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Raman Cooling of Cesium below 3 nK: New Approach Inspired by Lévy Flight Statistics
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We present a new approach to optimize subrecoil Raman cooling, based on Lévy flight statistics. It
shows that simple time sequences using square pulses can lead to very efficient cooling. We tested
the method in a one-dimensional experiment with cesium atoms and obtained temperatures below 3 nK,
less than 1/70 of the single photon recoil temperature.

PACS numbers: 32.80.Pj, 05.40.+j, 42.50.Vk

In laser cooling of atoms, the natural velocity scale is
the recoil velocity vg = hik/M of an atom with mass
M absorbing or emitting a single photon with momen-
tum 7Zk. Most laser cooling methods lead to velocity
spreads Sv of a few vg. Because of the random nature
of spontaneous emission which occurs during cooling, it
is not easy to achieve v < wg, i.e., to enter the subre-
coil regime where the effective temperature T.ss defined
by kgTet;/2 = M(6v)?/2 is lower than the recoil tem-
perature Tk defined by kzTr/2 = (hk)?/2M. To date,
two subrecoil cooling methods have been demonstrated on
free atoms: velocity selective coherent population trapping
“(VSCPT) [1] and Raman cooling [2]. Both methods use
a combination of two effects: (i) a vanishing absorption
rate of light for atoms around v = 0, which protects them
from the random recoil induced by spontaneous emission,
and (ii) a drift and diffusion of atoms in velocity space
bringing the atoms from the v # 0 domain, where they
scatter light, into the v = 0 region, where they do not ab-
sorb light, remain trapped, and accumulate. VSCPT has
reached in 1D T /20 [3] then T /40 [4], in 2D Tx /16 [5],
and very recently Tg/22 in 3D [6], while Raman cooling
has reached T /20 in 1D [2] and 0.75T% in 2D [7].

In subrecoil cooling, one expects the temperature Tep
to decrease with the interaction time ®. For the case of
VSCPT, theory predicts Terr < @ ~! [8], while for Raman
cooling no quantitative predictions have been given so
far. In an actual experiment, ® is always limited for
practical reasons. The following question then arises:
Given O, what is the best strategy for cooling a maximum
number of atoms to the lowest possible temperature? We
address this question in this paper for the case of Raman
cooling, using as a guide simple arguments provided by
Lévy flights. In this way we have been able to cool
cesium atoms in one dimension below 3 nK (7T%/70)
and to reach a quantitative understanding of the cooling
process, allowing one to derive analytical expressions for
the optimum cooling parameters.

In the Lévy-flight approach [9], one defines a “trap-
ping” zone around v = 0 by |v| < vap, Where viap <
vg. The time evolution of the atom appears as a sequence
of trapping periods (|v| = vyap) with durations 7, 75, ...
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alternating with “escape” periods (|v| > vyap) with dura-
tions 7, 72,... (also called first return times). The cool-
ing efficiency is determined by a competition between
these two processes. Consider first the trapping periods.
Their statistical properties are essentially determined by
the v dependence of the absorption rate I'/(v) around
v = 0, which can be generally written as
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The rate I'/(v) presents a dip centered around v = 0,
with a characteristic width vy (we suppose here that
Virap < vo). Outside the dip, I''(v) has an order of
magnitude given by 1/7¢, with 79 < ® (Fig. 1). As
shown in [4,9], the distribution P(7) of trapping times
is controlled by the exponent « of Eq. (1). For large 7,
and in one dimension, one finds that P(7) = Br~(1+1/a),
where B is a constant prefactor depending on vg, 7o,
and vy,p. Such a power law dependence of P(r) is a
clear signature of the appearance of Lévy statistics in
the problem [4,9,10]. The total trapping time 7(N) =
Z?’:l 7;, where N is the number of trapping events during
®, obeys the generalized central limit theorem of Lévy
and Gnedenko [10]. In particular, if @ = 1, P(7) is a
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FIG. 1. The velocity dependent excitation rate is modeled by

the function I'’(v) o« |v|® around v = 0 and assumed constant
for v > wvy.
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“broad” distribution which, unlike common distributions,
decays so slowly that (7) is infinite. In such a case, the
usual relation T(N) = N(7) (for N > 1) no longer holds
and one can show that T(N) grows more rapidly, as N¢
(oras NlogN if @« = 1). On the other hand, since Raman
cooling provides an effective friction mechanism [2],
atoms tend to return rapidly into the trap. The distribution
P(#) of first return times is thus a “narrow” distribution,
with a finite average value given by [4,11]

