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Analysis of Photoassociation Spectra for Giant Helium Dimers.
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We perform a theoretical analysis to interpret the spectra of purely long-range helium dimers pro-
duced by photoassociation (PA) in an ultra-cold gas of metastable helium atoms. The experimental
spectrum obtained with the PA laser tuned closed to the 23

S1 ս 23
P0 atomic line has been reported

in a previous Letter. Here, we first focus on the corrections to be applied to the measured resonance
frequencies in order to infer the molecular binding energies. We then present a calculation of the
vibrational spectra for the purely long-range molecular states, using adiabatic potentials obtained
from perturbation theory. With retardation effects taken into account, the agreement between ex-
perimental and theoretical determinations of the spectrum for the 0+

u purely long-range potential
well is very good. The results yield a determination of the lifetime of the 23

P atomic state.

PACS numbers: 34.20.Cf, 32.80.Pj, 34.50.Gb

I. INTRODUCTION

Photoassociation (PA) spectroscopy is a powerful tech-
nique for acquiring information about the collisional
properties of laser-cooled atoms. It has revealed a rich
array of high-resolution spectroscopic data for alkali di-
atomic molecules [1] and provided a means of testing
calculations of molecular dynamics. It has also led to
good estimates of the s-wave scattering length [2, 3] that
determines the behavior of ultra-cold dilute gases near
quantum degeneracy.

The case of 4He atoms in the metastable 23S1 state
(He∗) is distinctive in that each atom carries a large
internal energy of 20 eV. Photoassociation experiments
with He∗ were first demonstrated by Herschbach et al.
with atoms trapped in a magneto-optical trap (MOT)
[4]. However, the quantitative study of pair interactions
has still to be completed. In particular, although Bose
Einstein Condensation (BEC) has been achieved in He∗

[5, 6], the scattering length remains uncertain. What is
more, the accurate investigation of collisional properties
[7] and of the dynamical behavior [8] of the ultra-cold He∗

gas suffers from the uncertainty in the scattering length.
In order to extract quantitative information from PA
spectroscopy we have performed a new PA experiment
starting from a magnetically trapped and evaporatively
cooled metastable helium gas. We have thereby achieved
greater state selectivity, higher density, and lower tem-
perature than were obtained previously [4].

As a preliminary step toward the characterization of
pair interactions, we have reported [9] the observation of
purely long-range helium dimers produced by photoas-
sociation of metastable helium atoms, with the PA laser
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institute, University of Twente, Netherlands.
‡Permanent address: Calvin College, Grand Rapids, MI, USA.
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tuned close to the 23S1 ս 23P0 atomic line (see Figure
1). The novelty of these dimers is that they are pro-
duced from two highly excited atoms and therefore carry
a huge internal energy of 40 eV. However, whereas one
might expect the molecules to decay through autoioniza-
tion, the primary decay mechanism is radiative. This fact
allowed us to develop an original, “calorimetric” detec-
tion method based on the strong heating of the atomic
cloud at resonant PA frequencies. Our preliminary model
for the heating accounts for the conversion of a decaying
molecule’s vibrational kinetic energy into additional ther-
mal energy within the cloud. Autoionization appears to
have a negligible effect, probably because the inner turn-
ing points for these giant dimers are so far apart (around
150 bohr radii). Ionization is unlikely at such distances,
so it is not surprising that these molecular states have
not been observed with the ion detectors used in MOT
experiments [4].

The present paper is meant to provide a theoretical
complement to reference [9], which focused primarily on
experimental methods and results. Because 4He has no
hyperfine structure, the theoretical approach is relatively
simple as compared with alkali systems. Thus, giant he-
lium dimers present an interesting case study, and we
have attempted to emphasize important physical con-
cepts in somewhat of a tutorial approach. In particu-
lar, a perturbative description of the electronic poten-
tials is given, which provides a physical understanding of
the formation of these molecules. Then, with a single-
channel adiabatic calculation of the effective molecular
potentials we find purely long-range spectra that are in
excellent agreement with those computed in [28] by more
sophisticated techniques.

In Section II, after a brief review of the experiment, we
relate the molecular binding energy to the measured reso-
nance frequency by subtracting shifts due to the magnetic
trapping potential and the non-zero temperature of the
atomic cloud. In particular, the free-bound character of
the transitions leads to temperature-induced shifts which
do not exist in the case of bound-bound transitions. Sec-
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FIG. 1: a) Illustration of the principle of a photoassociation (PA)
experiment. A free pair of metastable atoms is resonantly excited
into a purely long-range 0+

u molecular bound state. The potential
curve for the 5Σ+

g state is the one given by [10], the 0+
u is the one

obtained by the calculation described in the text. Note the change
in energy and length scales between the 5Σ+

g and the purely long-

range 0+
u potential wells.

tion III describes the calculation of the long-range part of
the 23S - 23P molecular interaction potentials, as well as
the theoretical values for the binding energies of the gi-
ant dimers. Our perturbative approach shows how purely
long-range potential wells arise from the competition be-
tween the dipole-dipole interaction and the atomic fine
structure. Finally, we compare both the experimental
and theoretical determinations of the binding energies.
With its high accuracy, the experiment provides a clear
illustration of retardation effects in the electromagnetic
interaction and of tiny corrections due to the vibration-
induced coupling between electronic and nuclear degrees
of freedom. Moreover, it yields a measurement of the ra-
diative decay rate Γ of the atomic excited state 23P with
an accuracy of 0.2%.

II. DERIVING THE BINDING ENERGIES

FROM PA MEASUREMENTS

A. Acquisition of PA spectra

We perform PA experiments with a cold metastable he-
lium gas confined in a magnetic trap. The atomic cloud
is cooled by RF-induced evaporation to a temperature in
the ̅K range, just above the BEC transition [11]. The
cloud is illuminated for a short period (0.1 to 10 ms)
by a low-intensity PA laser beam and then allowed to
thermalize for a few hundred ms. It is subsequently re-
leased and then detected optically after a few-ms expan-
sion time. Giant helium dimers are produced when a free
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FIG. 2: Detection of the resonant formation of giant dimers in the
v = 4 vibrational state of the 0+

u potential well. After the PA laser
pulse and further thermalization, the remaining atoms are detected
optically: a) atom number, b) temperature in ̅K and c) peak
optical density versus the PA laser detuning from the atomic D0

line. Each point represents a new evaporated cloud after PA pulse
illumination, thermalization and ballistic expansion. The curves
in graphs a) and c) indicate the averaging of data over 5 adjacent
points. The curve in graph b) is a Lorentzian fit to the data with a
width of 2.8 MHz. Strong heating of the atomic cloud is observed
when the PA laser is resonant with a molecular transition.

