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1. Introduction

The previous course [1] contains a few simple physical discussions of
the spin anomaly g — 2.

In section 4, which is actually a reprint of reference [2], a dynamical
equation is derived for a nonrelativistic electron after elimination of
the radiation field variables. The analysis of such an equation [§5 of
reference 2] shows that, at the lowest order in the fine structure
constant & and in 1/¢, the main effect of the electron-field coupling is
to increase the mass appearing in the kinetic energy term [and in the
rest mass energy term|, whereas the coupling of the spin magnetic
moment with a static magnetic field B, remains unchanged. In other
words, the cyclotron frequency of the orbiting charge is slowed down,
as a consequence of the mass increase, but the Larmor frequency of
the spin is not modified. When re-expressed in terms of the corrected
mass appearing in the kinetic energy (or in the corrected cyclotron
frequency), the spin magnetic moment appears to have a g-factor
larger than 2. Such a simple treatment therefore leads to the correct
sign for g — 2.

Corrections to the Larmor frequency only appear at the next order
in 1/c, as shown in reference [3] (see also section 5.3 of the previous
course [1]). They are due to the vacuum fluctuations of the radiation
field which, among other effects, produce a random angular vibration
of the spin, and, consequently, a decrease of its effective magnetic
moment. A similar vibration also exists for the charge and has been
considered by Welton [4] in order to interpret the Lamb shift. [The
mass correction considered above does not remove the degeneracy
between the two states 2s,,; and 2p;p of hydrogen which have the same
average kinetic energy.] The vibration of the charge in the Coulomb
potential of the proton produces a correction of the potential energy
which is not the same for the 2s and 2p states, and one gets in this way
the correct order of magnitude for the 2s,,—2p,, splitting. For g — 2,
the main effect seems therefore to be the slowing down of the charge
motion due to the mass increase and not the vibration of the spin (in
the non-relativistic domain, electric effects predominate over magnetic
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Effective Hamiltonian approach to g — 2 - relativistic calculation 159

ones). This explains the failure of a Welton’s type picture for explain-
ing the sign of g — 2 (see also reference [5]).

The previous treatments start from nonrelativistic Hamiltonians and
they consider only the contribution of the nonrelativistic modes of the
radiation field (fiw < mc?). On the other hand, it has been suggested
that the positive sign of g —2 could be due to pure relativistic effects,
related to the complex dynamics of the Dirac electron, and cor-
responding for example to a modification of the “Zitterbewegung”
induced by high frequency vacuum fluctuations [a brief review of such
suggestions is given in §4.3 of reference [3]). It seems therefore
interesting to try to extend the effective Hamiltonian approach of [3],
in order to include the effect of relativistic modes (hw = mc?), and to
see if they change drastically the main conclusions given above. This is
the main purpose of this lecture.

More precisely, we would like to determine the explicit frequency
dependence (for all values of @ and not only for fiw < mc? as in [3]) of
the various correction terms which describe the modification of the
motion of a slow electron in a weak static magnetic field. To answer
such a question, the powerful covariant Q.E.D. formalism, which deals
with the S-matrix (and not with the Hamiltonian) doesn’t seem ap-
propriate. Furthermore, the integration parameters which appear in
the various integrals of such a formalism are not directly related to the
frequency of the photon emitted in the virtual intermediate state. This
is why we have preferred here to extend, in the simplest possible way,
the effective Hamiltonian method of reference [3] to the relativistic
domain, using the “old fashioned perturbation theory” and limiting the
calculations to the lowest order in the fine structure constant a.

In section 2, we introduce our method of calculation. We start from
the full Hamiltonian H of the interacting quantized Dirac and Max-
well fields, given in section 6.3 of the previous course [1], and we
derive from H an effective Hamiltonian in the single-electron zero-
photon subspace. We then calculate the various terms of the effective
Hamiltonian (section 3) and discuss their physical meaning (section 4).

2. General method
2.1. Hamiltonian H - definition of Hy and V

As in section 6.3 of the previous course [1], the full Q.E.D. Hamil-
tonian can be written
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H = Hg+ Hp + H; @
where Hp is the free Maxwell field Hamiltonian,

Hr = hoaia;+3), )

(ai and a; being the creation and annihilation operators of a photon of
mode i), Hp is the free Dirac field Hamiltonian,

f%=fd*W“&Hﬁm&+ca¢p—qAannw&x 3)

¥* and ¥ being the quantized Dirac fields, A, the static vector
potential (we suppose that there is no static scalar potential ¢,), and

Hi=Veut U, )

is the interaction Hamiltonian which, in Coulomb gauge, contains the
electrostatic interaction

VCoul — ﬁ?ﬂj J- dsr d3r: ‘P‘“(r)'}’(r)‘P*(r’)W(r') (5)

=71

and the interaction
U= -] &rjer)- A)
=—gqc f &Er vt (r)a¥(r)- A(r) (6)

of the Dirac current j(r) with the transverse Maxwell field A(r).

