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Abstract. The exchange of momentum between atoms and photons in a deflection experi- 
ment is usually described by different formalisms depending on whether the interaction 
time T is short or long compared with the radiative lifetime 7R. We present here a new 
approach to this problem leading to a single theoretical expression valid in both limits and 
therefore allowing the transition between them to be studied. We interpret in this way the 
resonant Kapitza-Dirac effect and the optical Stern and Gerlach effect appearing in the 
short-time limit (T<< 7R) as well as the deflection profiles usually deduced from a Fokker- 
Planck equation in the long-time limit ( T  >> 7R). The transition between these two regimes 
is interpreted in terms of momentum transfer due to absorption and stimulated emission 
of laser photons, convoluted by the distribution of recoil due to spontaneously emitted 
photons. 

1. Introduction 

We present in this paper a theoretical treatment of the deflection of an atomic beam 
by a laser wave, allowing the study of the transition between regimes corresponding 
to short and long interaction times (as compared with the atomic radiative lifetime). 

More precisely, we consider a monoenergetic atomic beam propagating along the 
Oz axis, crossing at right angles a monochromatic laser wave propagating along Ox, 
which can be a progressive or a standing wave. One measures the final distribution 
of the atomic momentum along Ox. All atoms are supposed to have the same velocity 
U, = uo along 02, and the time of flight T = I /  uo through the width I of the interaction 
zone is the interaction time. All subsequent calculations will be done in the initial 
atomic rest frame moving with the velocity uo along Oz. Another important time is the 
radiative lifetime rR = r-’ of the atomic excited state e (r is the natural width of e ) .  

We shall call vL the root-mean-square velocity of the atoms along Ox, due to an 
imperfect collimation of the atomic beam and to the transfer of momentum from the 
laser beam. We suppose in this paper that 

i.e. that the Doppler effect in the laser-atom interaction is negligible compared with 
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the natural width of e. We also suppose that 

Condition (1.2), which can be also written v,T<c A, where A is the laser wavelength, 
means that the atom does not move appreciably along Ox during the interaction time, 
so that it will be possible to neglect the perpendicular displacement of the atoms during 
T Since v, is at least equal to the recoil velocity hk/ M associated with the absorption 
or emission of a photon of energy ho = hck ( M  is the atomic mass), conditions (1.1) 
and (1.2) imply that 

where E,,, = h2k2/2M is the recoil energy. 
Conditions (1.1 ) and (1.2) are the basic assumptions considered in this paper. Note 

that we do not introduce any restriction on T /  rR which can be small or large compared 
with one. The main motivation of this paper is actually to try to present a unified 
treatment of the various physical effects which can be observed in the domain T << (kv,)-’ 
and which are usually described by different formalisms depending on whether T is 
very small or very large compared with TR, In particular, we would like to study the 
transition between the regime T<< TR, which we will call the ‘diffractive regime’ (for 
reasons which will become clear later on), and which is usually described by a 
Schrodinger equation (Cook and Bernhardt 1978, Bernhardt and Shore 198 1, Arimondo 
et al 1981, Compagno et a1 1982) and the regime T >> TR, which we will call the ‘diffusive 
regime’ and which is usually described by a Fokker-Planck equation (Javanainen and 
Stenholm 1980, Cook 1980a, Letokhov and Minogin 1981, Minogin 1981, Kazantsev 
et al 1981). 

The paper is organised in the following way. In § 2 we introduce the theoretical 
framework. We start from the ‘generalised optical Bloch equations’ in position rep- 
resentation, which describe the coupled evolution of both internal and translational 
atomic degrees of freedom during the interaction time. The possibility of neglecting 
the free flight along Ox (condition (1.2)) introduces great simplifications and allows 
us to derive a simple relation between the incoming and outgoing Wigner functions, 
which can be interpreted in terms of a ‘quasi-probability’ G(x, q, T )  for a momentum 
transfer q to an atom crossing the laser in x. The basic problem is then to understand 
how G(x, q, T )  changes when T / r R  increases from very small to very great values. 
The short-time limit (T<c TR) is considered in § 3. We show that G(x ,  q, T )  reduces 
in this limit to a comb of S functions of q, describing discrete exchanges of momentum 
between the atom and the laser wave and we interpret in this way two important 
physical effects, the resonant Kapitza-Dirac effect (Delone et al 1980) and the optical 
Stern-Gerlach effect (Kazantsev 1978, Cook 1978). The long-time limit ( T  >> rR) is 
then considered in § 4. We show that G(x, q, T )  can be, in such a case, approximated 
by a Gaussian function of q. The connection with the Fokker-Planck equation approach 
is made by noting that G(x, q, T )  is nothing but the Green’s function of such an 
equation. We show how the G(x, q, T )  function can be used for interpreting the shape 
and the width of the deflection profile. Finally, we consider in 0 6  the domain of 
intermediate times ( T - T ~ ) ,  and we analyse G(x, q, T )  in terms of momentum transfer 
due to the absorption of laser photons ‘convoluted’ by the distribution of recoil due 
to the spontaneously emitted photons. This will allow us to show how the approach 
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followed in this paper can be related to the problem of photon statistics in resonance 
fluorescence (Mandel 1979, Cook 1980b, Cook 1981, Stenholm 1983, Reynaud 1983 
and references therein). 

2. Theoretical framework 

2.1. Representations of the atomic density operator 

We consider in this paper two-level atoms. We denote: g the ground state, e the 
excited state, hw,  the energy separation between e and g, D the atomic dipole moment 
operator, d = ( e / D l g )  the matrix element of D between e and g, R and P the position 
and momentum of the centre of mass. 