(unbound) pair of cold atoms absorbs a PA photon and
is excited into a bound state of the purely long-range
potential. This free-bound transition occurs when the
PA laser is tuned red of the 23S1 ս 23P0 (D0) atomic
line (see Figure 1). Several resonance lines appear in
the recorded temperature data, indicating that the for-
mation of transient molecules results in the deposition of
energy in the surrounding atomic cloud. Figure 2 illus-
trates the typical data obtained when we tune the PA
laser in the vicinity of a bound state in the 0+

u potential
well. Although few atoms are lost (Figure 2-a), a strong
increase in temperature (Figure 2-b) and consequently a
strong decrease in peak optical density (Figure 2-c) are
monitored. Since the cloud is very cold (typically 5̅K),
the excitation of relatively few molecules is enough to
cause significant heating. Thus, the atomic cloud serves
as a sensitive calorimeter capable of detecting the posi-
tion of the molecular lines with an accuracy of 0.5 MHz.
The quantitative study of the heating mechanism is in
progress and will be published in a separate paper.

B. Discussion of the various line shift mechanisms

Acquiring experimental spectra consists in measuring
the PA laser detunings at which molecular lines are reso-
nantly excited in the magnetically trapped atomic cloud.
For an accurate interpretation of the data, we need to
take into account the correct lineshape function, which
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may include shifts and/or asymmetric broadening due to
various mechanisms. We do so on the basis of the follow-
ing calculation of the molecular binding energy, which
emerges straightforwardly from the conservation of en-
ergy and momentum.

1. Conservation of energy for a free-bound transition

The energy Ei of a pair of trapped atoms in the initial
unbound state can be written:

Ei(~r1, ~r2, ~P , ~prel) =
~P 2

4m
+

~p 2
rel

m
− ~̅ ⋅

(

~B(~r1) + ~B(~r2)
)

,

(1)

where m is the mass of the He atom, ~P = ~p1 + ~p2 is
the momentum of the pair’s center of mass, ~prel = (~p1 −
~p2)/2 is the relative momentum, ~B(~r1) and ~B(~r2) are the
magnetic field at the location of each atom, and ~̅ is the
magnetic dipole moment of an atom in the 23S1 state
(the Landé factor being 2, we define ̅ = −2̅B , with the
Bohr magneton ̅B < 0). In expression (1), we neglect
any interaction energy between the two atoms. This will
be justified below.

After the pair of atoms absorbs a photon with momen-

tum ~~k and frequency ̆L, the binding energy hb < 0 of
the resulting molecule can be inferred from the conserva-
tion law for energy and momentum:

Ei(~r1, ~r2, ~P , ~prel) + h̆L =
~P 2

M

4m
+ h(̆0 + b) (2)

with ~P + ~~k = ~PM ,

where ~PM is the final momentum of the molecule and h̆0

is the energy of the D0 line (for an isolated atom in a zero
magnetic field). The difference between the molecular
binding energy and the PA laser detuning ˽ = ̆L−̆0 < 0
is thus given by:

h(b − ˽) = −~~k ⋅
~P

2m
− ~

2k2

4m

−~̅ ⋅
(

~B(~r1) + ~B(~r2)
)

+
~p 2

rel

m
, (3)

Any dependence of the molecular level energy on the
magnetic field (Zeeman effect) or on the density (mean
field interaction of the molecule with the surrounding
atomic and/or molecular cloud) is a priori included in
b, which may therefore also depend on the position of
the molecule.

Note that the relative kinetic energy term ~p 2
rel/m in

Equation (3) would not appear in the case of a bound-
bound transition, since it would be implicitly included
in the initial binding energy. As it is always positive, it
contributes an asymmetric lineshape, and consequently
a mean shift [12]. Also, the harmonic magnetic trapping
potential contains quadratic terms which contribute to
the inhomogeneous, asymmetric broadening and shift of

the lines. However, the temperature is low enough that
the asymmetric broadening terms remain much smaller
than the natural lorentzian width. Thus, the only effect
is a shift of the peak position of the lines, which can be
calculated by averaging Equation (3) over the distribu-
tion function for the initial pair of free atoms.

2. Initial distribution function of the free pair

The distribution function for the pairs that undergo
the PA transition is the thermal distribution for a pair
of trapped atoms multiplied by the transition probabil-
ity. According to the Franck-Condon overlap principle,
the latter is proportional to the square of the overlap be-
tween the initial and final radial wave functions. Since
the excited state is a bound state, the overlap is peaked
at the Condon radius RC close to the classical outer
turning point. According to Table II in Section III,
the transition occurs mainly for an internuclear distance
RC = ||~r1 − ~r2|| . 50 nm, which is much smaller than
the size of the atomic cloud (∼ 100 ̅m at T ∼ 10 ̅K).
This allows us to use the approximation ~r1 ≃ ~r2 ≃ ~r
in Equations (1) and (3), where ~r is the center of mass
of the pair. Furthermore, because the temperature is
so low, the collision between two atoms occurs in the
s-wave scattering regime, for which the relative angular
momentum ~prel = ~~q has no component orthogonal to
the internuclear axis. Thus, the vectorial character of
~prel can be ignored, since there is only one degree of free-
dom for the relative motion of the colliding atoms. For
internuclear distances R close to RC , the radial part u(R)
of the ground state wave function can be approximated
as u(R) ∝ sin(q(R − a)) ∝ q since qRC ≪ 1 (with a
representing the s-wave scattering length; see e.g. [1]).
Finally, the distribution function for a pair of trapped
atoms in the s-wave scattering regime absorbing a PA
photon is found to be proportional to:

q2˽(~r1 − ~r2) · exp(−Ei(~r1, ~r2, ~P , q)/kBT ) . (4)

3. Mean frequency shifts

i)Average over the center-of-mass momentum.

