LIGHT INDUCED EKINETIC EFFECTS ON ATOMS, IONS AND MOLECULES
eds. Mol L., Gozzini S., Gabbanini C., Arimondo E., Strumia F., 1991, ETS Editrice, Pisa 5

THE LIMITS OF SISYPHUS COOLING
Y. Castin, J. Dalibard and C. Cohen-Tannoudji

Laboratoire de Spectroscopie Hertzienne de L'Ecole Normale Supérieure (*)
. and Collége de France
24, Rue Lhomond, F-75231 Paris Cedex 05, France

Abstract: We present a theoretical analysis of the Sisyphus cooling occuring in a 1-D
polarization gradient molasses. Starting from the full quantumn equations of motion, we show
that, in the limit of large detunings, the steady state atomic density matriz depends only on a
single parameter U/ ER, where Uy is the depth of the optical potential wells and Eg the recoil
energy. The minimal kinetic energy is found to be on the order of 40 Er and is oblained for
Uy ~ 100 Eg. We derive also simple analytical equations of motion which confirm the physical
picture of Sisyphus cooling. Steady state solutions of these equations are obtained in the two
limiting cases of jumping particles (optical pumping time Tp shorter than the oscillation period
27 /Qose in an oplical potential well) and oscillating particles (Qysetp > 1).

1. INTRODUCTION
Laser cooling is known to have led to extremely low atomic kinetic temperatures in the
recent years [1]. Initially it was thought that Doppler cooling [2, 3] was sufficient to explain these
temperatures. This type of laser cooling is based on the radiation pressure forces, exerted by
identical counterpropagating laser waves on a moving atom, which become unbalanced because
of opposite Doppler shifts. The temperatures achievable by Doppler cooling can be shown to be
limited by the lower bound T'p:
kgTp = hl'[2 . (1.1)

However, the discovery in 1988 [4] of temperatures well below this theoretical Doppler limit T
initiated a search for new cooling mechanisms, more effective than Doppler cooling.

First qualitative explanations were given soon after this experimental discovery [5,6] and
were followed by more quantitative treatments [7,8]. They are based on the internal atomic
ground state dynamics induced by the atomic motion in the polarization gradients of the molasses
laser fields. These dynamics arise from the fact that the ground state of the atoms experimentally
studied (Na, Cs) is degenerate. This had been left out of the previous theoretical models, which
were dealing only with two level atoms. The internal atomic dynamics lead, for very low laser
intensities, to long internal atomic pumping times which, when associated to differential light
shifts of the various ground state sublevels, may be at the origin of a strong cooling and of sub
Doppler temperatures.

In this paper, we restrict ourselves to 1D molasses. In such a case, two distinct cooling mech-
anisms in a laser polarization gradient can be identified [7]. The first one, on which we will focus
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will focus in the following, occurs in the lin L lin configuration, formed by two orthogonally
linearly polarized, counterpropagating plane waves. It arises from a “Sisyphus” effect: due to
the spatial modulation of light shifts and optical pumping rates, the atom “ascends” more than
it “descends” in its energy diagram. The second 1-D mechanism occurs in a superposition of
two counterpropagating waves with o4 and o_ polarizations. For a J, = 1 «—— J, = 2 atomic
transition for instance, a strong cooling occurs, due to a differential scattering force induced by
a very sensitive velocity-selective population difference appearing between the two ground state
sublevels |Jg,m, = 1) and |J,,m, = —1) .

When the detuning § = wy, —w4 between the laser and atomic frequencies is large compared
to the natural width T', the Sisyphus mechanism leads, for very low velocities, to a cooling force
and to a momentum diffusion coefficient stronger by a factor §2 /T than the ones for the second
mechanism. We will therefore focus in the following on the Sisyphus cooling.

We will first (§ 2) give a qualitative description of Sisyphus cooling, restricting ourselves to
aJy, =1/2 — J. = 3/2 transition. We will then present (§ 3) numerical results concerning the
temperature achievable by this cooling. These results have been derived from a full quantum
treatment of both internal and external degrees of freedom of the atom. Finally, we present in
§ 4 some elements for a semi-classical treatment of this process, in which the external motion
can be analyzed in classical terms. We show that this approach allows some simple physical
pictures, while giving results in good agreement with the exact quantum treatment.

2. QUALITATIVE DESCRIPTION OF SISYPHUS COOLING

2.1 The Laser Field

In this section, we outline the physical mechanism which leads to Sisyphus cooling for a
Jg = 1/2 «— J. = 3/2 atomic transition (Fig. 1a). The laser electric field resulting from
the superposition of two counterpropagating waves with respective polarizations €, and €,
respective phases at z = 0 equal to 0 and —7 /2, and with the same amplitude & can be written:

E(z,t) = £F(z)e ™t 4 ce. (2.1)
with :
E¥(2) = & (e.e™ — ie e—“"-)

z + ze
=2 (coskz Y4 isinkzSz T8 ) . 2.2
o v’i 7 (22)
The total electric field is the superposition of two fields respectively o_ and o, polarized and
with amplitudes £yv/2 cos kz and £,v/2sin k2. Therefore the resulting ellipticity depends on z.
Light is circular (¢-) at z = 0, linear along (e, — €,) /2 at z = A/8...(Fig. 1b).

2.2 The Atomic Internal Dynamics

We now determine the positions of the light shifted energy levels, assuming here that the
laser intensity is low, so that we can restrict our analysis to the ground state density matrix.
Furthermore, since the laser polarization is a superposition of a4 and o_, and since J; < 1, the
optical excitation cannot create Zeeman coherences with Am = 2 in the ground state so that
we can restrict our discussion to populations.



EE—

'

1 i
92 Qe . / 0 A8 Ak 3Bz

(@) (b)

Fig.1a:  Atomic level scheme and Clebsch-Gordan coefficients for a J, = 1/2 — J, = 3/2
transition.