In the position representation (basis of eigenstates Ir’) of R with eigenvalues r’), 
the density operator U is represented by the matrix 

Uab(r’,  r”) = ( a ,  r‘lalb, r”) (2.1) 

with a, b = e or g. It will be convenient, for the following, to introduce the following 
change of variable 

and to define the density matrix in the ‘{r, U }  representation’ by 

uab(r, u ) = ( a ,  r i iu lu lb ,  r-;U), (2.3) 

By Fourier transform with respect to U, one gets the well known ‘Wigner representa- 
tion’ of U (Wigner 1932, Takabayasi 1954, De Groot and Suttorp 1972) 

d3uganb(r, U )  exp(-ip* u / h ) .  (2.4) 

The Wigner representation is more generally used than the { r ,  U }  one. However, for 
the situation considered in this paper, calculations are simpler in the {r, U }  representa- 
tion. A similar representation is actually used by Stenholm (1983), and U (which is 
denoted x) is considered as representing the ‘amount of off-diagonality of the density 
matrix in the position representation’ (this clearly appears in the second equation 
(2.2)). Note however that the r dependence of aab(r,  U )  is not introduced by Stenholm 
(1983), whereas it will play an important role in the following calculations, when the 
laser amplitude is r dependent (for example, for a standing wave). 

2.2. Description of the laserjeld 

We denote 

b( r ,  t )  = E%’,(*) cos(wt + + ( r ) )  (2.5) 

the, monochromatic laser field with frequency w, amplitude %‘,(r), phase + ( r )  and 
polarisation E (8, and #I are real functions of r, E is supposed to be independent of 
r and linear). A plane progressive wave corresponds to 

b( r ,  t )  = ~ 8 ,  cos(wt - k r )  (2.6) 
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i.e., to a uniform amplitude 8, and to a phase 4 ( r )  = -k.r, whereas a plane standing 
wave 

8 ( r ,  t )  = cos k - r  cos w t  (2.7) 

has a zero uniform phase and a sinusoidal amplitude 8,( r )  = 8, cos k. r. 

ponents of d defined by 
It is convenient to introduce the positive (8+) and negative (8-) frequency com- 

d( r ,  t )  = &8+(r )  exp(-iwt) + E K ( r )  exp(iwt). (2.8) 

From (2.5) and (2.8), it follows that 

8*(r)  =$gO(r)  exp(Fi+(r)) .  

The laser-atom coupling is characterised by the r-dependent Rabi frequency 

w,(r) = - ( E  *d)8,(r)/h.  (2.10) 

We will also use the following coupling parameter 

K(r) = - ( E  -d )8+( r ) /h  

related to w,(r)  by 

K (  r )  = i w 1 (  r )  exp( - i4(  r)). 

(2.14) 

(2.12) 

2.3. Generalised optical Bloch equations 

The equations of motion of the cahb(r, U )  will be called the ‘generalised optical Bloch 
equations’ (GOBE), since they generalise the well known optical Bloch equations by 
including both internal (a, b )  and external (r, U )  quantum numbers. They can be written 

a ih a2 ----) a t  M arau  uee(r, U )  

= -rcee(r,  u)-i[K(r+iu)uge(r, u)-K*(r--fu)ceg(r,  U)] ( 2 . 1 3 ~ )  

a ih a2 
a t  M arau  

= +rX(u)u,,(r, u)-i[K*(r+$u)ceg(r, u)-K(r-fu)uge(r,  U)] (2.13 b )  

= [i ( w - U,) - f r] ueg ( r, u ) - i[ K ( r + f u ) ugg ( r, u ) - K ( r - :U) uee ( r, U)] (2.1 3 c ) 

= [-i( w - U,,) - f r ] ~ ~ , , (  r, U )  - i[K*( r + fu )uee (  r, U )  - K *(r  - fu)u,,( r, U)]. 

(2.13d) 

In these equations, the terms in (-ih/M)a2/ar au describe the effect of free flight (they 
come from the commutator of U with the kinetic energy operator P2/2M).  The terms 
proportional to the natural width r of e describe the relaxation due to spontaneous 
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emission. The population uee of e and the ‘optical coherences’ a,, (or uge) are damped 
with rates respectively equal to r and $. The term in l?x(u) in (2.136) describes the 
transfer of atoms from e to g by spontaneous emission. x ( u )  is equal to 

x( U )  = d2n  #J( n) exp( -iwon U /  c) I (2.14) 

where 4(n)  is the normalised angular distribution of spontaneous emission in the 
direction n = k / k .  From the normalisation condition I d2n +(n) = 1, it follows that 

x ( 0 )  = 1. (2.15) 

Finally, the terms in K and K *  describe the interaction with the laser field. They come 
from the commutator of a with the interaction Hamiltonian -D .&(R,  t )  (in the 
rotating-wave approximation). Actually, equations (2.13) are written in a ‘rotating 
frame’ representation, which eliminates any explicit time dependence in exp( jziwt). 

By Fourier transform with respect to U,  equations (2.13) become the GOBE in the 
Wigner representation (Vorobev et a1 1969, Baklanov and Dubetskii 1976, Javanainen 
and Stenholm 1980, Cook 1980a, Letokhov and Minogin 1981). Since the operator 
-iha/au is changed into p in such a transformation, the left-hand side of equations 
(2.13) becomes the ‘hydrodynamic derivative’ a/at  + ( p / M )  .alar. The ordinary prod- 
ucts of functions of U in the right-hand side become convolution products of functions 
of k expressing the momentum conservation in photon-atom interactions. 