The first term in the right-hand side of Equation (3)
is responsible for the Doppler profile. It produces no
average shift, since there is a priori no correlation be-
tween the momenta of the two atoms and of the photon:

〈~k. ~P 〉 = 0. However, it is responsible for a symmetric

broadening of the lines, which scales like
√

T (T , the
temperature of the cold gas). In the microK range of
temperature, this Doppler broadening turns out to be
small compared with the natural lifetime broadening of
the molecular states probed.

The second term in Equation (3) is the recoil energy
of the molecule after absorbing the photon. In units of
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h, its numerical value is ∼ 21 kHz, which is well below
our experimental accuracy. Therefore we neglect the
corresponding shift.

ii) Average over the center of mass position.

Using expression (4), the average over the positions ~r1

and ~r2 turns out to be an average over the position ~r of
the center of mass of the pair. The shift induced by the
external trapping potential is thus calculated to be:

〈

−~̅ ⋅
(

~B(~r1) + ~B(~r2)
)〉

= 2̅B0 +
3

2
kBT, (5)

where 2̅B0 is twice the Zeeman shift of one atom at
the center of the trap, and 3kBT/2 is the average of
the harmonic trapping potential energy, according to the
equipartition theorem for quadratic energy terms.

As already noted, the binding energy hb a priori also
depends on the center of mass position, and should
therefore be averaged as well. However, we neglect
this position dependence, since the effect of both the
inhomogeneous magnetic field (molecular Zeeman effect)
and density (atom-molecule interaction) turn out to
be small compared with our experimental accuracy, as
discussed below.

iii) Average over the relative momentum.

Making use of expression (4), we find the average of
the relative kinetic energy term:

〈

~
2q2

m

〉

=

∫

~
2q2

m q2 exp(− ~
2q2

mkBT ) dq
∫

q2 exp(− ~2q2

mkBT ) dq
=

3

2
kBT, (6)

where the denominator normalizes the distribution func-
tion. Let us mention that while there is only one degree
of freedom for the relative momentum (in the s-wave
scattering regime), our inclusion of the pair distribution
function leads us coincidentally to the same 3kBT/2 that
one finds when treating three classical degrees of freedom.

iv) Other shift mechanisms.

The mean-field interaction due to the surrounding
medium on both the initial and final states of the transi-
tion can cause density-dependent shifts of the lines. As
far as the initial pair of free atoms is concerned, the mean
field interaction energy is 4̉~

2·na/m, where the atomic
density n < 1014 cm−3, the s-wave scattering length
a < 20 nm [5, 6], and m ∼ 6.68 · 10−27 kg. In units
of h, the upper bound for this mean-field interaction is
less than ∼ 60 kHz, which is below our experimental ac-
curacy and therefore negligible. The mean field energy
shift of the final molecular state, which would appear
as a density-dependent term in the experimental binding
energy, has not been detected experimentally.

Finally, light-induced line shifts are completely neg-
ligible, since the spectra were measured with PA laser

intensities well below the atomic saturation intensity.

v) Summary.

In our experiment, each molecular line produces a res-
onant increase in temperature as a function of PA detun-
ing ˽. Each resonance line is fit by a Lorentzian. The
fit’s center frequency ˽v is taken to be the resonant fre-
quency for excitation to vibrational level v. Accounting
for the corrections described above, we infer the molec-
ular binding energy hbv of this vibrational level to be:

hbv ≃ h˽v + 2̅B0 + 3kBT. (7)

C. Experimental checks for the lineshifts

We have measured ˽v, B0 and T for the lines v = 0
through v = 4 in the 0+

u potential well, for B0 = 0.1 to
∼ 10 Gauss and for T = 1.5 to 30 ̅K. The temperature
of the gas was varied by changing the final RF frequency
of the evaporation ramp above the critical temperature.
Consequently, the atomic density was also varied from
n ∼ 0.5 · 1013 to ∼ 8 · 1013 at/cm3.

In Equation 7 the most important correction is due to
B0. Figure 3 shows the dependence on B0 of the mea-
sured detuning ˽v of the v = 3 line, after it is corrected
for the temperature-induced effect (3kBT ). If the mag-
netic field is measured in units of ̅B0, a linear fit to
the data gives a slope of −2.02 � 0.02. Given Equation
(7), the contribution of the initial pair of free cold atoms
(the “ground” state), should be exactly −2̅B0. A devi-
ation from this value could be attributed to the contribu-
tion of the mean Zeeman effect of the molecular bound
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FIG. 3: Experimental determination of the binding energy in the
0+

u potential well for the vibrational level v = 3: illustration of the
dependence of the measured detuning ˽v on the magnetic field B0,
after correction from the temperature-induced shift (see Equation
(7)). The slope of the linear fit is compatible with the expected
dependence in B0 (see in the text).
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(“excited”) state. As the 0+
u electronic state is non de-

generate, the molecule cannot have any magnetic dipole
moment except one induced by the molecular rotation,
which is expected to be of the order of the nuclear mag-
neton, or about three orders of magnitude smaller than
̅B . Given the experimental accuracy and the range of
magnetic field explored, the correspondingly small Zee-
man effect would be difficult to measure. But our data
permit us to set an upper bound of 0.02 ̅ = 0.04 |̅B |
on the molecular magnetic dipole moment. This result
justifies neglecting the molecular Zeeman effect in the
calculation of the mean line shifts.

