minogin and  Serimaa 1979, 
Minogin 1981a, b). In this way, the u.+-u- configuration appears as a ‘simpler’ system 
than the standing-wave configuration. 

(iii) In the perspective of cooling neutral atoms, it may be useful to optimise the 
damping qualities of fpo,. One gets the optimal values: 

s - 1  6 = -fr (3.24) 

giving a damping force: 

fD0l 2 -0.3hk(k U). (3.25) 

(iv) Finally, one can ask for the validity of the expansion of the force in terms of 
the velocity. It appears from the calculations of this section that the following condition 

t Equation ( 3 . 6 d )  should be replaced by pe,e.+pe..e, ,+ppp = I ,  but one can easily show that pe,,e,, is at least 
of order two in U. To order one, one can then use p,,,, + p y p  = I .  
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has to be fulfilled in order to do this expansion: 

~ k .  u p <  1. (3.26) 

This can be interpreted in two ways: as already mentioned, it first means that the 
Doppler effect has to be small compared with the natural width of the excited level; 
another formulation of (3.26) is the following 

v r - '  << A (3.27) 

which means that the atom travels, during the excited level lifetime r-', over a distance 
U T - '  which is very small compared with the light wavelength A, so that its internal 
state can follow the laser field nearly adiabatically. 

3.3. Radiative forces in the case of plane waves 

In the case of plane waves, it is possible to give the analytical expression of the radiative 
force acting on an atom for any velocity of this atom. Note that the amplitude 8 ( r )  
is now independent of r so that only fpol will contribute to the final result. In order 
to do the calculation in the simplest way, we will compute the force in the atomic 
frame, and we will use the le,) ( m  = 0, 't) basis for the excited level. We are then 
faced with the problem of computing the stationary state of a three-level atom (here 
Ig), le+), le-)) irradiated with two laser beams with the same intensities and two different 
frequencies w L + k .  U and w L - k .  U (figure 2 ) .  The radiative force is then given by: 

(3.28) 

Figure 2. Atomic transitions and laser frequencies in the atom rest frame (atomic velocity 
v in laboratory frame). 

(3.28) has been written by supposing the atom at the point r = 0 of its frame. The 
stationary state of the atom can be deduced from the nine Bloch equations of the 
problem; putting 

P++ = ((?e+,+) 

(3.29) 

etc 
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one gets the following system, with time-independent coefficients: 

d id8 - d t P + + =  -rP+++--=(p+,-P,+) 
2J2h 

d id8 - dtpi-  = -(r +2ik.  u ) p + -  + ~ ( p + ~  - p g - )  
2J2h 

(3.30) 

P++ + p-- + Pgg = 1 

and the five other equations deduced from (3.20) by taking complex conjugates and 
exchanging + and -. The analytical resolution of the linear system (3.20) in the 
stationary case is quite tedious but does not present any difficulty. One gets for the 
radiative force: 

x 
f =  hkr(p++ -PJ = hk- 9 (3.31) 

where we have put 

x= 0.5 r s ( k . ~ ) [ r ~ + 4 ( k . ~ ) ~ ] ( d 8 / h ) ~  

9 = [ r 2 + 4 ( k - ~ ) 2 ] { Q  +~(d8/h)2[4A2+~(d8/h)2+4(k.~)2]} 

+7$,(d8‘/ti)4[A2 + 2 ( d 8 / h ) 2 - 3 ( k * ~ ) 2 ]  

A2 = S2 +$T2 +i(d8/h)’ 

Q = [A’ - ( k .  U)’]’ + ( k .  u ) 2 r 2 .  

(3.32) 

The expression (3.31) appears as the ratio of two polynomials in k .  U :  the numerator 
is of degree three, the denominator six. For small velocities, one can check that (3.3 1 ) 
is equal to the result of the previous section (3.22). One interest of formula (3.31) is 
to show that for a given detuning and a given light intensity, the radiative force has 
always the same sign as 6 ( k . u ) .  Once more, this can be compared with the result for 
the plane standing wave case where a continuous fraction expansion? predicts changes 
of sign of the force with the velocity (Minogin and Serimaa 1979). 