Suppose finally that we put U = 0 in the right hand side of equations (2.13). Then, 
only K(r )  and ~ * ( r )  appear in the equations, and x ( u )  is, according to (2.15), replaced 
by one, so that one gets the ordinary optical Bloch equations (Allen and Eberly 1975) 
(dealing only with internal variables, the atom being considered at rest in r ) .  

2.4. Simplifications appearing when free f i g h t  is neglected 

Condition (1.2) means that one can neglect the spatial displacement of the atom along 
Ox during the interaction time T, even if it gets some momentum by absorbing and 
emitting photons. The same argument holds for the displacements along Ox and Oz 
(we recall that we are in the initial rest frame moving with velocity oo along Oz).  It is 
therefore possible to neglect the free-flight terms of equations (2.13) which describe 
the effect on CT of the spatial displacement of the atom. Such an approximation 
introduces great simplifications in the calculations (Tanguy 1983). Equations (2.13) 
become then strictly local in r and U, i.e. they can be solved for each set { r ,  U } .  

If we suppose the detection signal insensitive to the atomic internal state, it is 
convenient to introduce the trace of the density matrix over internal variables 

F(r ,  U )  = g g g ( r ,  U )  + aeee(r, U ) .  (2.16) 

From the linearity and locality (in r and U )  of equations (2.13) (without free flight), 
it follows that the outgoing F function, F,,,(r, U ) ,  depends linearly on the incoming 
one, Fin(r, U ) ,  for each set r, U 

The ‘linear filter’ amplitude L(r,  U, T )  depends of course on the interaction time T 
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The explicit expression of L can be obtained by taking the Laplace transform of 
equations (2.13) (without free flight), which are transformed into algebraic equations. 
If 

i ( r ,  U,  s) = lom dt exp(-st)L(r, U, t )  (2.18) 

is the Laplace transform of L(r ,  U,  t ) ,  one finds that i(r, U, s)  can be written 

a r ,  U, s) = P3(s)/P4(s) (2.19) 

where P3 and P4 are polynomials of degree three and four in s with coefficients 
depending on r and U: 

P&) = 2( s +;qK ( r  + ; u ) ~ * (  r -;U) 

+(s +r) [(s +;q2 - s ( ~  +$) [ I K (  +;u)I2 + IK(r- ;~)I2]  

-i(w - wo)  [ I K ( ~ + $ u ) ~ ~  - I K ( ~ - ; u ) ~ ’ ]  (2.20) 

p4(s) = S(S  +r) [(s +$)’ + ( - + [ I K  ( r  + ; u ) / ~  - I K ( r  +)I2l2 

(2.21) 

(We have supposed that the initial internal atomic state is the ground state.) 
A few important particular cases will be considered later on. We just point out 

here that the U dependence of L(r ,  U, s) has two physical origins. First, the spatial 
dependence of the laser field, through the functions K ( r  *;U) and K*( r * + U ) .  Secondly, 
the angular properties of spontaneous emission through the function x( U), which 
actually only appears in P4(s). 

Finally, since equations (2.13), without free flight and with U = 0, reduce to the 
ordinary Bloch equations for an atom at rest in r, and since the trace of U is a constant 
of motion for these equations, it follows that Fo,,(r, 0) = Fin(r, 0), and, consequently, 
according to (2.17) 

L(r,  0, T )  = 1. (2.22) 

Actually, it can be directly checked in (2.20) and (2.21) that i ( r ,  0, s)  = l/s, which is 
the Laplace transform of 1. 

2.5. Propagator G(r, q, T )  of the Wigner function 

The Fourier transforms of Fin(r, U )  and F0,,(r, U )  with respect to U are the Wigner 
functions win( r, p )  and wOut( r, p )  describing the incoming and outgoing external states. 
From equation (2.17), it follows that 

wout(r, P) = d3q G(r,  4, T)Win(r, P - 4 )  (2.23) I 
where 

G(r, q, T ) = g  d3uL(r,  U, T) exp(-iq-ulh).  ‘i (2.24) 
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G( r, q, T )  therefore appears as the propagator, or the Green’s function, of the equation 
of motion of the Wigner function. 

From the hermiticity of r and from (2.16) and (2.3), one can show that F ( r ,  U )  = 
F*( r, -U), and consequently, from (2.17), that L( r, U, T )  = L*(r,  -U,  T ) .  It then follows 
from (2.24) that G ( r ,  q, T )  is a real function, which is, in addition, normalised in q 

r 
(2.25) 

as a consequence of (2.22). This suggests interpreting equation (2.23) by cohsidering 
that ‘an atom in r has a probability G ( r ,  q, T )  to receive a momentum q during T’ 
from the laser beam, and to have its momentum changed from p - q to p .  Actually, 
G is not a true probability, since it can take negative values, but rather a ‘quasi- 
probability’. It may also appear surprising to consider a momentum transfer in a given 
point, since such a picture seems to violate Heisenberg relations. Actually, G( r, q, T )  
is a propagator and not a representation of a physical state, so that Heisenberg relations 
do not apply in principle to such a function. The physical initial and final states are 
described by win( r, p )  and wOut( r, p )  and one can show that the reduced distributions 
in r and p 

( 2 . 2 6 ~ )  

(2 .26b)  

satisfy of course ArAp > h/2. 
The propagator G ( r ,  q, T )  will be the basic tool used in this paper. We shall 

determine in the following sections the structure of G in the limit of short (T<c T ~ )  

and long ( T  >> T ~ )  interaction times, and we try to understand the evolution of G 
between these two regimes. We first relate the experimental signal measured by the 
detector to G ( r ,  q, T )  for two extreme types of initial states. 