Figure 4 displays the measured position of the v = 4
line, corrected for the magnetically-induced shift (2̅B0),
as function of the atomic cloud density. Data with (cir-
cles) and without (squares) the additional temperature-
dependent correction are shown. The uncorrected data
has been displayed in order to illustrate the importance of
the temperature effect (up to 2 MHz at ∼ 30 ̅K) as com-
pared to the experimental accuray (0.5 MHz). For this
set of data, the density was increased simply by further
evaporative cooling of the gas. Thus, higher density is
associated with lower temperature, and the temperature-
induced shift indicated by the squares nearly vanishes for
large density. It should be noted here that the size of the
molecules (917 a0 ∼ 50 nm, see Table II) is not vanish-
ingly small compared with mean inter-atomic distance in
the cloud (∼ 260 nm at 6 · 1013 at/cm3). Under these
conditions, one might expect to find a density- depen-
dent shift due to the mean field interaction between the
molecule and the surrounding atomic medium. However,
no such shift is evident in our data after we apply the
corrections for temperature and magnetic field. The er-

� �� ���� �� ���� �� �������	�� �
	�� �
	�� ��	�� ��	�
ν=4����� ������� ������� δ

��� µ

 !"�#$ %&'(
)*+,

FIG. 4: Experimental determination of the binding energies in
the 0+

u potential well: illustration, in the case of the vibrational
level v = 4, of the dependence of the measured detuning ˽v on
the temperature and on the density, after correction from the
magnetically-induced shift (see Equation (7)). Data are displayed
before (squares) and after (circles) applying the temperature-
dependent correction. Error bars include uncertainty in the mea-
surements of ˽, B0, and T .

ror bars include experimental uncertainty in ˽, B0 and T .
Additional scatter of about 0.3 MHz can be attributed to
the uncertainty in the PA laser frequency lock. We have
studied the stability of the experiment and the possible
sources of systematic error in all achievable parameter
ranges (accumulating many more data than are shown in
Figure 4). We conclude that the binding energy for v = 4
is −18.2 � 0.5 MHz, in units of h.

Finally, from Figure 4 and from the 0.5 MHz uncer-
tainty, we can infer that the density-induced energy shift
of the molecules must be smaller than ∼ 100 kHz per
1013 cm−3 of density. Actually, the atomic Bose gas sur-
rounding the molecule is near resonance and therefore
has a permittivity that differs from the vacuum value.
For an ideally homogeneous medium, the permittivity
would enter in the resonant dipole potential [13], leading
to a density-dependent term in the binding energy which
would be at least a factor two above our upper bound.
Since we do not detect this effect, we conclude our gas
can not be considered as an homogeneous medium on the
size scale of a molecule. This point may deliver important
information about the three-particle correlation function
in the atomic gas and would require further study, but it
has not been investigated so far.

Similar data were registered for the other vibrational
lines that we were able to measure. The experimental
results for the binding energies are reported in Table I,
Section III.

III. RO-VIBRATIONAL STRUCTURE OF THE

GIANT DIMERS

In order to interpret the measurements described
above, we now develop the calculation of the long-range
interaction of one atom in the 23S1 state, and another
one in the 23PJ=0,1,2 state. It happens that some of the
resulting potential energy curves have minima at very
large internuclear distance and support purely long-range
bound states. In particular, the calculated spectrum of
five vibrational states in the 0+

u potential will be shown
to be in excellent agreement with our measurements.

A. Electronic potential curves for the 23
S + 23

P

system with fixed nuclei

1. Hamiltonian

The general task for calculating molecular potentials in
4He consists in solving the following Schrödinger equation
[14]:

Ĥ|̑α〉 = ( T̂n + T̂e + V̂ + Ĥrel )|̑α〉 = Eα|̑α〉 (8)

where T̂n =
2

∑

k=1

p̂
2
k

2M
, T̂e =

4
∑

i=1

p̂
2
i

2m
,

and V̂ = V̂ (r̂k, r̂i) , Ĥrel = Ĥrel(r̂i, ŝi).



6

Here, |̑α〉 is a stationary solution corresponding to a set
of quantum numbers {˺} to be detailed later. The hamil-
tonian written above appears as the sum of four terms
T̂n, T̂e, V̂ and Ĥrel which represent respectively the ki-
netic energy of the two nuclei, the kinetic energy of the
four electrons, the non relativistic interaction between
the six charged particles, and the relativistic part of the
hamiltonian. This operator is written as function of the
positions of the nuclei r̂k, and of the electrons r̂i, and as
function of the spin coordinates ŝi of the four electrons.
The 4He nuclei have no spin. To solve this very com-
plicated problem, we adopt a perturbative approach, in
which we consider the internuclear distance large enough
that the interaction potential V̂ can be treated as a per-
turbation of the system of two independent atoms A and
B. Thus the hamiltonian (8) is approximated as follows:

Ĥ = T̂n + Ĥ0(A) + Ĥ0(B) + Ĥfs(A) + Ĥfs(B) + Û(R)(9)

where Ĥ0 and Ĥfs are respectively the non-relativistic
and relativistic part of the hamiltonian for one isolated
atom, and Û(R) stands for the long-range electrostatic
interaction between the two atoms, whose leading term
is the retarded dipole-dipole interaction.

To describe long-range molecular interactions, we ex-
pand the molecular state in linear combinations of (en-
tangled) atomic states (LCAO approximation). More-
over, according to the usual Born-Oppenheimer approx-
imation we first consider only the electronic degrees of
freedom while keeping the nuclei (more precisely, the
atomic centers of mass) fixed. We then treat both the
dipole-dipole interaction and the atomic fine structure
as perturbations of the non-relativistic hamiltonian for
two independent atoms. We write the two interactions
in the basis set of states formed by the tensorial prod-
uct of isolated non relativistic atomic states: {|atom A :
LA,MLA;SA,MSA〉 ⊗ |atom B : LB ,MLB ;SB ,MSB〉}.
Considering one atomic orbital in the 23S state and an-
other one in the 23P state, the space of states is of dimen-
sion 54. As the two nuclei are identical, the hamiltonian
is unchanged under the inversion Îe of all the electrons
with respect to the center of mass [15]. The operator Îe

commutes with the hamiltonian (9) and has two eigen-
values ̒ = �1 with eigenstates labeled gerade (g) and
ungerade (u) respectively.