Fig.1b:  The resulling polarization in a lin L lin configuration.

Suppose, for example, that z = 0 so that the polarization is ¢_ (Fig. 1b). The atom is
optically pumped into g_;/; so that the steady-state populations of g_, sy and g1/, are equal
to 1 and 0, respectively. We must also note that, since the ¢_ transition starting from g_;,,
is three times as intense as the o_ transition starting from g, ,, the light shift A'_ of g_,,, is
three times larger (in modulus) than the light shift A’y of g;/;. We assume here that, as usual
in Doppler-cooling experiments, the detuning :

§=wp —wy (2.3)

between the laser frequency wy, and the atomic frequency w4 is negative so that both light shifts
are negative.

If the atom is at = = A/4, where the polarization is oy (Fig. 1b), the previous conclusions
are reversed. The populations of g_y/ and gy are equal to 0 and 1, respectively, because the
atom is now optically pumped into gys,. Both light shifts are still negative, but we now have
Al =3A'_.

Finally, if the atom is in a place where the polarization is linear, for example, if z =
A/8,3\/8, ..., symmetry considerations show that both sublevels are equally populated and un-
dergo the same (negative) light shift equal to 2/3 times the maximum light shift occurring for
a o4 or o_ polarization.

All these results are summarized in Fig. 2a which shows as a function of z the light shifted
energies of the two ground-state sublevels. The analytic expression for these light shifted energies
fih+(z) can be derived simply from the expression for the laser field (2.2) and from the intensity
factors of the various o and o transitions given in Fig. 1a. One can indeed add independently
the two light shifts created by the two o4 and o_ standing waves appearing in (2.2), since g; 1
and g_y; are not connected to the same excited level :

3Uy

hAL(2) = héspsin® kz + %ﬁéao cos* kz = ~Up + %1 cos2kz = -5t Up(z)  (24a)

hA_(2) = hbsg cos® kz + éh&sg sin kz = —U, — % cos2kz = A%E +U_(z). (24b)




with:

Uy(z) =Up cos® kz (2.4¢)
U_(z) =Upsin® kz . (2.4d)

The saturation parameter sg is defined as :

02 /2

o= Errea

(2.5)
where {2 is the Rabi frequency for each of the two running waves, calculated for a Clebsh-Gordan
coefficient equal to 1 and for a reduced dipole moment for the transition equal to d :

Q = —2d&y /. (2.6)

The energy Up introduced in (2.4) :
2
Up = gh(fﬁ)sn >0 (2.7)

represents the modulation depth of the oscillating light shifted ground state sublevels. In the
same way, one can derive the expression of the rate y4 at which the atom jumps from gy, to

g-1/2 ¢
- l 2 g —_ z 2
Y4 = (3FSU cos kz) 3= g]f‘so cos“ kz . (2.8)

This is the probability per unit time of absorbing a ¢_ photon from g;,,, and then decaying
from e_y; to g_1/2 by emitting a m photon. In the same way, one gets :

2
Yo = 5[‘30 sin? kz . (2.9)

The characteristic internal relaxation time 7, (i.e. optical pumping time) is then given by:

1 2vs0
L _ o 2% 2.11
™ T4+ + 9 (2.11)

2.3 Sisyphus Effect for a Moving Atom

We now consider an atom moving along Oz in the bi-potential Ui(z). We suppose for
instance that the atom is initially in the state g;/, with a kinetic energy much larger than the
modulation depth Uy (Fig. 2b). As the atom moves in U, (z), it may undergo a transition to
g_172- The rate 7, at which such a transition occurs is maximal around the tops of Uy(z),
the atom being then put in a valley for U_(z). This transition decreases the potential energy
of the atom, while leaving its kinetic energy unchanged, if one neglects the momentum of the
fluorescence photon involved in the process. From g_,;; the same sequence can be repeated
so that the atom on the average climbs more than it goes down in its energy diagram. An
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Fig. 2a: Light shifted energies and steady-state populations for a J, = 1/2 ground state and for
a negative detuning. The lowest sublevel, having the largest light shift, is also the most populated
one. We have plotted in broken lines the average potential U(z) seen by the atom in the jumping

case (§ 4.3).

Fig. 2b: Atomic Sisyphus effect. Because of the spatial modulation of the transition rates v4,
a moving atom sees on the average more uphill parts than downhill ones and its velocity is
damped. The random path sketched here has been obtained for § = —5 T and 2 = 2.3 T, and for
the Cesium recoil shift hk* /mI’ = 7.8 104,

example of a sequence of successive discontinuous changes of the total atomic kinetic energy is
represented in Fig. 2b. This constitutes an atomic realisation of the Sisyphus myth.

The intuitive limit of this type of cooling is the modulation depth Up of the potential:
cooling is efficient until the average kinetic energy is so low that the atom cannot reach the top
of the hills. (see for example the last jump represented in Fig. 2b). We will see in the following
using a more rigorous treatment that the kinetic energies achievable by Sisyphus cooling are
indeed on the order of a fraction of Uj.

3. QUANTUM TREATMENT OF SISYPHUS COOLING

3.1 Principle of the Quantum Treatment

In order to make a quantitative treatment of Sisyphus cooling, we have made a numerical
integration of the equation of motion of the atomic density matrix o, involving both internal
and external degrees of freedom. From the steady state value of o, we can then derive several
features of the atomic stationary distribution. For instance, the quantity:

(p) = Y _(int, plolint, p), (31)

int
where the sum bedrs on all internal atomic states, gives the stationary momentum distribution.