2.6. Expression of the detection signal for two extreme types of initial states 

Suppose first that the incoming atomic wavepacket has a width Ax along x much larger 
than the laser wavelength, and also a width Apx in px much smaller than the photon 
momentum hk 

Ax >> A Ap, << h k (2.27) 

(see however the remark at the end of this section). From now on, we will write only 
the components x and p = p x  of r and p in win and wOut, since these components are 
those which are relevant for the deflection experiment. Condition (2.27) means that 
the width of win(x ,  p )  in p around p = 0 is much smaller than the characteristic width 
of the q dependence of G ( x ,  q, T ) ,  which is of the order of hk. It follows that, for an 
initial state satisfying (2.27), (2.23) can be approximated by 

wout(x, P )  ~ ( x ,  P ,  T )  j” dq W i n ( X ,  p - 4 )  

(2.28) 
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where X i n ( x )  is the initial distribution in x (see 2 . 2 6 ~ ) .  The detector measures the 
final momentum distribution Po,,( p ) ,  which is obtained by integrating wo,,(x, p )  over 
x (see 2.26b) .  We thus get from (2 .28)  

(2 .29)  

The second type of initial state which we will consider in the following corresponds 
to a width A x  much smaller than A and, also, to a width Ap, much larger than h k  

Ax<< A Apx >> hk. (2 .30)  

These conditions correspond to a small incoming wavepacket crossing the laser wave 
in a well defined abscissa xo. One can then show that 

(2 .31)  

Since Fi,(x, U )  is the Fourier transform of win(x ,  p )  with respect to p ,  Fin(x,  U )  has a 
width in U around U = 0 much smaller than 1 /  k. The presence of Fi,(x, U )  in the right 
hand side of (2 .17)  suppresses in this case the contributions of the values of U which 
do not satisfy ku<< 1 .  For the second type of initial state ( 2 . 3 0 ) ,  it will therefore be 
possible to use an approximate value of L ( x ,  U ,  T )  corresponding to the limit ku << 1. 

Remark. We could also consider atomic beams for which A x  Ap, >> h. Suppose for 
example that the incoming atomic state is a statistical mixture of small wavepackets 
of the type (2 .30) ,  with the centres of the wavepackets distributed along Ox. The 
deflection profile of such a beam is just the statistical average of the deflection profiles 
corresponding to all the individual wavepackets. We could equivalently describe the 
atomic state as a statistical mixture of large wavepackets of the type (2 .27) ,  having 
different values of ( p , ) ,  i.e. crossing the laser beam with different angles. 

3. Short-time limit 

3.1. Structure of the propagator in the limit T<< rR 

We suppose in this section that the interaction time T is very short compared with the 
radiative lifetime T ~ ,  so that spontaneous emission can be neglected during the time 
of flight of atoms through the laser beam. It follows that we can neglect the terms 
p_roportional to r in the polynomials P3(s) and P4(s) appearing in the expression of 
L ( x ,  U ,  s) (see expressions (2 .19)  to ( 2 . 2 1 ) ) .  In particular, ~ ( u ) ,  Thich is multiplied 
by (see ( 2 . 2 1 ) ) ,  vanishes. This means that the U dependence of L is only due to the 
spatial dependence of the laser field, through the functions K and K *  appearing in 
(2 .20)  and (2 .21) .  In order to interpret the physical content of i ( x ,  U ,  s) and then of 
the propagator G ( x ,  q, T ) ,  in the limit T << rR, we consider now two important particular 
cases. 

For a resonant ( w  = wo) laser progressive wave, propagating along Ox, we have, 
according to (2 .12) ,  (2 .10)  and (2 .6) :  

K ( X )  =$al exp(ikx) ( 3 . 1 )  
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where 

w1 = - (&.d)80/h  (3.2) 

is independent of x. Inserting (3.1) into (2.20) and (2.21), neglecting the terms in r 
and using w = wo, one gets 

- s2+$w:[l +exp(iku)] 1 +exp(iku) 1 -exp(iku) 1 -exp(iku) 
L ( x ,  U, s) = - + + . (3.3) - 

s ( s2 + w :) 2s 4(s+iwl)  4(s-iwl) 

The inverse Laplace transform of (3.3) is 

L(x,  U, T )= i [ l  +exp(iku)]+i[l -exp(iku)]cos w , T  (3.4) 

so that the propagator G ( x ,  q, T ) ,  which is the Fourier transform of L(x ,  U, T )  with 
respect to U, appears to be equal to 

G ( x ,  q, T )  = cos2 tol T S(q) + sin2 iol T S (  q - Ak). (3.5) 
The physical meaning of (3.5) is very clear. The atom initially in the ground state g 
and crossing the laser beam has a probability cos2iwIT of staying in the same state 
without absorbing a laser photon, and a probability sin2 i w l  T of absorbing a laser 
photon and to get in this way a momentum hk along Ox (since spontaneous emission 
is neglected during T, only induced emission processes can take place after the atom 
has been excited, bringing back the laser-atom system in its initial state). Equation 
(3.5) describes a resonant Rabi precession between e and g, including momentum 
exchange (Luzgin 1980). For a non-resonant excitation ( w  f wo), the structure of (3.5) 
remains the same, the coefficients of the two delta functions S(q) and S(q-hk)  
corresponding to a non-resonant Rabi precession. 