(%) = TO(Umax/Utrap) > 2)
where vmax = vg is the typical atomic velocity during
an escape Eeriod (Vmax = 2vg). The total escape time
T(N) = >, % thus grows as N{(#) for N > 1. The
power law dependence on N of T(N) and T'(N) then gives
a simple condition for the filling of the trapping zone: If
and only if @ = 1, one has T(N) < N* > T(N) < N.
In such a case all atoms will accumulate in the trapping
zone when ® — o, ensuring an efficient cooling.

Finally, the width Sve of the velocity distribution of
cooled atoms after a time ® can be derived from the Lévy
flight approach [4]:

1/a
Sve = vo(%) . 3)

The smaller «, the faster Svg decreases. This result has
been established heuristically in [8], by using Eq. (1) and
by writing I''(§ve) ® = 1, which means that atoms with
lv] < Sve remain trapped during ® [12].

In Raman cooling, as the excitation rate is given by the
power spectrum of the pulse intensity, & can be varied by
using an appropriate pulse shape. The first Raman cool-
ing experiments used Blackman pulses [2,13] with Raman
detunings and pulse durations designed to minimize par-
asitic excitation around v = 0. We have measured the
excitation spectrum of a Blackman pulse and found that
the best power law fit from v = 0 up to half the maxi-
mum of I'(v) corresponds to o = 4. Here, we alter the
exponent « in order to improve the cooling achievable by
pulses of a given area. In particular, we have investigated
the case @ = 2, which is simply accomplished by using a
time square pulse. Its power spectrum is the square of the
sinc function, which consists of a central peak and side-
lobes, separated by zeros. Around the first zero, which we
make to coincide with the Raman resonance condition for
v = 0, the spectrum is parabolic. Such pulses are simpler
to implement than Blackman pulses. They lead to smaller
values of dvg according to Eq. (3), while still ensuring
efficient cooling since &« = 1. Moreover, they allow a
better use of the available time ®@: For the same spec-
tral width, they are a factor of 2 shorter than a Blackman
pulse, so that the pulse repetition rate is higher.

Our experimental setup is an improved version of our
all-diode-laser system described in detail in [13]. Briefly,
cesium atoms are first captured in a vapor cell MOT
and released in free fall at ~6 uK (half-width dv; =
5.5hk) in the F, = 3 ground state. They are subsequently
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illuminated by square pulses of two horizontal Raman
beams having a tunable frequency difference w; — w»
around wyrs = 9.12 GHz (the cesium hyperfine split-
ting), a diameter at 1/./e of 4 mm, a power of 70 mW (a
factor 3 higher than in [13]), and a detuning of —34 GHz
between the virtual upper state and the 6p3/, state. If the
two Raman beams (k;, w1, k2, wy) are counterpropagating,
the excitation rate is velocity selective and atoms with
v # 0 are transferred to F;, = 4 with a velocity change
of ﬁ(lzl — 122)/M =~ 2ﬁl;/M. The resonance condition is
6 = w1 — wy — wurs = 2k(vg + v). The sign of the
frequency offset & is chosen such that the velocity change
for the resonant atoms is opposed to their velocity. Af-
ter each Raman pulse, a colinear, 30 us long, resonant
repumping pulse, tuned to F, = 4 — F, = 4, excites all
Fy = 4 atoms and gives them a chance to fall in F, = 3
with v = 0 after spontaneous emission. A cooling se-
quence typically takes ® = 20 ms (limited by gravity
and beam size), and the velocity distribution of atoms in
Fg, = 3 is probed using a low power, 3 ms long Black-
man pulse providing a velocity resolution of vg/20 or
175 pum /s.