2. Retarded dipole-dipole interaction

The dipole-dipole interaction Û(R), first, only couples
the orbital angular momenta of the two independent non-
relativistic atoms. It is diagonal in the Hund’s case (a)
basis set labelled |2S+1Λu/g〉 (see e.g. [15, 16]). These

states can be written as follows in the atomic basis:

|2S+1Λu/g〉 =
1√
2

( 1 + ̒Îe )|A : 0, 0;B : 1,ML〉 ⊗ |S,MS〉

=
1√
2
(|A : 0, 0;B : 1,ML〉 − ̒(−1)S |A : 1,ML;B : 0, 0〉)

⊗|S,MS〉.

Here, S is the total electronic spin of the molecule (S =0,
1 or 2), Λ is the projection onto the molecular axis of
the electronic orbital angular momentum of the molecule.
In the Hund’s case (a) basis, the retarded dipole-dipole
interaction is respectively given by [16, 17]:

−2̒(−1)SC3/R3 · (cos(kR) + kR sin(kR)) , (10a)

̒(−1)SC3/R3·
(

cos(kR) + kR sin(kR) − (kR)2 cos(kR)
)

,
(10b)

for 2S+1Σu/g states (10a), and 2S+1Πu/g states (10b).
The coefficient C3 is related to the atomic dipole matrix

element d =< 23P |d̂z|23S >, and thus to the radiative
life time 1/Γ of the atomic transition:

C3 =
|d|2
4̉˾0

=
3

4
~Γ

(

̄

2̉

)3

, (11)

with ˾0 the vacuum permittivity. The fine structure split-
ting is small enough that we assume the three atomic
lines of interest (23S1 ս 23PJ=0,1,2) have the same wave-
length ̄ = 1083.3 nm within 0.1 nm. The radiative decay
rate Γ = 2̉ · 1.6248 MHz can be inferred from ̄2 and
from an accurate calculation of the oscillator strength of
the atomic transition [18]. Finally, C3 is found to be
C3 = 6.405 atomic units, within a relative uncertainty of
5 · 10−4.

3. Fine structure coupling

We next consider the relativistic part of the hamilto-
nian, Ĥfs(A) + Ĥfs(B), which is diagonal in the Hund’s
case (c) basis (by definition of Hund’s case (c), see e.g.
[15]), with three eigenvalues corresponding to the three
states 23S1 + 23PJ=0,1,2. The eigenstates can only be
characterized by the projection Ω of the total electronic
angular momentum (orbital and spin) on the molecular
axis [15]. In 4He the atomic fine structure can be modeled
using the following operator:

Ĥfs = ˺~L.~S + ˻(~L.~S)2, (12)

where ~L and ~S are the atomic orbital and spin angular
momenta. In addition to the usual spin-orbit coupling,
spin-spin magnetic dipole interaction between the two
electrons is an important effect in helium [19], leading
to a non equidistant splitting of the fine structure lev-
els. In our model, the constants ˺ and ˻ are determined
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FIG. 5: Ungerade electronic potential curves (in GHz) for fixed
nuclei for the 23S + 23P system versus the internuclear distance R
(in atomic units; 1 a0 ∼ 0.0529 nm). The potential curves result
from the numerical diagonalization of the hamiltonian (13). Three
arrows indicate the three purely long-range potential wells in which
bound states are determined numerically.

phenomenologically, in order to reproduce the fine struc-
ture splittings which have been measured [20, 21] very
accurately:

˺ = −∆J=2↔1

2~2
and ˻ =

2∆J=1↔0 − ∆J=2↔1

6~4
,

with

{

∆J=2↔1 = h · 2.291175 GHz
∆J=1↔0 = h · 29.616950 GHz

4. Potential curves with fixed nuclei

According to the Movre-Pichler approach [22], both re-
tarded dipole-dipole interaction and atomic fine structure

coupling:

Ĥfs(A) + Ĥfs(B) + Û(R) (13)

should be considered simultaneously as a perturbation
of the non relativistic hamiltonian for two independent
atoms Ĥ0(A)+Ĥ0(B). Only the projection Ω of the total
electronic angular momentum on the molecular axis is a
good quantum number. States of different u/g symmetry
are uncoupled and two sets of potential curves can be de-
termined independently for gerade and ungerade states.
Since we do photoassociation experiments in a magnet-
ically trapped atomic cloud, the initial quasi-molecular
state is 5Σ+

g , and gerade states are not accessible by
single-photon excitation. Thus we focus only on unger-
ade states. Figure 5 shows the results of the calculated
ungerade eigenvalues of the operator (13) as a function of
R. Here, the electronic states are determined with fixed
nuclei. Also, the potential curves describe only the long-
range part of the molecular interactions as a consequence
of the perturbative description. For the Ω = 0 space, the
reflection symmetry (in a plane containing the molecular
axis) leads to a relevant additional label +/−, which dis-
tinguishes two states with different energies. For Ω 6= 0
states, this symmetry can be defined as well but the two
resulting states have the same energy.

5. Physical origin of the purely long-range molecules

The hamiltonian (13) is block diagonal with each block

corresponding to a given Ω
(±)
u/g subspace. As an example,

let us consider the subspace 0+
u . It is of dimension four.

Figure 6 illustrates the physical reason why a purely long-
range well arises in this subspace of states. If we con-
sider only the dipole-dipole interaction, one eigenvalue is
purely repulsive, while the three others are purely attrac-
tive, two of them being identical (Figure 6-a). They all
have the same asymptote. The four corresponding eigen-
states are pure Hund’s case (a) states. Let us consider
separately the repulsive state and the manifold of attrac-
tive states. If we “turn on” the fine structure coupling
inside each of these two subspaces of states, while ne-
glecting the couplings between them, then the potential
curves repel each other and the asymptotes no longer
coincide. Of course, since the neglected couplings are
not small, the four asymptotes have no straightforward
physical meaning. However, the important point is that
a crossing shows up between the repulsive curve and one
attractive curve (Figure 6-b). Finally, if we turn on the
neglected fine structure terms, we couple the subspaces
corresponding to the two crossing states, and an anti-
crossing appears (Figure 6-c). The resulting potential
well is thus a consequence of the fine-structure mixing of
long-range molecular interactions, which links the inner,
repulsive dipole-dipole curve with an outer, attractive
one. What is remarkable about this well is that even
the repulsive part occurs at very long-range, in a region
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FIG. 6: Eigenvalues of the restriction of the hamiltonian (13) to the 0+
u subspace. Energies are given in GHz, distances are in atomic

units. a) The fine structure coupling is neglected: the eigenstates are pure Hund’s case(a) states. b) The fine structure coupling is
partly included: couplings between the repulsive state and the attractive ones are neglected. After diagonalization, one attractive and
one repulsive states cross each other. c) Finally, including all the fine structure coupling terms leads to an anti-crossing and a purely
long-range potential well. Note that graph b) is only for illustration and that the neglected terms are not small.