For a resonant laser standing-wave propagating along Ox, we have, from (2.12), 
(2.10) and (2.7) 

K ( X ) = i R  COS kx (3.6) 
where R is still given by (3.2) and independent of x. The same calculations as above 
lead to the following expression of 

- S 
L(x,  U, s) = 

s2 +R2 sin’ kx sin2 iku 

1 + 1 
s +iR sin kx sin $ku s - iR sin kx sin iku (3.7) 

from which one deduces 

L ( x ,  U, T )  = cos(RT sin kx sin iku) (3.8) 
and 

i m  

G ( x ,  q, T )  = 1 J2,(RT sin kx)$(q - mhk) 
m=-m 

(3.9) 

where Jzm are the Bessel functions of order 2m. In the derivation of (3.9) from (3.8), 
we have used 

i m  

exp(icu sin e )  = 1 J , ( C Y )  exp(in0) 
?I=--00 

(3.10) 
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and 
J,(a) = (-1)"J,(-cu) = (-l)flJ-fl(cu)* (3.1 1 )  

For a resonant standing wave, the propagator G(x, q, T )  is therefore a comb of delta 
functions with a spacing hk. Mathematically, this comes from the fact that the laser 
amplitude is a sinusoidal function of x, so that i ( x ,  U, s)  and L(x, U, T ) ,  which depend 
on K ( X *  ;U) and K * ( X  &;U) are periodic functions of U, which can be expanded in a 
Fourier series of U, and which become by Fourier transform a comb of delta functions. 
Physically, such a structure is associated with the redistribution of photons between 
the two counterpropagating waves forming the standing wave. An atom initially in 
the ground state can absorb a photon from the wave propagating along the positive 
(or negative) direction of Ox and get in this way a momentum +hk (or - h k )  along 
Ox. Then, by a stimulated emission process induced by the counterpropagating wave, 
it can emit a photon in the opposite direction and return to the ground state with a 
momentum +2hk (or -2hk) along Ox. One understands in this way how all integer 
multiples of hk, *nhk, can be found in the transfer of momentum from the laser beam 
to the atom. Such a result can be also understood from a wave point of view, as being 
due to a 'Bragg scattering' of the incoming atomic de Broglie wave by a 'grating of 
light' associated with the laser standing wave, as in the Kapitza-Dirac effect (see Q 3.2 
below). 

Note finally that G(x, q, T )  given in (3.9) can take negative values (the Bessel 
functions J2,,, are real but not always positive). This clearly shows that G(x, q, T )  is 
a quasi-probability of momentum transfer and not a probability. We use now the 
expression (3.9) for G(x, q, T )  for calculating the physical signal POut(p)  corresponding 
to the two extreme types of initial states considered in § 2.6. This will show how the 
approach used in this paper can be applied to the discussion of two important physical 
effects observable on the deflection profile of a monoenergetic atomic beam crossing 
at right angles a resonant laser standing wave (in the limit T<< T ~ ) .  

3.2. Resonant Kapitza-Dirac effect 

We suppose first that the incoming atomic wavepacket has a width Ax along Ox much 
larger than the laser wavelength A (condition (2.27)). The final momentum distribution 
is then given by (2.29). Actually, the incoming atomic spatial distribution Xin(x) along 
Ox varies very slowly with x, and G(x, q, T )  is a periodic function of x, so that (2.29) 
can be rewritten 

PO",( PI = - dx G(x, P, TI .  (3.12) 
A r2 - A / 2  

Inserting the expression (3.9) of G into (3.12), one finally gets 

(3.13) 

which exactly coincides with the result derived by other methods (Bernhardt and Shore 
1981, Arimondo et a1 1981) for the deflection profile. Note that J i  is always positive, 
so that Pout(p) is, as expected, a true probability. The structure of Pout(p), which 
appears as a series of equally spaced discrete peaks, is similar to the structure of the 
deflection profile of a monoenergetic electron beam crossing at right angles a standing 
wave (Kapitza and Dirac 1933). In the electron case, such a structure comes from 
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stimulated Compton scattering processes induced by the two counterpropagating waves 
forming the standing wave whereas, in the atomic case, the physical processes are, as 
we have seen above, resonant absorption and stimulated emission processes. This is 
why the effect described by (3.13) is called the resonant Kapitza-Dirac effect. It has 
been recently experimentally observed on sodium atoms (Moskowitz et a1 1983). 

Remark. If the detection zone is far from the interaction one, it is necessary to 
take into account the recoil due to spontaneous emission for those atoms which leave 
the interaction zone in the excited state e. The odd teeth of the comb, which correspond 
to such a situation, are therefore broadened and reduced. 

3.3. Optical Stern and Gerlach eflect 

We consider now the opposite limit (Ax<< A )  for the incoming wavepacket (condition 
(2.30)), so that we have now to use the expression (2.31) of POut(p), where xo is the 
abscissa of the point at which the small incoming wavepacket crosses the laser standing 
wave. 

As explained above (see end of P 2.6), it is possible, when condition (2.30) is 
fulfilled, to use ku<< 1 in the expression of L(xo, U, T), i.e. replace siniku by iku in 
(3.8). This gives 

L(xo,  U ,  T )  = exp(iu6k) +$ exp(-iu6k) 

with 

6k = isZ kT sin kx, 

(3.14) 

(3.15) 

and consequently 

G(x,, 4, T ) = i [ S ( q - h S k ) + S ( q + h 6 k ) ] .  (3.16) 

Inserting (3.16) in the expression (2.31) of Pou,(p), we finally get 

Pout( p )  = ;Pi,( p - hSk) +;Pin( p +fisk). (3.17) 

We therefore predict that the incoming wavepacket is split in two parts respectively 
translated by +h6k and -h6k. The amount h6k of the translation is, according to 
(3.15), proportional to the interaction time T, and to the gradient in xo of the coupling 
parameter K ( X )  defined in (3.6). The effect described by (3.17) is the optical Stern 
and Gerlach effect and does not seem to have yet been observed. 