In order to investigate this new cooling strategy, we
start with the simplest scheme, consisting of a single
30 us square Raman pulse, short enough to cover a large
fraction of the initial velocity distribution and centered
alternately at v = *4wy [Fig. 2(a), dashed line], the sign
change being accomplished by exchanging the directions
of the two Raman beams. The peak excitation probability
is =0.4. The sequence Raman excitation—repumping
pulse at v = +4uvpg, then at v = —4uvp, is repeated 136
times, leading to a remarkable cooling efficiency: 70% of
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FIG. 2. (a) Dashed line: excitation profile of 30 us pulses

tuned to *4vg. (This profile has been measured independently
by using copropagating pulses.) Solid line: velocity distribution
after 136 repetitions of these pulses (total time 22 ms). The
velocity spread (half-width at 1/./e) is 0.34vg, corresponding
to Terr = 25 nK. The fluorescence is in units of the maximum
signal obtained from the initial distribution. (b) Time depen-
dence of the width of the cooled peak obtained with square
pulses (squares) and Blackman pulses (circles). Straight lines
are fits by power laws ©® ~'/2 and ® ~'/4, respectively.
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the atoms are compressed in a peak 7.5 times higher than
the initial distribution [Fig. 2(a)]. The velocity spread
(half-width at 1/./e) is 0.34vg, much narrower than the
width (=4vg) of the hole in I'/(v). This confirms that
dve can be much smaller than vy, as already indicated by
Eq. (3). The corresponding temperature Terr = Tr/8 =
25 nK is equivalent to our previous result using sequences
of eight Blackman pulses [13], but with a better fraction
of atoms in the cold peak and a considerably simpler
pulse sequence. Moreover, the time evolution of the
velocity spread obeys very well the ® ~'/2 law of Eq. (3)
[Fig. 2(b)]. When the square pulses are replaced by
Blackman pulses, centered at the same frequency and
twice as long as the square pulses to maintain the same
characteristic width, higher temperatures and lower peak
heights are obtained for all interaction times [Fig. 2(b)].
In this case, the evolution of the velocity spread is well
fitted by a ® ~'/4 law, as predicted by Eq. (3).

In order to lower further the temperature, one would
like to decrease the width vy of the hole in I''(v)
since this produces a colder final distribution [Eq. (3)].
However, when vq is decreased, the pulse is longer in
time, it interacts with a smaller fraction of the velocity
distribution, and it ultimately gives fewer chances for a
given atom to fall near v = 0 by spontaneous emission.
Furthermore, atoms can also accumulate in the outermost
zeros of the excitation profile as can be seen already
near =8vpg in Fig. 2(a). The immediate solution to this
problem is to use a cooling sequence made of two pulses:
a long pulse for good filtering (v small) and a short pulse
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FIG. 3. (a) Raman cooling with 30 us pulses centered at
*4vg and 120 ws pulses centered at *wvg, 26 repetitions.
The central peak has a 1/,/e half-width of 0.12vg (an 8%
contribution due to the probe linewidth has been subtracted by
deconvolution). This corresponds to an effective temperature
of Tesr = 2.8 nK. The dashed curve is the velocity distribution
without Raman cooling, corresponding to 7T = 6.0 uK. (b)
The Raman pulses used for the above result (for clarity, only
the pulses on the negative-velocity side are shown). As the
available power limits the peak excitation probability of the
30 us pulse to about 0.4, it is repeated 3 times before the
120 ws pulse is applied.

covering a wide velocity range, in order to recycle those
atoms which do not interact with the narrow pulse. As
the recycling pulse is short in duration, its contribution
to the total cooling time is small. Raman cooling with
two square pulses is shown in Fig. 3(a). The sequence
consists of a 120 us pulse centered at v = *wvg and a
30 ws pulse at v = *=4wvg and is repeated 26 times. The
cold peak has a 1/,/e velocity spread of (0.12 = 0.01)vg,
corresponding to Terr = 2.8 = 0.5 nK (7Tx/73), nearly a
factor of 10 lower than in the one-pulse cooling scheme.
The peak is 10 times as high as the initial distribution and
contains 35% of the total number of atoms. Narrower
filtering pulses lead to still lower temperatures, but with
a reduced gain at v = 0. For instance, Teef = 0.8 nK =
Tr /250 has been observed with a peak height increase of
6.4, using a filtering pulse of 400 ws duration.