We have plotted in figure 3 the variation of the radiative force with the velocity, 
in the optimal case 6 = -$ and s = 1. One sees that the force is linear until k .  U 
becomes of the order of r, reaches a maximum of the order of 0.2hkT and then 
decreases, This means that the linear term found in the previous section is dominant 
in the range -$s k .  U s fr, as expected. 

Note: In order to understand why the atom-laser system studied in this section 
appears simpler than the standing-wave case, (not only for the calculations but also 
for the results), it may be useful to consider the dressed-atom picture (Cohen-Tannoudji 
and Reynaud 1977, 1978, Reynaud 1983). Take first the case of an atom in a standing 
wave: the state lg, n,, n2), representing the atom in the presence of n ,  and n2 photons 
in the two counterpropagating waves forming the standing wave, is coupled by atom- 
laser coupling to the two states /e, n ,  - 1, n,) and le, a, ,  n2 - 1). These two states are 
themselves coupled to /g, n ,  - 1, n2+ 1) and lg, n ,  + 1, n2-  1)  and so on (figure 4(a)) .  

t No analytical expression of the force could be obtained in the standing-wave case. 
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L 

0 r 2r 
:-O1f kv 

Figure3. Variation of the intensity of the radiative force in the optimal cooling configuration 
( 8  = -Lr and s =  1) .  

(01 ( b )  
le,n, -2,n,+1) le,n,-l,nJ Ie,n,,n2-V le,n,+l,n,-2) le-,n+-l,tx) le4,n+-2,n-+l) Ie-,n*,n--l) le+,n+-l,n-) 

77 
U 
! I  ,m n 1:- 

LL \ I  L L U  
lg,n,-l,n,+l) Ig,n,,n,) Ig,n,+l,n,-1) Ig,n,-1,n-+I ) lg,n.,n-) 

Figure 4. Dressed-atom picture. ( a )  Standing-wave case: all states corresponding to a 
given total number of excitations are coupled. Coherent redistribution can occur. ( b )  
u+-u_ case: manifolds involving only three coupled dressed states. No coherent redistribu- 
tion can occur. 

In particular, this coupling between all the states with a given value of n ,  + n ,  is 
responsible for the coherent redistribution described in the introduction of this paper. 
Consider now the case of a ( J  = 0) - ( J  = 1)  atom in two plane (++ and U- waves. The 
state / g ,  n,, n - )  is coupled by atom-laser coupling to the two states / e + ,  n + -  1, n-)  and 
le-, n,, n - -  l),  and these two states are only coupled to the initial state lg, n+, n- )  
(figure 4(b)),  due to the conservation of angular momentum. The ‘dressed atom’ then 
contains manifolds involving only three levels, and it is therefore much easier to 
compute ; one can in particular calculate the stationary atomic state, when spontaneous 
emission is taken into account, for any values of the laser frequencies (or equivalently 
for any atomic velocity). 

4. Atomic momentum diffusion in the a+-a- configuration 

As indicated in the introduction, the momentum diffusion is a crucial feature of atomic 
motion in a light wave, since the corresponding heating limits the stability of any 
radiative trap. We will see in this section that, in the (++-U- configuration, one can 
control independently the depth of the trap and the diffusion coefficient, contrary to 
what happened in a standing-wave trap. Our calculation will be done for an atom at 
rest at point r = 0, and we will actually be interested in the trace of the diffusion tensor 
(Gordon and Ashkin 1980, Cook 1980a) 

D = f ( F .  P + P .  F )  - ( P )  * ( F )  
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4.1. Outline of the calculation 

In order to compute 0, we first replace the operators F i n  (4.1) by their expression (3.2): 

F = F i n t  + F p o ~  + Fvac. (4.2) 

This will give a priori nine contributions to D. Actually, all the crossed terms vanish 
and one is left with only the three terms: 

D = D i n t  + D p o ~  + Dvac  

with 

(4.3) 

There are various reasons for the cancellation of the crossed terms. Consider first the 
crossed terms involving F,,,. One has then to take the average in the quantised-field 
ground state of the single operator VE, (O)  or V E , ( T ) .  For V E , ( O ) ,  it is clear that the 
quantum average is zero since it is only a sum of creation and annihilation operators 
(see equation (2.6)). V E , ( T ) ,  on the other hand is equal to VE, (see § 3.1), and 
one can note that V E ,  commutes with any atomic operator taken at time 0, so 
that terms involving this single-field operator cannot contribute when averaged in the 
field vacuum state. 