Similarly,

P(z) = Y (int, z|ofint, z) (3.2)

int
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gives the spatial repartition of the atoms, etc...
The equation of evolution of & is [9]:

i 3
¢ = lo,H] +(9)se (3:3)
where the total hamiltonian H involves the center of mass kinetic energy term P?/2m, the

atomic internal Hamiltonian Hiy: and the atom laser coupling Vy:

3/2

Hing = E ﬁwAlleameNJa:mJ {3'43)
mz=—3/2

I

1 —iw
Var = 75111&:2 (|3312)(§1/2E + ﬁlelfz)(971/2|) e~t 4 e
+ %C"Sk‘z (Lé—am(g-l/zl + ‘/Liie,m)(gi,ﬂ) ety e (3.4b)

where 7 represents the atomic center of mass position operator. The term (¢)sg describes the
relaxation of o due to spontaneous emission processes.

To solve the equation of evolution (3.3), we expand ¢ in the momentum basis and we look
for the evolution of matrix elements of the type (i, p|o|i’,p'), where i and @' stand for two internal
states of the atom, and p and p' for two momenta. We get for instance :

. . - T
&(g1/2:preapns ) = 5+P vt + = ) olgr2preape, ')
2mh 2
2\/- ({g1/2:Pl0g1 /2,0 + BE) = {g1/2,Plolg1sz, b’ — Tik))
({esja,p + hkloless, ') = (eajap — Rk|oles 2. p'))
E\f
2\/—((8 1/2.0 + hklaleass, p') + (€12, p — hkloless,p')), (3.5)
where we have put :

algiya.piesgas ') = {g1y2, Plolesys, p') exp(—iwrt) (3.6)

and where we have used :

e**|p) = [p £ k) . (3.7)

In order to minimize the number of matrix elements involved in the calculation, we have
chosen to discretize the momenta on a grid with the largest step compatible with equations such
as (3.5). Thus we have chosen

hk
for gipp,erppeapp P=-5 F 2nhk
Bk,
for g_12.€32:€-172, P= ?+2n hk (3.8)

where n and n’ are positive or negative integers, and where the terms 45k /2 have been put
to keep the symmetry between giq,2 and g_12. One can easily check that this momentum
discretisation allows the integration of the evolution equation of optical “coherences” (matrix
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elements involving one g and one e) such as (3.5) or of ee matrix elements (terms involving two
excited states). On the other hand the evolution of ground state matrix elements (terms with
two g) is more complicated because of the feeding of these terms by spontaneous emission. For
instance, one gets [9]:

(g1/2:P161g1/2, 7)) g o = T f dp"No (0" Nesya.p + 2"olesa, v + ")
or
- ?/ dp" N=(p" e 2,0+ ploler sz, o' + p")

r
+3 / dp" No_ (9" Y122+ p|ole1y2, 0"+ p") (3.9)

where N:(p")dp" is the probability that, when a fluorescence photon with ¢ polarization is
emitted, it will have a momentum along z between p’ and p” + dp” (dipole radiation pattern).
Since p" varies between —hk and +hk, the only way to make (3.9) consistent with the momentum

discretization is to take :
1

Noy(p") = No_(p") = 5(8(p" — RK) + 6(p" + k)
Na(p") = 6(") - (3.10)

This means that we will consider in the following that o4 fluorescence photons are emitted
along the Oz axis, while = polarized fluorescence photons are emitted orthogonally to the z axis.
This constitutes a simplification of the real atomic dipole radiation pattern, but the modifications
induced on the final calculated atomic distribution are small.

Once this approximation is made, we are left with a set of coupled differential equations
that we truncate at a large value ppaz of p and p' (pmas ranges between 40 ik and 100 Ak). We
can numerically integrate these equations until the density matrix elements reach their steady
state values, which are checked to be independent of the truncation pm... Three independent
parameters are necessary to specify the steady state : the reduced Rabi frequency Q/T', the
reduced detuning 6/T and the reduced recoil shift hk?/mT. Before giving the results of this
integration, we now indicate how these equations can be simplified in the low intensity limit
which is of interest here.

3.2 The Low Intensity Approximation

The previous equations such as (3.5) contain all the physics of the motion of a J;, = 1/2 ——
Je = 3/2 atom in a lin L lin configuration. They are valid for any laser intensity and detuning,
provided that the error introduced by the truncation on p is small. In particular they can
describe saturation effects, if sp becomes of the order or larger than 1, and also Doppler cooling
when the momenta p are such that kp/m is not negligible compared to I'.

Since we are dealing here mainly with low intensity situations, we can simplify these equa-
tions of motion which makes the numerical resolution much faster. The approximation consists
in neglecting excited state matrix elements in comparison with ground state matrix elements.
This allows a direct calculation of optical coherences and excited state coherences and popu-
lations only in terms of ground state matrix elements. Eq. 3.5 gives for instance in steady
state: :

a(g ey ) = s j%ﬁﬁm) T3 /2 Plolg12. 0" + BE)

= (91/21PFU|§'1/2,P’ —hE)) . (3.11)
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We then replace these expressions for eg, ge and ee matrix elements in the equation of evelution
of the ground state matrix elements so that we are left with equations involving only terms such
as {g+1/2,P|o|g+1/2,p")- This constitutes a considerable simplification of the initial numerical
problem.

A second simplifying approximation consists in neglecting the kinetic energy term (p® —
p™)/2mh appearing in the denominator of (3.11). Indeed this term can be written [(p +
p')/m][(p—p')/R] where (p+p')/m is a typical atomic velocity 7, while (p— p')/h is the inverse
of the characteristic length of the spatial distribution, i.e. k (this will be made more clear in the
Wigner representation in § 4). This approximation therefore amounts to neglecting the Doppler
shift k% in comparison with T

Note that on the contrary we do not neglect the term (p* — p?)/2m in the evolution of
(9172, plolg1y2, '), because this term has then to be compared with the feeding terms appearing
in (3.9) such as ['{e3 /2, ploles s, p") ~ T'so, and we do not make any assumption on the respective
sizes of k% and I'sg.