In the search of an optimum square pulse cooling
configuration, a compromise must be made between the
fraction of cooled atoms and the width of the cooled
distribution. We present here a simplified derivation of
the width dvg op: Of the narrowest peak that can be filled
significantly in a given time ®, i.e., that accumulates
=50% of the atoms. A rigorous calculation optimizing the
height of the peak at v = 0 gives the same results, within
prefactors of order 1 [14]. The single important parameter
of the pulse sequence is the duration 6y of the filtering
pulse (the narrowest pulse). The excitation at |v| = vy
is realized efficiently by much shorter recycling pulses,
whose durations are neglected here. 6, is related to the
width vq of the dip in I'/(v) by the condition of the first
zero of the sinc function in v = 0 for I, which implies
7/60 = kvg. Adding pulses on both sides of v = 0 leads
to a sequence duration of 79 = 26 and the excitation rate
becomes I''(v = 0) = (v/vg)?/260 and T'(Jv| > vg) =
1/(26¢). The optimization is now done very simply: The
narrowest peak that can be filled is defined by a filling time
just equal to the total time. The filling time being on the
order of the first return time, one has

<%(Ulrap = 6”("),0pt)> =0. ©)
The problem is now fully characterized by the two
equations (3), (4), having two parameters (®, vn,x) and

two unknowns (voep: Or equivalently 6oopi, SV@,0pt)-
Simple algebra gives the optimum values

Voopt _ (2vmax )2/3( TTR )1/3 )
VR VR 20 ’
where g = 2M /Fkk? is the recoil time, and
Sve.opt (2Umax )l/3<7TTR )2/3
VR B VR 2@ ’
Note that dve,cp decreases as ® 23, whereas & Ve
varies only as ® ~!/2 for a fixed v which is not optimized
for each value of ®. For vy, = 2vg, ® = 10 ms =

1307 (the effective total time of the cooling pulses in the
experiment) the result is voope = 0.6vg and Sve opt =

(6)
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0.08vg, which is 40% narrower than our experimental
result. Considering the simplicity of our model and
the laser power limitation preventing us from realizing
extremely short recycling and repumping pulses with
unity transfer efficiency, the agreement is satisfactory.
We also performed numerical simulations assuming ideal
experimental conditions and ® = 20 ms = 2607g. They
predict an optimum corresponding to T = TR/400 =
0.5 nK and wvgopr = 0.4vg. For an initial half-width
Sv; = 5.5vg the predicted peak height increase is 75.

The Lévy flight analysis can easily be extended to
higher dimension d. The distribution of trapping times
P(7) varies as P(r) ~ 1/7'74/ and the first return time
is proportional t0 (Umax/Viwap)?. The optimization of
Raman cooling can be done along the same lines as above.
This is important for the case d = 3 since subrecoil
Raman cooling has not yet been demonstrated in this
case. Preliminary calculations show that the square pulse
sequence could lead to a subrecoil temperature, but with
only a small fraction of the atoms in the cooled peak.
This is due to the fact that in 3D the distribution P(7) is
broad only if @ = d = 3. Only in this case, the total
trapping time T(N) < N“/¢ dominates the total escape
time 7(N) « N so that all atoms accumulate in the narrow
peak. Hence in 3D, Lévy flights predict more efficient
cooling with triangular or Blackman pulses (o = 4). It
would be interesting to determine the optimum cooling
for arbitrary values of a and to extend the approach to
the case of trapped atoms which offer attractively long
interaction times.

In conclusion, we have pointed out the crucial role of
the exponent « and the interaction time ® in subrecoil
cooling. Using Lévy statistics, we have predicted and
demonstrated experimentally that in 1D square pulses
(o = 2) are not only simpler to implement but also lead
to a faster cooling (6veg = @)_1/2) than Blackman pulses
(e = 4 and Sve * ® /%), For cesium atoms we have
obtained effective temperatures below 3 nK or Ty/70,
which are to our knowledge the lowest temperatures
achieved in 1D laser cooling. Our analysis also provides
analytical expressions for the optimal cooling in a given
time ®. Finally, in higher dimension d, we predict that
only if @ = d all atoms accumulate in the subrecoil peak.
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