We are then left with crossed terms involving products of F,,, and Fpol. Physically, 
it is clear that such terms cannot contribute to D, since they would be proportional to 
k . V s  (see § 3.2.3) and would not be invariant by exchanging the U ,  and U- polarisations. 
Mathematically, they appear to be proportional to atomic correlation functions such as 

[ o m ( Q e g ( o ) Q e  g(T))dT or lom ( Q e  g ( 0 ) Q e  g ( T ) )  dT 

and it is easy to show, using the equations of evolution of Qe g ( ~ )  and Qe g ( ~ )  given 
in § 3, and applying the quantum regression theorem that such correlation functions 
are always zero (see, for more details, 0 4.3). 

We have then to calculate three terms: D,,, (0 4.21, D,,, (§ 4.3) and Dp0l (§ 4.4). 
Let us remark that the calculations of D,,, and D,,, are very close to the corresponding 
calculations for a two-level system. We will then just briefly outline the explicit algebra 
for these two terms, referring for example to Gordon and Askin (1980) for more details. 

4.2. Calculation of D,,, 

We first calculate the average value of ( FVa,(O) - Fvac(~) + HC). (Note again that only 
Ei contributes to Fva,( T )  ; § 3.1 .) The quantised-field part of F,,,(O) - F,,,( T )  

consists of products of annihilation and creation operators. The only non-zero contribu- 
tion will come from field operators in the antinormal order (a, on the left, a: on the 
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right), so that D,,, can be written: 

We then decompose the dipole D,(T) into its positive and negative frequency parts. 

D,( T )  = D:( T) exp(iwoT) + Dl(  T) exp( -iwoT) (4.8) 

where DT contains 'raising type' operators (Qeg)  and 0,- 'lowering type' ones ( Q g e ) .  
We keep in the following only the resonant term, coming from D,(O)D,-(T), and we 
use the relation: 

(4.9) d V gAl (0) - V %f,(O) exp[i( wA - w0)"i]  = h2k2r8,8( 7 ) .  
A 

We then get for Dvac: 

(4.10) 

D,,, is then proportional to the population of the excited level, which is s / [ 2 (  1 +s)]. 
This gives: 

where N is the rate of emission of fluorescence photons. 

4.3. Calculation of Dint 

Using the expression of Fint (3.3a), we get: 

Di, ,=$d2(V8)2 Re dT ( (A(O)A(T)) - (A) ' )  Iom 
where A ( T )  denotes the operator: 

(4.1 1 )  

(4.12) 

(4.13) 

The calculation of the atomic correlation function (A(O)A( 7 ) )  is then performed using 
the quantum regression theorem (Lax 1968, Louise11 1973): if the average value of 
A ( T )  evolves as: 

(4.14) 

where the Ai are a set of internal atomic operators of the type Qab(ket-bra), then, for 
T positive, the evolution of A(O)A(T) is given by: 

d 
dT I 
- ( A ( T ) ) = C  ai(Ai(7)) 

(4.15) 

Writing the equivalent equations for each (A(O)A,( T)), one then gets a differential 
system of coupled equations, from which it is possible to extract (A(O)A(T)) .  

d 
dT 1 
-(A(O)A(T)) =e ai(A(O)AI(T)). 
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Starting from the optical Bloch equations (3.6) giving the evolution of ( A ( T ) ) ,  it 
first appears that one has to take into account the coupling between the four following 
correlation functions: 

( A ( O ) Q e , e s ( 7 ) )  ( A ( O ) O e , g ( T ) )  ( ~ ( 0 )  O g e , (  7)) ( A ( O ) Q g g ( 7 ) ) .  (4.16) 

This set of coupled equations is the same as for the two-level case, but it is no longer 
closed in our problem, since the population of level ig) can be fed through the decay 
of levels le”) and / eo) .  This couples the last correlation function of (4.16) to 
(A(0)Qet,,,,( 7)) and (A(0)Qeoeo( 7)). Fortunately, the evolution of these two quantities 
is very simple: 