Once these two approximations are made, the quantum problem becomes very close to the
simple model presented in § 2: all the dynamics is restricted to the ground state, and the residual
Doppler cooling has been neglected so that one is left only with Sisyphus cooling.

3.3 Results of the quantum treatment

Since we have developped the two versions of the program solving the set of differential
equations, either keeping all terms (§ 3.1) or restricting the set of equations with the low intensity
assumption (§ 3.2), we can check whether the approximations presented above are justified. We
have found that for |§| > 3T, and sg < 0.1, the results obtained by the two methods are close.
For instance, for ik?/mI’ = 7.8 10™* (corresponding to the Cesium atom recoil shift), and for
Q =T, 6§ =3I, we get a steady state momentum distribution with p .. = 7.4 hk using the
complete set of equations, and with pr.m.s. = 7.7 hk neglecting Doppler cooling and saturation
effects. Consequently, we will only present in the following results obtained in the low power
approach, which is much less computer-time consuming, keeping in mind that the addition of
Doppler cooling could slightly reduce the width of the momentum distributions.

We have given in Fig. 3a a set of results for the momentum distribution obtained for the
cesium recoil shift and for a detuning § = —5I'. The Rabi frequency 2 varies between 0.1T
and 2.0T'. All distributions are equally normalized on the interval [—40 fik,40 hk]. It clearly
appears that there exists an optimal Rabi frequency around 0.5T for getting a high and narrow
distribution.

To get more quantitative results, we have plotted in Fig. 3b the average kinetic energy
Ex = (Pram.s.)?/2m in units of the recoil energy Ep = h2k2/2m. Ex is calculated on a range
[~100 hk,100 Ak] for various sets of parameters &, {2 and /ik?/2m. For a given recoil shift and a
given detuning, Ex is remarkably linear with the laser intensity 0%, provided 07 is sufficiently
large. When Q? is decreased, Ex reaches a minimum value and then increases again as Q% tends
to zero.

Data of Fig. 3b also clearly show that, for large §, Ex /E is actually a function of a single
parameter, mQ?/|§|hk?, which is proportionnal to Uy/ Eg. The minimal value of Ex is obtained
for:

Up ~ 105 Eg (3.12)
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and is found to be:
(E[()m,'n ~40 Ep — (Pr.mAaJmin ~ 6.3 hk. {3.13)

One can see from Fig. 3b that Up ~ 100 Er appears as a threshold potential for having good
Sisyphus cooling: below this value, the steady-state kinetic energy increases very rapidly as Uy
decreases.

Now, one might ask whether these momentum distributions are Gaussian and can be as-
signed a temperature. In Fig. 4, we have plotted, for § = —15T', both p, ,, ;. and bp1y e (half
width of the distribution at 1/./e of full height) vs /I'. For a Gaussian distribution, these two
quantities are equal. Here, one clearly sees that a discrepancy appears either for very low or
high Rabi frequencies. In both cases, p, ;... is larger than 6pl,,«\/g, indicating the presence of
large wings in the momentum distributions. The minimal value reached by ép, ;s is only:

(8pyyye)min = 3 Rk (3.14)

and is obtained for:
Up~25 Eg . (3.15)
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Fig. 3a: Steady-state momentum distributions obtained for a detuning § = —5I' for various

Rabi frequencies ).

Fig. 8b: Average kinetic energy Ex in units of the recoil energy Er versus Up/Egr. The
results of the semi-classical treatment (§ 4) are indicated in dotted lines (spatial modulation
neglected) and in broken lines (spatial modulation included for the case of “oscillating particles™).

Finally, we have looked for the spatial atomic distribution P(2). This distribution is mod-
ulated in z with a period A/4. The distribution is found to be nearly uniform for small Uy
(Us < 100 ERg); the atoms are on the contrary localized around the points z = nA/4 for large
Up. .

To summarize the results of this quantum treatment, we have shown that, for large detun-
ings, the steady state momentum distributions obtained by Sisyphus cooling depend only on a
single parameter Us/Egr when hk is chosen as the momentum unit. This has to be compared
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Fig. 4: Comparison between the r.m.s. momentum p,..s. and the width at 1,/e of the
steady-state momentum distribution, for the cesium recoil shift and for a detuning of —15T.
These two quantities would be equal in the case of a Gaussian momentum distribution. The dots
indicate the results of a Monte-Carlo treatment (see § 4).

with the result for Doppler cooling where the momentum distributions are Gaussian with a tem-
perature (in units of h['/kp) depending only on §/T'. Here the situation is more complex since
the momentum distributions are not always Gaussian. Therefore they cannot be characterized
by a single number such as a temperature. Depending whether one looks for a “compact” mo-
mentum distribution (small p,.m..) or a very narrow central peak (small 51’1/\/2)) the optimal
value for the “universal parameter” Uy/ERg changes by a numerical factor of the order of 4.

3.4 Physical discussion

We now compare the results of this quantum approach with the ones obtained from a
simple analytical treatment [7]. That treatment was limited to a situation where the cooling
could be described, after a spatial averaging, by a force linear with the atomic momentum p
and a diffusion coefficient independent of p. It led to Gaussian momentum distributions with
an average kinetic energy given by Ex = 3Up/16.

Here we recover this linear dependence of E vs Up over a wide range of parameters. The
slope (BE;(,’BUU) is 0.14 instead of 3/16 ~ 0.19, which is in remarkable agreement if one takes
into account all the approximations introduced in the analytical treatment of [7].