Remark. It might be interesting to discuss the shape of POut(p) for an incoming 
atomic state which is a statistical mixture of wavepackets of the type (2.30) (see remark 
at the end of Q 2). Each wavepacket (2.30) gives rise to two wavepackets with a splitting 
in p ,  2h6k, depending on the abscissa xo at which the wavepacket crosses the standing 
wave (see equation (3.15)). We have to calculate Po,,( p )  for each incoming wavepacket 
xo and then to average over xo. We get in this way a smooth curve, symmetric with 
respect to p = 0, and with two maxima at the extrema1 deviations *h6k, = *hsZkT/2, 
occurring for the values of xo such that sin kxo = * 1. Such a curve is somewhat similar 
to the 'quasi-classical' continuous curve represented in figure 2 of Arimondo et al 
(1981). We could also reproduce such a curve by taking a statistical mixture of 
wavepackets (2.27). Each individual wavepacket gives a comb of 6 functions centred 
around ( p , ) .  Since the dispersion of the different values of ( p , )  is much larger than 
hk, the average of the various displaced combs gives rise again to a smooth curve. 
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4. Long-time limit ( T  >> T ~ )  

We now show that the Green function G ( x ,  q, T )  tends to an asymptotic Gaussian 
limit when the interaction time T is greater than the radiative lifetime T ~ .  We then 
connect our approach with the Fokker-Planck equation often used in this situation. 
We finally obtain the shape of the deflection profile and particularly the variation of 
its width plotted against the interaction time T, 

4.1. Gaussian limit of the Green’s function 

The expression (2.19) of the Laplace transform i ( x ,  U, s )  of the linear filter amplitude 
L(x, U, T) has a rational form and can be split up in elementary fractions of the 
variable s 

The four roots si of the polynomial P4 have been supposed distinct for the sake of 
simplicity. It follows that 

4 

L(x, U, T )  = a i (x ,  U )  exp( Tsi(x,  U)). 
i = l  

(4.2) 

The real parts of the roots si are all negative. If sI is the root associated with the 
smallest damping, one gets in the long-time limit 

T >> 7 R  L(x, U, T) = al(x, U )  exp(Ts,(x, U)). (4.3) 
Now, the Green’s function G ( x ,  q, T )  is the Fourier transform of L(x,  U, T). In other 
words, L(x ,  U, T) is the first characteristic function of G ( x ,  q, T )  considered as a 
distribution (more properly a quasi-distribution) of the variable q. We will rather 
consider the second characteristic function, In L(x, U, T ) ,  which is a linear function 
of T in the long time limit as a consequence of equation (4.3) 

T >> 7 R  In L(x,  U, T )  = Ts l (x ,  U). (4.4) 

It follows that the cumulants K , ( x ,  T )  associated with the distribution G 

(4.5) 

are linear functions of T,  Such a result is easy to understand: since the correlation 
time of the radiative forces is of the order of 7R, the amounts of momentum transferred 
during different time intervals larger than T~ can be considered as independent random 
variables. It is therefore not surprising to find the cumulants K , ( x ,  T) increasing linearly 
with T (cumulants are additive in the superposition of independent random variables). 

We can now go further by applying the central limit theorem: in the limit T >> TR, 
the momentum transferred during T is the sum of many independent variables and 
becomes a Gaussian (‘normal’) variable characterised by two non-zero cumulants K~ 

and K ~ .  Mathematically, such a theorem means that the cumulants K,  of order greater 
than two (and which are proportional to T)  can be neglected when scaled to the 
dispersion of the distribution ( K ~ ) ~ / ~  
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The Green's function can therefore be approximated by a Gaussian function of q 

where K~ and K ~ ,  proportional to T, are the mean value and the variance of the 
momentum transfer for an atom located in x (as G is a quasiprobability, it might be 
more appropriate to call K~ and K~ a quasi mean value and a quasivariance). 

4.2. Connection with a Fokker-Planck equation 

Let us introduce the following notations 

K ~ ( x ,  T )  = F ( x ) T  
K2(X, T ) = 2 D ( x ) T .  (4.8) 

Expression (4.7) thus appears as the Green's function of the following Fokker-Planck 
equation 

(:+F(x)-- a 
aP 

(4.9) 

(the free-flight term is omitted in (4.9); see § 1). Our approach, based on the solution 
of the generalised optical Bloch equations (see § 2.3), is therefore equivalent in the 
long-time limit to the description by a Fokker-Planck equation. At this stage, we want 
to emphasise that the expressions obtained in our approach for K~ and K~ are in 
complete agreement with the expressions obtained by Gordon and Ashkin (1980) for 
the mean force F(x )  and the momentum diffusion coefficient D ( x )  (Tanguy 1983). 

The connection between the generalised optical Bloch equations and the Fokker- 
Planck one can be derived in a more formal manner. As a matter of fact, one deduces 
from equation (2.17) 

and from (4.5) 

(4.1 1 )  

A Fourier transform with respect to U gives the evolution of the Wigner distribution 

aT 
(4.12) 

This equation is correct for short as well as long interaction times (in so far as free 
flight can be ignored). For long interaction times, simplifications can be introduced 
as a consequence of the central limit theorem (see discussion above). First, the 
coefficients ( a ~ , / a T )  can be considered as constant (K, is proportional to T ) .  Second, 
the equation can be truncated at the second order in ( a / a q )  (the cumulants of order 
greater than two can be ignored). 
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4.3. Application to dejection projiles for Ax >> h 

Applying the preceding results to deflection profiles, we shall limit ourselves to the 
case of a monoenergetic atomic beam (i.e. A x > > , ! )  crossing a laser beam, the latter 
being a running or a standing plane wave. G ( x ,  q, T )  does not depend on x in the 
first case, and has a period of h / 2  (due to the w : ( x )  terms) in the second one. We 
can write 

(4.13) 

It is now clear that the deflection profile can be obtained by a superposition of Gaussian 
curves corresponding to equally spaced values of x each of which is centred on p ( x )  
(= T F ( x ) )  and has a width ( 2 7 ' D ( ~ ) ) ' ' ~  (see also Kazantsev et a1 1981). 