(4.17) 

and their initial values (for r = 0) are both zero. It follows that these two quantities 
are zero for any time T, so that the diffusion coefficient calculated through the resolution 
of the set (4.16), has the same mathematical expression as for the two-level case 
(Gordon and Ashkin 1980, Cook 1980a, b): 

rz2(vs)2r [ s3( s2 I )  3s’ $r2-S2 
I n t  ~ s ( I + s ) ~  r2 4 4 ~ ’ $ 4 6 ’  4 

D. = -+- +-+- (4.18) 

It is, however, important to note that the order of magnitude of Dint is not at all the 
same for a ( J  = 0 - J = 1) atom in the cr+-cr- configuration and for a two-level system 
in a standing wave corresponding to the same value for the potential well depth U, 
imposed by a choice of S and s (see (3.13)). In the standing-wave case (Vs)’ is indeed 
of the order of ( ks)’ = 4v2s2/A ’, while, in the U+-C configuration, we have (Vs)’ = 
( S / W ~ ) ~  where wo is the laser beam waist. The diffusion coefficient Dint in the (T+--(T_ 

configuration is then 4.rr2(wO/A)* smaller than the one found in a standing wave. The 
corresponding reduction can be considerable for usual waists, which are much larger 
than the wavelength. 

The physical interpretation for such a reduction has been given in the introduction 
of this paper: the use of the v + - n  configuration prevents the coherent redistribu- 
tion of photons between the two beams, responsible for the huge diffusion coefficient 
found in the standing-wave case. Coherent redistribution of photons, in the cr+-c- 
configuration, can then only occur inside a given beam, between the various plane 
waves forming this beam and which are at the origin of the gradient of s. In particular, 
if there is only one wavevector forming the U ,  or cr- beam (plane cr+ and U- waves, 
Vs = 0), no coherent redistribution can occur and Dint vanishes. 

4.4. Calculation of Dpo, 

We first report the expression (3.3b) ofFpo, in the expression of Dpo, and we get: 

D =- d 2 k 2 8 2  Re lom d7 (B(O)B(7))  
POI 4 (4.19) 
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where we have put: 

~ ( 7 )  = i(Qge,,(T) - Qetrg(7)). (4 .20)  

As in 0 4.3,  we have to evaluate an atomic correlation function, using the quantum 
regression theorem. It appears that there are four correlations functions involved, 
which separate into two groups: 

( B  (0) Q g e 4  7)) 

( B ( 0 )  QeSeJ8( 7)) for the first group 

and 

( B (0) Qe'sg ( 7 ) )  

( B ( 0 )  Qe,,er( 7))  for the second group. 

The first group is easy to evaluate: the initial values ( T = O )  for both functions are 
equal to zero so that these functions vanish for all T. To evaluate the second set, let 
us put 

(4 .21)  

(4 .22)  

The equations of motion for a and p are similar to (3 .17)  and (3 .20)  for k .  1) = 0 

d a  d 8  
d7 2h 

d p  d 8  
d7 2h 

-- --(is  +&)a +-p 

a -rp. -- - -- 

We integrate these two equations from T = O  to T = C ~  and find: 

T a  (0) + p (0) d 8 / 2 h  
(is +$)r + ( d 8 / 2 h ) 2 '  

lom a(.) d.r= 

We report the result in D,,, and finally get: 

S 
D,,, = h2k2T- 

4(1 +s) '  

(4 .23)  

( 4 . 2 4 )  

(4 .25)  

Dpol, which is a new term compared with the two-level atom case, is then found to be 
equal to D,,,; in particular, it saturates, when s increases, to the value 0.25 h2k2T.  