There is however a discrepancy between the results obtained here and the predictions of 7).
It indeed appears from the results of this full quantum treatment that Sisyphus cooling works
better than what was expected! In [7], Sisyphus cooling was expected to be efficient as long as
the cooling force was linear with p over all the steady-state momentum distribution which has
a typical width p,,. This requirement led to a minimum kinetic energy given by:

_ §2
Erx > ERF—2 . (3.16)

On the contrary, the minimal kinetic energy found here is independent of the detuning § even
for very large detunings. This will be explained further as due to the fact that Sisyphus cooling
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works even if the r.m.s. momentum is outside the range of linearity of the force. For such large
momenta, indeed, the diffusion coefficient, and therefore the heating, decrease when p increases
so that Sisyphus cooling may remain efficient.

Another unexpected feature of the results of this quantum approach concerns the devia-
tion from a Gaussian of the steady-state momentum distribution obtained for large modulation
depths Uy (Fig. 4). This deviation has to be connected to the apparition of an important mod-
ulation of the spatial atomic distribution P(z) in steady-state. Such a localization of the atoms
had not been taken into account in [7] because of the spatial averaging of the force and of the
momentum diffusion coefficient.

We now present an analytical treatment which gives a good account for these two features,
minimum of Ex vs Uy at low Up, and localization of atoms for large Up.

4. SEMI-CLASSICAL TREATMENT OF SISYPHUS COOLING

In order to get some physical insights in the results given by the quantum treatment pre-
sented in the previous section, we now turn to an approach in which the external motion can
be analyzed in classical terms. The corresponding equations of motion can be derived from an
expansion in fik/f < 1 of the quantum equations of evolution. We will see that this expansion
validates the physical pictures given in § 2, and that it gives an interpretation for most of the
results given by the quantum treatment.

4.1 Expansion of the Equations of Motion
The principle of the calculation is very similar to the one developed for a 2-level atom by
various authors [10]. We start from the Wigner representation of the atomic density operator:

1 v v izt
Wizpt) = 1 [ do o+ Glolp— 53 esn(50) (11)

Note that W(z,p,t) is still an operator with respect to the internal degrees of freedom. For
instance, (3.5) can be written:

a ; . T Ié] —
a(fw“<91,'z|w(2,:fhf)lﬂafz)) =—(if+ 7t ":’; E)(gl,l'2‘w(zip!t)|63/2)e ot

i hk
+ mf'kz(glfz\W(ZaPJr ?,3)191,'2)
i hk
- 2—‘/‘38 i;”(13'1/2|W(Z,’P - jat)h?l/z) , (4.2)

where we have neglected, in the low intensity limit, the two last lines of (3.5) since they involve
only matrix elements of W between excited states.

Now, since we have seen in § 3 that the momentum extension prm.s. of the steady state
remains larger than hk, we can expand W in the following way :

aw
W(an+hk)2 W(z,p)ivﬁkE(Z,p) + o

We note that the atomic kinetic energ'y contribution, leading to the free flight term p/m-aW/dz,
is easy to evaluate in the Wigner representation since 3W/@z is of the order of kW. In expressions
such as (4.2), this contribution is therefore negligible if kp/m < T.
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We now proceed in the same way as in § 3.3. We eliminate optical coherences and excited
state populations and coherences to get two equations dealing only with:

wi(z,2,1) = (g11/2|W(2,0,8)|g11/2) - (4.3)
After some algebra we obtain:
d pd dUy 0 B .
(5{ tie T ?3—‘”)“& =F (14 (2)wg —v-(2)w-)

212 2
% gp—g ((10 — cos 2kz)wy + we) (4.4)
This equation is a straightforward validation of the physical picture given in § 2. It describes
the motion of a particle with mass m, moving on the bi-potential Uy(2) given in (2.4), with
random jumps between the levels g1,/ with rates y+(z) (Eqgs. 2.8,9). The second line in (4.4)
corresponds to the atomic momentum diffusion in absorption and emission processes due to the
discretness of the photon momentum. For instance the atom on level g1/2 can jump to egyy or
e_1/2 by absorbing a laser photon, and come back to g1/2 by emitting a fluorescence photon.
The ground state sublevel is not changed in such a process but there is a momentum diffusion
due to the randomness of the momentum (+hk) of both the absorbed laser photon and the
emitted fluorescence one. We note that the momentum diffusion coefficient appearing in (4.4)
has the same order of magnitude (#%k*I'sg) as the one found for a two level atom in a weak
standing wave.
The last term of the second line of (4.4) describes a diffusive coupling between wy and w_.
It does not vanish for the values of z for which 74(z) and 7_(2) vanish, and where one would
expect that no transfer is possible between g-1/2 and gy79. The existence of such a term is
actually due to the fact that the atomic wave packet has a finite extension Az ~ h/Ap, which
gives rise to correction terms for the transfer rates of the order of (Az/%)? ~ Rk fApR.

4.2 The Steady-State Distribution in the Limit of Negligible Spatial Modulation

We now turn to the research of an analytical solution to the semi-classical equations of
motion (4.4). We begin in this section by introducing a rather crude approximation which
however gives results in good agreement with the ones obtained from the quantum approach.
We look for the evolution of the atomic distribution function given by:

¢(21P!t) = w+(z,p,t)+w,(z,p,t) (45}

and we make the very simple assumption that o is actually independent of z, i.e. the total
atomic distribution function has a negligible spatial modulation in steady state. We will come
back to this hypothesis at the end of the calculation.