In the case of a running plane wave, F ( x )  does not depend on x, so that all curves 
are centred on the same value. We thus expect a bell-shaped deflection profile. 

The case of a standing plane wave is more interesting as it gives very different 
results according as the detuning w - wo is zero or not. The expression of F ( x )  is 

R2 sin 2kx 
r2 + 4( w - wo)2 + 2f12 cos2 kx 

F ( x ) = t i k ( o - w , )  (4.14) 

with 

fl= -d8o/h. (4.15) 

It appears that F ( x )  = 0 for w = wo. The deflection profile will thus be, in the same 
way as above, a bell-shaped curve centred on p = 0. For w # wo however, F ( x )  varies 
with x and we must add the contributions of Gaussian distributions centred on diferent 
points. 

We have sketched in figure 1 p ( x )  (= T F ( x ) )  as a function of x. The distribution 
of the p ( x i )  corresponding to equally spaced values xi of x is obviously denser in the 
neighbourhood of *pV, corresponding to the extrema of p ( x ) .  Consequently, in the 

x 

5 0  
U 

Figure 1. The distribution of the p(x,) corresponding to equally spaced values of x, is 
denser near the values *pM corresponding to the extrema of p(x). 
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construction of the deflection profile, there will be more Gaussian curves centred on 
* p M  than on any other value of p. We thus predict that for w # wo, Pout(pJ should 
exhibit a structure with two peaks near p = * p ,  (which we call a ‘rainbow structure’), 
provided that pM is greater than the widths of the Gaussian distributions we are 
summing. Such structures are studied in more details by Tanguy et a1 (1983). 

4.4. Width of the projile versus the interaction time 

The variance Ap2( T) of the momentum p in the final momentum distribution ?Po,,( p) 
can be evaluated from (4.13), (4.7) and (4.8). One finds 

(4.16) 

The first term 2L3T is the average value of the variances K~ = 2D(x)  T of the Gaussian 
contributions associated with each value of x 

Ap2( T) = 2 D T  +AF2T2. 

+ A 1 4  

6=?{ dxD(x) .  
A -A/4 

(4.17) 

The second term AF2T2 is the variance of the mean values K~ = F ( x ) T  of the same 
Gaussian contributions 

AF2 = (a dxF2(x) )  -(t{-y,TdxF(x)) . (4.18) 

When F ( x )  is independent of x, i.e. for a running wave or a resonant standing one, 
this second term vanishes and the dispersion Ap of the deflection profile varies as JT. 
On the contrary, for a non-resonant standing wave, A F 2  is non-zero (and equal to the 
first term of (4.15)) and Ap varies as T. 

Remark. Equation (4.16) could also be used for discussing the laser power depen- 
dence of the dispersion Ap of the deflection profile, which has been actually experi- 
mentally measured on a sodium beam (Arimondo et a1 1979, Viala 1982). For a 
resonant excitation, F and A F 2  are equal to zero, and according to (4.16), Ap should 
vary as (2L3T)”2, i.e. as the square root of the laser power PL, since D is proportional 
to PL at high intensities. Such a result seems to be in good agreement with experimental 
observations (see also Minogin 1981 and Kazantsev et a1 1981). 

+A/4 2 

5. Intermediate times ( T  - T ~ )  

We finally come to the domain of intermediate times ( T - T ~ )  where the Green function 
G(x, q, T) can no longer be considered as a comb of 6 functions or as a Gaussian 
function. We want to show that it has nevertheless a simple interpretation in terms of 
momentum conservation in absorption and emission processes. 

5.1. Structure of the propagator for a laser running wave 

The expression (2.19) of i ( x ,  U, s) can be written in the case of a laser running wave 
as 

* a +a’ exp(iku) 
L(x, U, s) = 

b[l - c x ( u )  exp(iku)] 
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where a, a', b and c are functions of s only 

Equation (5.1) can then be expanded into 

* CI +a' exp(iku) 
L(x, U ,  s) = f c " ( x ( u ) ) "  exp(imku). 

b m=O 

(5.2) 

(5 .3)  

A Fourier transform with respect to U gives the corresponding expansion of @x, q, s )  

&x, q, s ) =  1 ,6(q--mhk)@4'"'(q) 
O0 acm 

m = O  

+ f a"6[q-(m+l)hk]O$'"'(q) 
m = ~  b (5.4) 

where the symbol 0 represents the convolution product of two functions of q and 
4"'(q) the Fourier transform of ( ~ ( u ) ) " .  As the Fourier transform of ~ ( u )  is just 
the normalised distribution + ( q )  of the momentum transfer during a spontaneous 
emission process (see equation (2.14)), $"'(q) is the autoconvolution product of 4(q )  
of order m 

In other terms, +'"(q) is the distribution of the recoil momentum given by m 
spontaneous emission processes. 