where the asymptotic dipole-dipole expression remains a
very good approximation. That is why the perturbative
approach used here is very well suited to describe the
bound states lying in this kind of well, or the so-called
purely long-range molecular states [23].

Due to the competition between the dipole-dipole and
the fine structure interactions, not only the potential
curves, but also the electronic states explicitly depend on
R. As an illustration, the 0+

u purely long-range electronic
eigenstate is shown in Figure 7. The eigenstate is given
with its projections over the Hund’s case (a) basis set.
It evolves from the pure Hund’s case (a) 5Πu at short
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W
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FIG. 7: Eigenstate for the 0+
u purely long-range potential well

connected to the 23S + 23P0 asymptote within the fixed-nuclei
approximation. The electronic state is given with its decomposition
in the Hund’s case (a) basis set: the weights are the squares of the
projection on the different subspaces of Hund’s case (a) states.
Distances are in atomic units.

range, where the dipole-dipole interaction dominates, to
a pure Hund’s case (c) for asymptotically large values of
R where the dipole-dipole interaction vanishes like 1/R3.
Consequently, the fixed-nuclei approximation must be
corrected by an accounting of the coupling between the
electronic and nuclear degrees of freedom.

The discussion just presented can also be applied to all

the other Ω
(±)
u/g subspaces. Figure 5 shows three purely

long-range ungerade potential wells. One is connected
to the 23S1 + 23P0 asymptote and belongs to the 0+

u

subspace; it has been presented above. The two others
are connected to the 23S1 + 23P1 asymptote and belong
to the 0−u and 2u subspaces. Within the fixed nuclei
approximation the calculated 0+

u well is 2.130 GHz deep,
the 2u one is 0.321 GHz deep, and the 0−u one is 0.054
GHz deep. We will examine these wells more closely in
the following discussion.

B. Description of the motion of the nuclei

So far the dynamics of the electrons has been treated
independently from the dynamics of the nuclei. In our
perturbative model, the coupling between the two comes
from the kinetic energy operator for the relative motion
of the nuclei:

T̂n(R, ́, ̞) = − ~
2

2̅

(

1

R

∂2

∂R2
R −

~ℓ 2

~2R2

)

⋅ (14)

In this expression (R, ́, ̞) are the spherical coordinates
of the fictitious particle of reduced mass ̅ associated with

the pair of nuclei, and ~ℓ is the orbital angular momentum
associated with its rotation.
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binding energies presented in Table II. Note that the horizontal
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1. Effect of the rotation

First, the effect of the rotation of the nuclei on the elec-
tronic states calculated above can be found if we add the
last term of (14) to the hamiltonian (13). The operator
to be diagonalized becomes:

Ĥ = Ĥfs(A) + Ĥfs(B) + Û(R) +
~ℓ 2

2̅R2
(15)

Now, the space of states has to be extended to the rota-
tional degrees of freedom. Only the total angular momen-

tum ~J = ~L + ~S + ~ℓ has to be conserved [30], so we must
consider the set of states |̏J,Ω±

u
〉 defined by the product

of electronic states determined above |Ω(±)
u 〉 and of rota-

tional states |J,M,Ω〉 [25] : |̏J,Ω±
u
〉 = |Ω(±)

u 〉⊗ |J,M,Ω〉.
The quantum number M is the projection of ~J onto a

lab-fixed frame. Since the molecule is linear, ~ℓ is or-
thogonal to the molecular axis, which means ℓz = 0
and Jz = Lz + Sz. Thus the electronic quantum num-

ber Ω represents the projection of ~J onto the molecular
axis and it is recalled as a parameter in the notation for

the rotational state. In this basis, ~ℓ can be written as
~ℓ = ~J − ~L − ~S, the square of which is given by:

~̂ℓ 2 = Ĵ
2

+ L̂
2

+ Ŝ
2 − 2 Ĵz

2
+ 2 L̂zŜz + (L̂+Ŝ− + L̂−Ŝ+)

− (Ĵ+L̂− + Ĵ−L̂+) − (Ĵ+Ŝ− + Ĵ−Ŝ+) (16)

In Equation (16), the first line contains terms that cou-

ple electronic states with each other inside each Ω
(±)
u

block. The second line contains the terms that couple
states belonging to different Ω subspaces, due to the ac-
tion of Ĵ± which obeys anomalous commutation rules
[24] and couples Ω to Ω ∓ 1. These off-diagonal cou-
pling terms become important where potential curves be-
longing to different Ω subspaces cross each other; they
produce anti-crossings. For the three purely long-range
wells of interest, such crossings appear far enough in the
classically forbidden region that the off-diagonal coupling
terms can be neglected in the calculation of the binding
energy. Thus, in the following calculation, only the terms
coupling states within a given Ω subspace (first line in
Equation (16)) are kept in the expression of the rotation
of the nuclei.

Figure 8 shows the change in the three ungerade po-
tential wells resulting from the inclusion of the rotation
of the nuclei in the hamiltonian. The minimum possible
value for J is J = Ω. For higher values of J the contribu-
tion of the centrifugal barrier due to the rotation of the
nuclei increases. Bose-Einstein statistics dictates that J
should be odd for 0+

u , and even for 0−u (see e.g. [25]).
There is no restriction on J for the 2u state, since it is
doubly degenerate.

