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Abstract. We present an experimental check of the method used in the preceding 
note for calculating higher order radiative shifts of magnetic resonances. Although 
indirect, this check is conclusive as regards the validity of the method. 

The method described in the preceding note (later referred to as note I) for calculating 
the higher order terms of the Bloch-Siegert shift applies to all types of magnetic 
resonances. Among these, ‘coherence’ resonances are the most interesting for a 
precise check of the higher order calculations, as they are shifted without being 
broadened appreciably when the RF power is increased over a large range. 

Coherence resonances appear in transverse optical pumping experiments and for 
various polarizations of the RF field ( 0  + : Dodd et uZ 1963; n :  Favre and Geneux 1964; 
0 :  Cohen-Tannoudji and Haroche 1965). In the ‘dressed atom’ formalism (Cohen- 
Tannoudji 1968, Haroche 1971), they are interpreted as ‘level crossing’ resonances of 
the dressed atom. For example, the energy diagram represented in note I (figure 1) and 
corresponding to a 0 polarization of the RF field (linear and perpendicular to the 
static field), exhibits a level crossing (point C) for wo M 2 w ;  the abscissa of C gives the 
centre of the corresponding coherence resonance. We present in this note a calculation 
of the abscissa of C and an experimental test of these results. 

The perturbed levels originating from the levels [ a  ) = 1 + , n ) and 1 c ) = 1 - , n + 2 ) 
(energies E, = Qwo+nw and E, = - f r o o + ( n + 2 ) w )  cross at point C .  Since l a )  and 
I C  j are riot coupled by HI to any order, the energy of the two levels is exactly given by 
two distinct implicit equations: 
for i n ) :  

E -  E, - R,,’(E, WO) = 0 (1) 
where 

Qa 
m 

R’ = P,HIP,+ 2 P,H, (-Hl)nPa 
n= 1 E- Ho 

with 
Pa = la ) (a l  andP,+Q, = 1 

forlc) : 

E - E, - R,,”(E,wo) = 0 

with similar notations. 
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Symmetry arguments show that the ordinate of the crossing point is independent of 
the coupling intensity, and is therefore equal to (n+ 1)w. Hence, the only unknown 
parameter is the abscissa w,, of the crossing, which is given by equation (I) ,  with the 
value (n  + 1)w for E.  One gets: 

W O  = 2w-2Ra,' ( E  = ( 7 ~ + 1 ) ~ , ~ 0 ) .  (3) 
When the coupling parameter w1 (see equation (3) of note I) is small compared to w ,  
we can obtain an approximation of the shift by solving equation (3) by iteration. The 
solution up to sixth order is found to  be: 

I I I , I I ,  
I 2 3 5 6 

4 2  
(U,  i o )  

Figure 1. Position of the coherence resonance as a function of the RF intensity 
(measured by ( u ~ / u ) ~ ) .  The experimental points have been obtained on 87Rb. Curve 
A represents the lowest order approximation for the shift; curve B includes the next 
corrections up to sixth order; curve C is obtained from an approximation valid for 
U I / W  N 2.4. 

The corresponding curve is noted B on figure 1 of this paper (the straight line noted A 
is given by the lowest order calculation of the shift: wo = 2w - w I 2 / 6 w ) .  When w1 

increases, the centre of the resonance gets nearer and nearer to  wo = 0. It can be shown 
(Haroche 1971) that the resonance disappears at wo = 0, when the g-factor of the 
dressed atoms cancels: (the energy levels starting from the point: wo = 0, E = (n + 1)w 
of figure 1 of note I become tangent at  this point). This situation occurs when w l / w  
reaches the value corresponding to the first zero of the zeroth order Bessel function 
Jo, ie when w l / w  = 2.405. (The single photon resonance also vanishes for that value 
of w J w ) .  In the neighbourhood of this value, we can treat the Zeeman term woJ, as 
a perturbation with respect to the remaining part of the hamiltoiiian : 

wa +a +$A(a + a +)(J+ +.I-). 

The shape of the energy levels is then given by: (Landr6 1970a). 
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4 p a n d  q # n  

J n  - p J q -  p J q  - n JO Jp') s= - +- * 

The position of the crossing is then given by: 

which gives, at the lowest order in wl/w - 2405 : 

The corresponding curve is noted C on the figure 1 of this note. 
Hence, in addition to the sixth order expansion of the shift we have obtained an 

approximate expression for the position of the resonance when the shift reaches its 
maximum value. 

Using the experimental method described by Cohen-Tannoudji and Haroche 
(1965), we have remeasured with great precision the position of the coherence reso- 
nance described above (we used *%b atoms instead of lg9Hg; the RF field frequency 
w/2n was equal to  399 Hz). The points of figure 1 represent the experimental results. 

The deviation from the lowest order approximation (curve A) clearly appears. This 
deviation is correctly represented by the sixth order expansion (curve B) up to W , / W  z 2. 
For larger values of WJW, the higher order terms become important and the experi- 
mental points progressively meet the theoretical curve C. Because of the broadening of 
the resonance, the precision decreases in this region. Note however that it is possible to 
follow the resonance practically over all its domain of existence. For the ordinary 
one-quantum resonance (which has the same domain of existence), the Q-factor of the 
resonance decreases much more rapidly and becomes too small to allow a measure- 
ment of the position for W J W  greater than 1. 

We have shown how to compute quantum mechanically, to a given order, the shift 
of various types of magnetic resonances. In this formalism, the calculations appear t o  
be quite simple, as they reduce to solving by iteration one or two implicit equations 
given by a time-independant perturbation theory. 

Our quantum treatment of the interaction between a spin and a RF field gives results 
in complete agreement with the experimental data, even at high orders. Incidentally, it 
may be reminded that the eigen-frequencies of the system : 'atom + RF field'have already 
been checked with a great precision (Landrk 1970b) ; these experiments represent 
another accurate test of the theory. 

We must again insist on the fact that the results of a quantum theory will always be 
in agreement with those of a semi-classical theory in the RF domain. 

The authors are grateful to Professor G W Series for helpful correspondence 
and conversation, in particular for correcting an error in the evaluation of equation (6) .  
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