4.5. Corpuscular interpretation of the diffusion coejtkients in the case of plane waves 

In the case of plane U+ and U- waves, one can give a simple corpuscular interpretation 
of D,,, and Dpol (Dint vanishes). The atomic motion can in this case be described as 
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a pure random walk in p space. The variation Ap of the atomic momentum during a 
time AT can be written 

N + + Y  

A P = -  c h k i + ( N , - N - ) h k  
i = l  

(4.26) 

where N+ ( N -  respectively) is the number of photons absorbed in the a+ (a- respec- 
tively) wave, and hk, the momentum of the ith f l u o r e s c s e  photon. The mean value 
of Ap is zero, since 13, = N- and %= 0. The variance A p 2  is: 

- 
A p 2 = h 2 k 2 ( N + + N - )  + h 2 k 2 ( N + - N _ ) ’  (4.27) 

where.we have used the fact that the momentum hki of a given fluorescence photon 
is not correlated to the momentum of the other fluorescence photons, nor to the 
numbers N ,  and N-. Expression (4.27) leads to the momentum diffusion coefficient D:  

(4.28) 

The first contribution to D can be identified with D,,,: it describes the fluctuations of 
the momentum carried away by the fluorescence photons ( N ,  + N-/  T is identical to 
the rate of emission X appearing in (4.1 1)). 

The second term of (4.28), corresponding to Dpol, describes the fluctuations of the 
difference N+- N- between the number of photons absorbed in each wave. Remark 
now that there is no correlation between the polarisations (a+ or a-) associated with 
two successive absorption-emission cycles: after the emission of a U+ photon for 
example, the atom has the same probability of absorbing either a U+ photon or a a- 
one. It follows that the probability P(N+, N- )  for finding a realisation (N+,  N- )  is 
simply related to the probability P ( N ,  + N-)  for finding a total number N+ + N- of 
emitted photons: 

( N ,  + N - ) !  
2N++N-N,! N-! P(  N,, N- )  = P (  N ,  + N-). 

One then deduces from (4.29): 

(N+-NJ2=N,+N- .  

(4.29) 

(4.30) 

Consequently, D,,, is equal to D,,, (see (4.1 1) and (4.25)).. 

variables. Actually, this is not the case since: 
Note: The result (4.30) is the same as if N+ and N- were independent Poisson 

A (  N ,  + N-)2 = (1  + Q ) ( N +  + N - ) .  (4.31) 

The factor Q, which expresses the non-Poisson character of the distribution of the 
total number of fluorescence photons, has the same value as for the two-level atom 
(Mandel 1979, Smirnov and Troshin 1979, 1981, Cook 1981b, Reynaud 1983, Stenholm 
1983). 

5. Implications for optical trapping 

We have presented in this paper a new laser configuration, which appears very well 
adapted for the trapping of neutral atoms. We have calculated the optical depth for 
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such a configuration (§  3.1) and optimised it, the best parameters being s, = 4, and a 
laser intensity as large as possible. We have also derived the expression of the total 
diffusion coefficient which appears to be, for these optimal values: 

D = 0.4 h 2 k 2 r  +Dint 

where Dint, using the laser waist wo, can be overestimated after some algebra by: 

1 S2 
Dints h2- - 

W :  r ‘  (5.2) 

The first term of (5.1) appears as ‘incompressible’ since it only depends on k and 
r. On the contrary, Dint can be reduced as much as wanted, since we can control the 
intensity gradients in the trap. The optimal situation corresponds to the case where 
Dint is of the order of the first term of (5.1). Let us give a numerical example for 
ytterbium atoms, excited on the intercombination line 1S-3P at 556nm. The spon- 
taneous emission rate for this transition is r/27r = 0.2 MHz. Assuming a laser power 
of 1 W, focused on 250 pm,  one then realises the condition s, =4 by choosing a 
detuning S = 930 r, which leads to an optical well depth U,= 750 hT (7 mK). The 
diffusion coefficient Dint is then 0.1 h2k2r  so that the total coefficient is D = 0.5 h2k2r .  
(For a standing-wave case, the diffusion coefficient would have been more than lo6 
times larger.) Of course this single u+-u- configuration is not sufficient for achieving 
a stable trapping of neutral atoms, since the cooling properties of such beams optimised 
for trapping are very poor and will not compensate the heating due to diffusion 
(compare the present numerical values with the optimal ones for cooling (3.24)). 
However, we can finally mention that stable trapping can be achieved by alternating 
in time such trapping configurations with optimised cooling ones (Dalibard et al 
1983a, b). 
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