Summing the two equations (4.4) for wy and w_, we get in steady state:

pIv_ % , p, &Y
maz - g+ Dgp ()
with:
ai
5, =0 (4.60)
d dU_
F(z) = — 5; = == = kUosin 2kz (4.6¢)
:p(z,p,t}:m+(z,p,t)7w_(z,p,t) (4'6d)

Dy = 1182k T50/18 . (4.6¢)
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Note that we have neglected the modulation in cos 2kz of the momentum diffusion coefficient
appearing in (4.4).
Now the evolution of the difference ¢ between w, and w_ is obtained also from (4.4):

9 pad _ o0 _ B 1o, &
(E*m?z)“”' Faer(’Y— Y (T++’Y—)¢’+2ﬁkrsoapz- (4.7)

The last term of (4.7) is small compared to (v, + 7-)p = (2I'sg/9)p since p > hk and will be
neglected in the following. In steady state, (4.7) can then be integrated to give for p>0:

W)= [ arertinte i (o )y FeE) (450)
P 6})
with:
k‘pc _ FSQ
™o (4.8)

Replacing 74+ and F by their expression (2.8-9 and 4.6c) and with the assumption that 1 is
independent of z, we get :

olz,p) = ﬁ!%ﬁ [(s]n 2kz + %cos 2kz) P — T;;;O (cos 2kz — %sin 2kz) 3—1’5] . (4.9)

We now put this expression for ¢ in (4.6a) and we average the result over a wavelength, in
order to be consistent with the assumption that % is not modulated in steady state. This gives:

v (5 07) v (o 20) )
0=2 + + Do | - 4.10
a0 \\ T+ o) Y Ty T ) 5 (4.10)

with:
kU L6
a=g %= —3hk' (4.11a)
kmU2 §2

Dy :WCD = fa,?kzl“sur—g (4.118)

Expression (4.10) has a straightforward interpretation: in steady state, the momentum distri-
bution results from an equilibrium between a cooling force due to the Sisyphus effect:

ap/m
F(p) = ——pim 1.12
® = T Gy (2
and heating due to momentum diffusion described by the diffusion coefficient:
D
D(p) = ! Dy . (4.13)

T+

The expression (4.12) for the cooling force has already been derived elsewhere [7]. Tt is equal
to the average of the two state dependent forces — (dUy /dz), weighted by the steady state
populations of these states for an atom moving with velocity v = p/m.

The momentum diffusion (4.13) has two contributions. The term Dy has been discussed
above; it corresponds to the fluctuations of the momentum carried away by the fluorescence
photons and to the fluctuations in the difference between the number of photons absorbed in
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each of the two laser waves. The term proportional to D; corresponds to the fluctuations of the
instantaneous gradient force Fy(t) oscillating back and forth between —dUy /dz and —dU_/dz
at a rate 1/7p. It is approximatively equal to the time integral of the correlation function of

Fy(t)

I(p) = /D " (By(t = ) ES()posiciondT

__ D R VL S 1
1+ (p/pe)’ 1+ (p/p.)’ (1+{p/pc)2)2

which gives a good understanding of the variation with p of this diffusion term: if the atom
moves slowly (p < p.) it travels over a small fraction of a wavelength during the correlation
time Tp. Then there is a strong correlation between Fy(t — 7) and Fy(f) and I is large. On the
other hand, if p 3> p., the atom travels over many wavelengthes before changing level and the
value of T is decreased since the correlation between Fy(t — ) and F,(t) becomes small.

Remark: many terms have been left out in the procedure which led to (4.10) and it is
possible te get a more accurate (but more complicated) equation for 1 if one keeps some
of these terms. For instance, for p = 0, there is a discrepancy by a factor 4/3 between the
momentum diffusion coefficient D(p) found here and the value of I(p). This discrepancy
can be lifted if one takes into account mere spatial harmonics in the derivation of the
Fokker—Planck equation (4{.10).

We now look for the solution of (4.10). This solution can be written:
P '
v = v@es [ L0y ) (4.14)

We first note that, if Dy is neglected, this momentum distribution is Gaussian with kpT =
Dija = Up/2, since f/D is linear in p. Therefore we see that Sisyphus cooling may lead to
narrow momentum distributions even if the cooling force is not linear in p over the steady-state
momentum distribution. This is due to the fact that the momentum diffusion associated with
the Sisyphus mechanism actually decreases faster (in 1/p?) than the cooling force (in 1/p). We
therefore understand in this way why the real lower bound on Ex is actually smaller than the
one given in (3.16).

We now take into account Dy We then get :

$(0)
Wp) = — 4.15)
® = (
with :
o pe 1 U
fe =per/1+D1/Dy = W~ 5 En for |6 > T (4.16a)

_op? _ U
TomDy 44 Ep

(4.16b)

Expression (4.15) exhibits several features similar to the ones derived from the quantum treat-
ment. First we see from (4.16a,b) that, if we express pin units of ik, the steady-state distribution
depends only on Up/Eg. One finds for the r.m.s. momentum after some algebra:

ug
Uo — 66 LR

Py = % for Uy > 66 Ep, (4.17)
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the integral giving < p* > diverging for Uy < 66 Eg. The variations of Ex as a function of U,
have been plotted in dotted lines in Fig. 3b. They are in good qualitative agreement with the
quantum results for small values (< 100) of Uy/ Eg. As Up/ER increases, a discrepancy between
the two results appears. This is due to the fact, for large Uy, the particles become localized in
the potential valleys (Fig. 4b), and the hypothesis that 3 is not spatially modulated becomes
very unrealistic.

We also note that for Uy < 22 Eg, Eq. 4.15 leads to a non normalisable distribution
(A < 0.5), which means that the Sisyphus cooling is then too weak to maintain the particles
around p = 0 in steady state.

To summarize, one should consider this analytical approach as a good qualitative treatment,
valid mainly around and below the minima of the average kinetic energy plotted in Fig. 3b. On
the other hand, much above these minima, i.e. for large Uy/ERg, this treatment predicts that
Ex becomes on the order of Uop /4. With such a kinetic energy, much smaller than the potential
depth Uy, the hypothesis of non localised particles which is at the basis of this treatment is very
unrealistic. We therefore present now some elements concerning this regime where the particles
get localized.