The expression (5.4) of the propagator has thus a very clear interpretation if ( acm/ b )  
is associated with the probability for the atom starting from g to end in g after m 
spontaneous emissions (distribution of recoil +("')( q ) ) ,  the number of absorbed laser 
photons being also m (momentum transfer mttk). In a similar way, ( a ' c " / b )  has to 
be associated with the probability for the atom to end in e after m spontaneous 
emissions (distribution of recoil 4(m)( q ) ) ,  the number of absorbed laser photons being 
( m  + 1)  (momentum transfer ( m  + 1)hk). Using resonance fluorescence theory (Smir- 
nov and Troshin 1981, Reynaud 1983 and references therein), one can actually calculate 
the statistics of the number of emitted photons; the results thus obtained entirely agree 
with this interpretation. 

As the convolution product by a 6 function is only a translation, equation (5.4) 
can be written in a simpler manner 

a'cm 
&(x, q, s)  = 2 ($ +("')( q - mhk) +- 4"'[q - 

m=O b - ( m  +l)hk]).  (5.6) 

Remarks. (i) In the case of a laser running wave, the propagator G(x, q, T )  is 
actually independent of x, as it appears on equations (5.4) and (5.2). This is why it 
can be interpreted as a true probability distribution. 

(ii) It is very simple to modify the expressions obtained in this section in order to 
take into account the emission of a last fluorescence photon by the atom during its 
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free flight from the interaction zotie to the detector. The momentum transfer due to 
this spontaneous emission can actually be described by one more function 4 (4) when 
the atom leaves the interaction zone in the excited state. More precisely, equation 
(5.6) becomes 

5.2. Structure of the propagator for a laser standing wave 

In the case of a laser standing wave, the expression (2.19) of i ( x ,  U ,  s) can be written 

where a, b and c are functions of x, U and s 

a = ~ 3 ( S ) = ( S + r ) [ ( ~ + ; r ) 2 + ( ~ - w o ) 2 ]  
+ $ ~ ' [ ( s + ; r ) ( l  +cos2kx)(l  +cos ku)+i(w-wo) sin2kxsinkuI 

b = s ( s  +I-) [( s +$)' + (o - wO)']  +&04 sin' 2kx sin' ku 

+$02[2(s 1 +cos 2kx cos ku) -iT(w - wo)  sin 2kx sin ku] 

bc = r(s +$r)$a2(cos 2kx +COS k u ) .  (5.9) 

It is worth noting that a, b and c are periodic functions of U, which is not the case 
for ~ ( u ) .  The Fourier transform of ( a c " / b )  with respect to U is therefore a comb of 
S functions and the expansion of G(x, q, s) corresponding to (5.8) can be written 

(5.10) 

As in the preceding section, the function 4"'(q) (Fourier transform of ( ~ ( u ) ) " )  is 
the distribution of the recoil momentum given by m spontaneous processes. Now, the 
parenthesis (Fourier transform of acm/ b )  represents the momentum transfer associated 
with the absorption or the stimulated emission of laser photons. The quantity Rk(x, T )  
(inverse Laplace transform of d:(x, s)) thus appears as the probability for an atom 
at point x to emit m fluorescence photons during the interaction time .T and to 
redistribute photons between the two waves + k  and - k  in such a way that the 
momentum transferred in this redistribution is nhk. More properly, R",x, T )  has to 
be considered as a quasi-probability since it may be negative. When the incoming 
atomic wavepacket can be considered as a plane wave (condition ( 2 . 2 7 ) ) ,  the final 
momentum distribution POut(q) can be written (from 2.29 and 5.10) 

m=O n=-m 

with 

rI",(T)=- dx RG(x, T ) .  
A I'*" - A / 2  

(5.11) 

(5.12) 

n",T) is a true probability (as Pout(q)) and can be interpreted in a dressed-atom 
approach. The energy diagram of the atom dressed by the two types of laser photons 
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hk and -hk is sketched in figure 2.  The initial state of the dressed atom is /g, n, ,  n2) 
(atom in g in presence of n, photons hk and n, photons -hk) .  The states located on 
the same horizontal line can be populated through redistribution of photons between 
the two waves (the number of atomic plus laser excitations being conserved). Spon- 
taneous emission allows states located lower than the initial state in the energy diagram 
to be populated (through the emission of fluorescence photons represented by wavy 
arrows in figure 2 ) .  Each state of the energy diagram is labelled by two quantum 
numbers m and n ( m  for the horizontal lines, n for the vertical columns). The quantity 
I I L (  T )  is simply the probability for the atom starting from m = 0, n = 0 (labels of 
lg, n , ,  n2)) to be in the state m, n after an interaction time T. The equation (5.11) has 
thus a very clear interpretation since it expresses the conservation of the total momentum 
during the evolution of the dressed atom. 

n=-2 

U 
n : - I  

U 
n:  1 

U 

e ,  n1 I n2 -1 e , n : - l , n 2  
0 - 0 - 0 - 0 - 0  G m = O  

0 - 0 - 0 - . - .  
9,  n- , nz - 2 g , n l - l , n z - l  q , n l - 2 , n n  

G m =  1 

C . m . 2  

Figure 2. Energy diagram of the dressed atom. The states are labelled by three quantum 
numbers, g or e for the atomic state, n ,  and nz for the numbers of photons in the two laser 
modes, or equivalently by the two quantum numbers n and m describing their position in 
the diagram. The horizontal arrows are associated with the coherent redistribution of 
photons between the two waves (variation of n )  whereas the vertical wavy arrows are 
associated with spontaneous emission (variation of m ) .  

Remark. The final state of the atom is e when n + m is an odd number. One can 
therefore take into account the free flight of the atom from the interaction zone to the 
detector by adding one function 4(q)  in the terms of (5.10) or (5.11) for which n + m  
is odd. 
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