2. Effect of the vibration

Next, since the electronic states depend on R (Figure
7), the vibration of the nuclei also influences the elec-
tronic degrees of freedom. This effect is described by the
radial part of the kinetic energy of the nuclei, namely the
first term in parenthesis in Equation (14). This final ad-
dition to the hamiltonian leads to the following equation:

Ĥ|̑〉 =

{

− ~
2

2̅

1

R

∂2

∂R2
R + Ĥ

}

|̑〉 = E |̑〉 (17)

where the eigenstates |̑〉 are written using a basis with
separable variables: |̑〉 = |̐v〉⊗|̏J,Ω±

u
〉, with |̐v〉 the vi-

brational part, and |̏J,Ω±
u
〉 the electronic and rotational

part. With these notations, |̏J,Ω±
u
〉 are the R-dependent

eigenstates of the hamiltonian Ĥ, with the eigenvalues
VJ,Ω±

u
(R) determined previously and given in Figure 8.

Because the crossings between electronic potential
curves lie far enough in the classically forbidden region,
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the action of ∂2/∂R2 on the electronic part should be
considered as a diagonal correction and we neglect the
off-diagonal terms of this operator. This is the so-called

adiabatic approximation [14], and Equation (17) reduces
to a set of independent radial equations:

{

− ~
2

2̅

(

d2

dR2
+

〈

̏J,Ω±
u

∣

∣

∣

∣

∂2

∂R2

∣

∣

∣

∣

̏J,Ω±
u

〉)

+ VJ,Ω±
u
(R) − EJ,Ω±

u ,v

}

u(R) = 0 , (18)

where the vibrational part of the wave function has been

written 〈~R|̐v〉 = u(R)/R, and EJ,Ω±
u ,v is the binding

energy for the ro-vibrational level (J, v) in the Ω±
u poten-

tial well. Finally, the vibration of the nuclei is described
through a single effective potential well which is the sum
of VJ,Ω±

u
(R) (which already takes into account the rota-

tion of the nuclei) and of the correction coming form the

dependence in R of the eigenstates of Ĥ.

C. Calculation and comparison with the

experimental spectrum

Table I provides the comparison between the experi-
mental results obtained for the 0+

u potential well (column
A), and the calculated binding energies from the adia-
batic approach developed above (column B). In column
(A), the measured binding energies include the correc-
tions discussed in Section II. Within the experimental
accuracy, the agreement between our measurement and
our predictions for J = 1 is remarkably good (except for
the v = 5 line, which is too close to the atomic resonance
to be observed). Note that the v = 0 line was probed
with a different laser set up, so its measured binding en-
ergy is less precise than the others (see [9]). Also, the
(0+

u , J = 3) progression is too weak to be observed in our
experiment.

The effect of retardation on the calculated energy is
illustrated by the quantity ǫRet (Table I, column C). It
increases the depth of the well, and therefore the binding
energies as well. Compared with the non retarded calcu-
lation (k ջ 0 in the expressions 10a and 10b), retarda-
tion is a correction proportional to R2 in relative value,
but to 1/R in absolute value. Therefore, it becomes very
important in relative values for very elongated states (up
to ∼ 30% for v = 5), and it is more important in abso-
lute values for less elongated states (ǫRet = −6.6MHz for
v = 0). Given the experimental accuracy of 0.5 MHz, this
work is a demonstration of the retardation effect, which
has to be taken into account to reproduce the measured
binding energies. This effect has been already demon-
strated for sodium atoms in 1996 [27].

The correction to the electronic potential due to the vi-
bration of the nuclei is illustrated by the quantity ǫRad in
Table I, column (D). Practically ǫRad is the difference be-
tween the binding energy calculated with and without the

TABLE I: Comparison between experimental and theoretical bind-
ing energies in the case of the 0+

u purely long-range potential well.
Column (A) gives the experimental results, after the corrections
discussed in Section II are applied. Column (B) gives the bind-
ing energy Ev,J calculated from equation 18 within the adiabatic
approximation. For each bound state, ǫRet is an estimate of the
contribution to Ev,J of the retardation effect. ǫRet comes from

the comparison with the non-retarded calculation. Similarly, ǫRad

is the calculated estimate of the term 〈̏
J,Ω

±
u

|∂2/∂R2|̏
J,Ω

±
u

〉 (see

Equation (18)). Note that the binding energies presented in column
(B) already implicitly contain the contributions ǫRet and ǫRad. All
the energies are given in units of h, in MHz.

(A) (B) (C) (D)
v Experiment Ev,J ǫ

Ret
ǫ
Rad

5 - -2.487 -0.78 +0.053
4 -18.2 �0.5 -18.12 -1.6 +0.28
3 -79.6 �0.5 -79.41 -2.6 +0.95
2 -253.3 �0.5 -252.9 -3.9 +2.4
1 -648.5 �0.5 -648.3 -5.2 +5.3
0 -1430 �20 -1418 -6.6 +10.3

term 〈̏J,Ω±
u
|∂2/∂R2|̏J,Ω±

u
〉 in Equation (18). This term

is part of the kinetic energy of the system. Thus it brings
a positive contribution to the effective electronic poten-
tial and it moves the bound states upward in the wells.
Its contribution is non vanishing in the region where the
electronic state changes its character with R due to the
anti-crossings discussed previously, that is to say in the
vicinity of the bottom of the potential well. Therefore
the correction is stronger for the deepest states, as they
don’t extend very far from this region. Weakly bound
states extend much farther into regions where the elec-
tronic state does not depend strongly on R (pure Hund’s
case c), and the net effect is less pronounced.

Finally, the high accuracy of the data and the good
agreement between the experimental and calculated spec-
tra lead to an experimental determination of the C3 coef-
ficient, which describes the dipole-dipole interaction. In
our calculations, changing C3 by 0.1% changes the bind-
ing energies by at most 0.3 MHz, which is of order of
our experimental accuracy. Therefore, the present re-
sults confirm the theoretical value used for the C3 co-
efficient to within 0.2%. As a consequence of Equation
11, we can infer that the atomic radiative decay rate is



11

Γ = 2̉ · (1.625 � 0.003) MHz. As far as we know, this
is the most accurate experimental determination for the
helium 23P decay rate.