4.3 Taking into Account the Localization
An important parameter for characterizing the motion of trapped particles is the ratio
between the harmonic oscillation frequency of the particles in the wells:

[4h|8|sok?
Qose = “‘l:il% . (4.18)

and the rate 1/7p at which the particles jump from one level (g4) to the other one (g). This
ratio is:
hk2|8 Eg 6
Qosc TP = J?Tm = 36U_uﬁ (4.19a)

[ Uy

If QoscTp > 1, we are in a situation where the particles make several oscillations before changing
level. On the other hand, if Q. 7p < 1, the particles can make several transitions between 9172

and g_ys; in a single oscillation period. These two regimes have been represented in Fig. 5 as
a function of |6]/T" and /T, for the cesium recoil shift.

In order to show more clearly the relevance of this parameter Q. 7p, it is worthwhile to
rewrite (4.4) in terms of a reduced set of parameters:

z =kz (4.20a)

u =p/+/2mU, (4.20b)

In steady state this leads to:

a 1 1
wlZE 4 Zgin 21:_3& =

dz 2 du QoscTp

Ep 8*
4U0 6u2

(:F (wy cos® z — w_sin® z) + ((10 = cos 2z)wy + w;])

(4.21)
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Fig. 5: Various regimes for the motion of an atom (with the cesium recoil shift) in the linl lin
configuration. Depending on the value of the detuning and the Rabi frequency, the atom is either
in the “oscillating” case or in the “jumping” one.

We now present for each of these regimes an analytical approach based on an expansion of this
equation in powers of the small parameter Q5. 7p (jumping situation) or (Qosc'.r_u)_1 (oscillating
situation). Here, emphasis is put mainly on the derivation of equations of motion. A detailed
analysis of the solution of these equations and of the corresponding results for the position,
momentum, energy... distributions will be presented in a subsequent paper.

4.3.a The case of jumping particles: Q. .7p < 1

We first note from (4.19a) that, in this domain, the potential Uy is much larger than 36 Ep
(for [6] > I') so that we are in the linear domain of variation of Ex with Up (Fig. 3b). On
the other hand, (4.19b) implies that Uy is much smaller than p/2m, so that ik € prms < pe.
We are therefore in the domain where the cooling force is linear with p, and where the diffusion
coefficient is independant of p. We now show that it is possible in this case to derive a Fokker-
Planck equation for 1(z,p,t). Note that the condition Q,,.7p < 1 can also be written as
Tint € Tz, since the optical pumping time 7p can be considered as a characteristic internal time
Tine, whereas the oscillation period 27 /§2,s in a potential well is a typical external time T,,;.
It is then well known that such a separation of time scales allows one to eliminate adiabatically
the fast variables and to derive a Fokker-Planck equation for the slow variable P(z,p,t1).

Starting from (4-8), in which we keep the spatial modulation of v, we get at the lowest
order in hk/p:

w(z,p) = — cos 2kz (2, p) (4.22)

Indeed the kernel exp (—2kp(z — 2')/p) is nearly equal to §(z — 2')p/2kp., since |p| < p.. Note
that (4.22) can be rewritten as wy (z,p) = sin’ kz ¥(z,p) and w_(2,p) = cos? kz (2, p), which
corresponds to the internal stationary state of an atom at rest in z and which gives the solution
of (4.21) at order 0 in Qe 7p and for Up > Er. We now insert (4.22) in the equation of evolution
of 4 (4.6a) which gives still at lowest order:

% %"’Eb = F(z)cos 2kzg—ﬁ . (4.23)
At this order, the particles move in an average potential [/(z), plotted in dotted lines in Fig.2a,
and given by [7]:

U() = 2 sin(2k2) (4.24)
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At the next order we get after some calculation and using (4.23):

- P W _ Mm%
wz,p) = — (cos 2kz + -sm 2kz)) ¥(z,p) + —— cos 2kz— 9z~ 2hpe (z) o

~ (cos 2kz + = sm 2kz) (z,p) — —F(z}(l — cos” 2kz) Bai (4.25)
which gives when inserted in (4-6a):
pov_ 0 (40 on) ), 5 &y
mdz dp * m v)+ (D1(2)+ Do) ap? (4.26)
with :
_ 2 [ =6
a(z) =6hk T sin® 2kz (4.27a)
- 228y
Dy(z) =2h*k T sosin 2kz (4.27b)

This equation describes the Brownian motion of a particle in a potential U(z), with a linear
friction force —a(z)p/m, and with a spatially varying diffusion coefficient Di(2) + Do. We
recover here the tesults already obtained in [7] from the usual theory of radiative forces in the
limit of well separated time scales (Tin; € Text). We can note that the oscillation frequency

Qose in ﬁ(z):
_ 2
Dose = 4/ i (4.28)
m
is always larger than a(z)/m

i Er 6% . , .
aEz) = ([36=2 " sin®2kz < Qoserp € 1 (for jumping particles). (4.29)
onsc UO r?

This means that the motion in the average potential U/(z) is underdamped so that Eq. 4.26
could now be solved by successive approximations if one parametrizes the motion with z and
E = U(z)+ p*/2m, instead of z and p [11].

