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Abstract. We present a fully quantum mechanical calculation of the higher order 
terms in the Bloch-Siegert shift. Contrary to Cheng and Stehle’s QED calculation, our 
results are in complete agreement with those of semi-classical approaches, as can be 
expected in the RF domain. 

Several papers have recently been devoted to the calculation of higher order terms 
appearing in the expression of the Bloch-Siegert shift. This renewal of interest has 
been stimulated by an article of Chang and Stehle (1971) who derive the shift from a 
quantum electrodynamics calculation. 

The expression obtained by Chang and Stehle is in complete disagreement with the 
results of several other theoretical approaches : Shirley’s theory (1965), using Floquet 
states, Pegg and Series’ treatment (1970, 1973, see also Pegg 1973), based on appro- 
priate changes of reference frames, Stenholm’s calculations (1972), leading to continued 
fractions. 

One could think that the origin of the discrepancy lies in the difference of treatment 
of the RF field, which is described quantum mechanically in Chang and Stehle’s theory, 
classically in the others. We present in this note a simple calculation of the higher 
order terms in the Bloch-Siegert shift, using a quantum description of the RF field 
(‘dressed’ atom theory : see Cohen-Tannoudji 1968, Haroche 197 l), and giving results 
in complete agreement with those of the semiclassical approaches. This is not sur- 
prising: in the KF domain, the average number of photons is very large, so that the pure 
quantum effects are negligible. 

To calculate the Bloch-Siegert shift up to sixth order we use the formalism and the 
notations of Haroche (1971). The eigenstates of the unperturbed hamiltonian : 

Ho = w J z + w a + u  (1) 
are the states 1 k, n ), of energy ri: 4 2  + n w ,  represented by the dotted lines of figure 1 
(I & ) are the states of the spin in J the static field Bo parallel to Oz, wo is the Larmor 
frequency in Bo, n is the number of RF quanta of frequency w ,  U + and a are the creation 
and annihilation operators of a RF photon). The RF field has a linear polarization, 
parallel to Ox, and its coupling with the spin is described by: 

x 
2 

HI = -(J+ +J-) (a+ +a). 

H ,  perturbs the energy levels and leads to the diagram represented by the full lines of 
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figure 1 ; n is very large, and it may be shown that the coupling constant h of equation 
(2) is related to the Larmor frequency w1 associated to the classical RF field amplitude 
by: 

t 

Figure 1. Energy levels of the system 'spin+RF photons'. 

The various magnetic resonances observable on the spin correspond to  the 'anti- 
crossings' and 'crossings' appearing on figure 1. Particularly, it may be shown that the 
centre of the resonance we are interested in, is given by the abscissa of the points A, 
and Az where the energy levels of figure 1 have a zero slope (centre of the first anti- 
crossing). 

Let us call l a )  = 1 +, n )  and Ib) = j -, n + l >  the two unperturbed levels corres- 
ponding to this anticrossing. The perturbed energy levels are exactly given by the 
implicit equation : 

[E-E, -&,(E, wo)I[E-Eb -&b(E,Wo)] - l&b(E,Wo) 1' = 0 (4) 
where E, = i w 0 ,  Eb = w - $ w ,  (substracting the constant nw to every energy), 

with P = l a ) ( a /  + I b ) ( b / ,  P+Q = 1. R,, contains only one term, and does not 
depend on E and w 0 :  

Rab = &h2/n = $al. 

Equation (4) then becomes : 
( 5 )  
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Solving this equation for every value of wo, one gets E as a function of wo, ie the shape 
of the curve of figure 1. The extrema of the function E = E(wo) give the position of the 
centre of the resonance. 

Differentiating equation (6) with respect to wo and putting dE/dwo = 0, one gets: 

The two coordinates E and wo of an extremum are solutions of the system of two 
equations (6) and (7). After some algebra, equations(6)and(7) are found to be equiva- 
lent to the following rigorous system : 

where 

Equations (8) and (9) give the coordinates of A,. Those of A2 are obtained by changing 
Q into -Q. But symmetry considerations show that A, and A2 have the same 
abscissa. 

In  order to obtain wo up to sixth order, we need the expression of R,, and R,, to 
the same order. I t  is then easy to  solve equations (8) and (9) by iteration. We finally 
get: 

1 5 61 
w 4w3 32w5 

WO = w --($w1)2--(&)4 - - ( ~ W , ) ~ .  

In  order to  compare with Shirley’s formula, which gives w as a function of wo, we 
need to  inverse equation (11). Taking Shirley’s notations (b  instead of &ol), we 
obtain : 

b2 1 b4 35 b6 
w0 4 w O 3  3 2 w O 5 ’  

------ 

This result exactly coincides with Shirley’s expansion, and also with Pegg and Series’ 
result. 

Note that an experimental test of the higher order terms of expression (11) is not 
easy: when w1 increases, the resonance is not only shifted, but also broadened and 
distorted, so that a precise determination of its centre becomes difficult. 

Other kinds of magnetic resonance exist which are easier to study experimentally. 
We will show in the following letter how they can be used to check the theory given 
above. 
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