D. Other ungerade giant dimers

Bound states in ungerade potential wells other than
0+

u have not been explored. However, the calculation
presented above can also be applied for those. Table II
presents the theoretical results for the molecular bind-
ing energies and characteristic sizes in the three unger-
ade purely long-range potential wells. Column (A) gives
the results obtained when one solves Equation 18. Ex-
perimentally, bound states are produced by driving an
electric dipole transition from the electronic state 5Σ+

g

with J = 2, so only J = 1, 2 or 3 are accessible. In
Table II, the results are given for one relevant value of J ,
taking into account the Bose-Einstein statistics already
mentioned in paragraph III B 1.

The purely long-range character of these molecules
arises from the very large distance at which their in-
ner classical turning points lie (Table II, column B).
The outer turning points (column C) and mean sizes
〈R〉 = 〈̐v|R|̐v〉 (column D) are also particularly large,
leading to an unusual type of “giant” dimer for which
asymptotic calculations allow an accurate description. At
such large distances, the next order term C6/R6 in the
electromagnetic interaction can clearly be neglected. The

TABLE II: Results of the calculation detailed in the text for the
three purely long-range ungerade wells. Column (A) gives the bind-
ing energy Ev,J calculated within the adiabatic approximation.
The three last columns illustrate the unusual size of the dimers.
Rmin and Rmax are classical inner and outer turning points, 〈R〉
is the mean internuclear distance. All the energies are given in
MHz, and the lengths in atomic units.

(A) (B) (C) (D)
v Ev,J

a

Rmin Rmax 〈R〉

0+
u , J = 1 5 -2.487 147.6 2182 1797

4 -18.12 147.7 1122 917
3 -79.41 148.1 689 560
2 -252.9 149.5 467 379
1 -648.3 152.9 336 276
0 -1418 162.5 246 213

0−
u , J = 2 0 -7.304 461.7 970 824

2u, J = 2 3 -4.584 320.5 2097 1712
2 -21.41 322.5 1231 999
1 -72.32 329.3 808 659
0 -191.5 351.1 558 477

aBinding energies are given with respect to the asymptote of the
potential considered.

C6 coefficient has never been published for this system,
but one can estimate that it is smaller than the value of
C6 = 3265 a.u. for the 23S−23S interaction [26] and cal-
culate the order of magnitude of the neglected term. For
internuclear distances larger than 150 a0, which is the
range of interest for these purely long-range molecules
(see Table II), C6/R6 < C3/R3·1.5 10−4. So neglecting
this term leads to an error smaller than the one due to
the uncertainty on C3.

While writing the present article we were informed that
Venturi et al. [28] had submitted for publication the re-
sult of a multichannel calculation, which is also in very
good agreement with our experimental results. Their
method is more elaborate and allows for a direct solution
of the full set of equations (17). However, the binding en-
ergies obtained by both methods are equal to within 0.5
MHz for all the bound states presented in Table II. We
have also performed a multi-channel resolution of Equa-
tion 17 with the use of a mapped Fourier grid method.
Our results [29] are comparable to those of reference [28]
to within 100 kHz. The main reason why the adiabatic
approach is efficient and the multi-channel calculation re-
quired is that there is no crossing between the adiabatic
potential wells of interest and the other potential curves.
This allows for a single-channel calculation that leads to
Equation 18 and is accurate enough to reproduce the ex-
perimental spectrum.

IV. SUMMARY AND CONCLUSION

In a previous Letter [9], we reported an accurate mea-
surement of the binding energies of purely long-range he-
lium dimers in the 0+

u potential well connected to the
23S1 + 23P0 asymptote. The present paper reports theo-
retical calculations which complement the experimental
results in order to interpret the spectra measured.

The experiment consists in measuring the PA laser de-
tunings for which a strong heating of the atomic cloud is
observed. The heating is assumed to be a consequence
of the resonant excitation of a bound state in the 0+

u

potential well. To infer the corresponding binding en-
ergy, the measured PA laser detunings must be corrected
from a mean shift of the molecular lines due to the non-
zero magnetic field B0 at the center of the trap, and also
to the non-zero temperature of the cold gas. Since the
detunings are measured with high accuracy, a simple cal-
culation shows that the temperature-induced shift must
be considered, given the range of temperature explored
(2 - 30 ̅K). This calculation does not include the ex-
act shape and width of the lines but only gives in a mean
correction. The binding energies deduced after correction
are independant of the density, and no magnetic dipole
moment is detectable for the excited state. Apart from
the symmetric and asymmetric broadening mechanisms
discussed in Section II, the lineshapes are actually also
influenced by the dynamics of the heating mechanism.
Indeed the temperature curves are an indirect measure-
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ment of the lineshape which relies on the efficiency of
the thermalization of the cloud. An incomplete thermal-
ization can lead to another source of broadening of the
lines, but no additional shift. The calorimetric detec-
tion scheme and its implications on the lineshape will be
discussed in a separate paper.

Here we have presented an approximate solution of
the Schrödinger equation that is well suited for asymp-
totically large internuclear distances. The adiabatic ap-
proach allows for accurate calculations of the binding en-
ergies in the case of purely long-range potential wells.
The calculation can easily be extended to other purely
long-range potential wells which can in principle also be
observed in our experimental conditions, namely 0−u and
2u.

Finally, the comparison between the experimental and
theoretical determination of the binding energies in the
0+

u potential well is very good if retardation effects are

taken into account. As a consequence, an accurate mea-
surement of the radiative decay rate for the excited
atomic state 23P can be inferred. The accuracy of the
experimental data allows for a test of retardation effects
as well as of tiny vibration-induced couplings between
electronic and nuclear degrees of freedom.

Thus, the excellent agrement between our perturbative
calculation and our experiment suggests a good under-
standing of the purely long range system. This work is
a first step towards a better knowledge of pair interac-
tions in ultra-cold metastable helium. Further develop-
ments will follow in order to measure the s-wave scat-
tering length for two atoms interacting through the 5Σ+

g

electronic potential.
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