4.3.b The case of oscillating particles: Qgc7p > 1

We suppose now that the particles make several oscillations in a potential well before being
optically pumped into another sublevel. The characteristic time for z and p, 0L, is then shorter
than Tin¢ = Tp. There is however another external variable which varies slowly, the total energy
E = Uy + p*/2m. We therefore parametrize the motion with the new variables z and E instead

of z,p. Using:
p[d ad B E
(), 0 ().~ (%),

where v stands for \/2(E — Uy (z)/m, we get at order zero in (Quscw‘p)f1

Bw(f)
( 5] =0 (4.30)
E
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which gives:
w{(z2,p) = &(E) . (4.31a)

In the same way, we obtain by symmetry:
w'(z,p) = ®(E - Uy (2) + U-(2)) . (431b)

We now write (4.4) or (4.21) at order one in (Qgee7p) ™

) @ ©
vl 5, =@ ()l
E

2.2
+ Uﬁrﬂv% (v% ((m — cos 2kz)uwl® + w‘_‘“)) , (4.32)

We now divide this equation by v and integrate over an oscillation period for E < Up:

Kk Tso 8

o (}( dz 6 (10 - cos 2k2)8'(E) + &'(E — Uy () + U_(z)))) . (433)

For E > Uy, a similar equation holds, where the integral is now taken over a spatial period. Eq.
4.33 has a clear physical meaning: The first line just expresses that the rate at which particles
with energy E leave level g1 /; to g_y/; is equal to the rate at which particles arrive from g-1/2
to g1/; with the same energy E. The second line of (4.33) corresponds to the correction to this
balance due to the heating leaving the particles on the same level. For U 3 Eg, this heating
is for most energies E negligible. However it should be kept to prevent particles to accumulate
in the bottom of the well U, (resp. U_), where the departure rate v, (resp. y_) vanishes. It is
indeed easy to show that without this term the solution of (4.33) would diverge as 1/E around
E =0, and would therefore not be normalisable.

We have performed a numerical integration of this equation whose result is plotted in broken
lines in Fig. 3b. One immediatly sees that it reproduces in a very satisfactory way the results
of the quantum approach in the limit of large detunings and for a given Uy, i.e. in the limit
QoseTp > 1.

To summarize, we have been able in both situations (jumping or oscillating) to obtain
a single equation for ¥(z,p) or ®(E). The regime of jumping particles can be treated with
concepts usual in laser cooling theory: a force deriving from a potential plus a cooling force
linear with the atomic momentum, and a momentum diffusion coefficient independent of p. It
should be emphazised however that the range of parameters (detuning, Rabi frequency) leading
to this regime is rather small (see Fig. 5). In particular, the perturbative treatment used here is
valid only if sg < 1 and this condition, for large detunings, immediately leads to the oscillating
situation rather than to the jumping one.

The theoretical study of the oscillating regime is very different from the jumping one. The
equation (4.33) for ®(E), probability for finding an atom with energy E on level g1/2 is not a
differential equation, contrarily to what is usually found in laser cooling. This is due to the
non-locality of the atom dynamics: as the atom jumps from level gy to level g_1/2, its energy
changes suddenly from Uy (2)+ p?/2m to U_(2)+p?/2m. Since p?/2m is of the order of Up, this
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change cannot be treated as a small variation, which prevents deriving a Fokker-Planck type
equation for ®(E).

4.4 Monte-Carlo Approach

Finally, an alternative approach consists in performing a Monte-Carlo simulation of this
problem. Such a simulation is made possible because no coherence appears between levels
g+1/2, contrarily to what would occur for a more complex atomic transition. Furthermore, in
order to be able to associate to (4.4) a classical stochastic process describable by a Monte-Carlo
simulation, we have chosen to slightly simplify the second line of (4.4) by taking as a diffusion
term Dod? w4 [3p®.

This approach is then directly connected with the physical picture presented in § 2. It
consists in a numerical integration of the equation of motion of the particles on the bi-potential
Ux(z), with random jumps from one potential to the other one, and also a random heating cor-
responding to the simplified diffusion term described just above. We record for given interaction
times the position and the momentum of the particle. The steady state distributions are found
to be in very good agreement with the results of the quantum treatment (see Fig. 4).

A first advantadge of this Monte-Carlo method lies in the fact that it can be run on a small
computer. Also it can be generalized, for the Jg=1/2 «— J. = 3/2 transition, to the case of
2 or 3 dimensional Sisyphus cooling, provided that the laser configuration is such that the light
polarization is always a linear combination of o4 and ¢_ polarizations with no 7 component.
In these conditions indeed, no coherence is built between g172 and g_y, and the simple picture
of a particle moving on a bi-potential can be applied.

CONCLUSION

To summarize, we have presented here both a full quantum and a semi-classical treatment
for the 1-D cooling of a J, = 1/2 «— J. = 3/2 atomic transition in a lin Llin laser configuration.
The mechanism at the basis of the cooling is a Sisyphus effect in which a given atom climbs more
than it goes down in its potential energy diagram. These two treatments are in good agreement,
concerning the minimal “temperature” achievable by this cooling mechanism (Egs. 3.12-15).

We have also shown that, for light shifted energies much larger than the ones minimizing the
atomic kinetic energy, the atoms get localized around the minima of the potential associated with
the light shifts and we have indicated the two possible approaches to this situation depending
on the nature of the atomic motion around the position of these minima (see Fig. 5).

We should emphazize that there are many other schemes leading to a Sisyphus type cooling,
not necessarily requiring a gradient of ellipticity of the polarization of the laser light. For instance
a combination of a ¢4 standing wave and of a magnetic field can lead in 1-D to a cooling of the
same type [8,12].

In a similar way, in 2-D or 3-D, the superposition of 2 or 3 standing waves having the
same phase leads to a situation where the light is linearly polarized in any point, with a rotating
polarization and with a spatially varying intensity, with nodes and antinodes. As the atoms move
in this configuration, a Sisyphus effect may occurs for J, > 1: it would involve a randomization
of the population of the various ground-state sublevels around the nodes due to Landau-Zener
type transitions, and optical pumping back into the most light shifted energy levels around the
anti-nodes.
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Consequently the model studied here should be considered as a particularly simple prototype
of this type of cooling, but, on the other hand, the detailed algebra has probably to be readjusted
for the study of any other Sisyphus type cooling mechanism.

‘We thank W.D. Phillips and C. Salomon for many stimulating discussions.
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