The splitting of H into an unperturbed part H; and a coupling
V = H — H, will be different from the one considered in section 6.4 of
[1]. We take now

Ho = H R A H D (7)
and, consequently, for V,

V=H-H,=H, (8)
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H, describes states containing an arbitrary number of noninteracting
electrons e”, positrons e* (orbiting in the static field A,) and photons. V

describes the coupling between these three types of particles.
2.2. Relevant manifolds of H,

Since we are interested in the dynamics of a single slow electron, with
no incident (real) photon, we must first consider the manifold &, of H,
corresponding to one e~ and zero photon. Such a manifold is non-
degenerate since Hp, is the second quantized form of the single particle
Hamiltonian

Hp=Bmc*+ ca -+, ‘(%)
mo=p — qAo(r), (9b)

not restricted, as in section 6.4 of [1], to the Bmc? term. The energy
spectrum of %, is therefore the (positive) energy spectrum of a single

1
E [ b
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X 1 photon fiw
|
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! 0 photan
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ﬁu: I n’
il el n
R 1e
O photon

Fig. 1. Relevant manifolds of Hj.
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electron orbiting in a static magnetic field. We will call u, (v,) the
eigenspinors of #p corresponding to a positive (negative) energy. We
are interested here in the matrix element of the effective Hamiltonian
H between two states n and n' of the bottom of the &; manifold
(associated with the nonrelativistic spinors u, and u, of #p).

Since the electron can virtually emit a photon @, we must also
consider the manifold &,, corresponding to one e~ and one photon w,
and which starts at a distance fiw above the bottom of &, (fig. 1).
Starting from n’, the combined system can make a virtual transition to
a state a of &, and then come back to n (single arrow of fig. 1).
Contrarily to n and n', there is no restriction on the state a which can
be relativistic for the electron.

Finally, by studying the selection rules of the coupling V, it appears
that one must also consider the manifold %,, corresponding to two e,
one e*, and one photon w (creation of a pair e —e* and of a photon w
from %,), and which starts at a distance 2mc?+ fiw from the bottom of
&, (fig. 1). As for &, the combined system can follow the path
n'—b—n where b is an arbitrary state of &, (double arrows of fig. 1).

2.3. Expression of the effective Hamiltonian
From the results of section 5 of [1], the matrix element of the effective

Hamiltonian H.z between the single particle states 1, and 1, of &, is,
to lowest order in the fine structure constant a = g%/4megfic

(1n|Hcﬁ|1n') = (1ﬂl VCaullln')

1 1
+ 3 WlUlaXalU| g5+ 5 g

ac®

1 1
+1 (1,|U.|bXb|U,|1,» + : 10
255234 | J.l | J.| [E" o Eb E,,f" -Eb] ( )

Since Veou is already of order g2, only its restriction to &, has to be
considered, whereas U,, which is of order g, couples &, to &, and &,.
As in subsection 6.4.3. of [1], in the following we will also subtract
from H.; a unit operator proportional to the shift of the vacuum, since
all energies are measured with respect to the vacuum.
We now calculate the various terms of (10) and show that

(1n!Heﬁ|1n’) = (un|%cﬂ|un') ] (11)
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where #.q is a single-particle Dirac Hamiltonian. Since u, and u, are
nonrelativistic spinors, we will then transform #. into an “even” form
(only acting upon two-component spinors) more appropriate for phy-
sical discussions.

3. Calculation of the effective Hamiltonian

3.1. Contribution of the Coulomb interaction

3.1.1. Identification and calculation of the various terms
Introducing the Fourier transform of 1/|r — r'|, we first write Vou as

2 . r eik'r rf e—ik‘r'
Veour= e [ [ [ or or o L0 | (12a)

p(r)= ¥ (N)¥(r). (12b)

We then expand ¥(r) and ¥*(r) in terms of the creation and anni-
hilation operators for one electron (¢*, ¢) and one positron (b*, b) (see
section 6.3 of [1])

W (r) =3 [equs(r)+ b (r)] ,

W(r)= > [cus(r)+ bivs(r)], (13b)
AN, AN,
cte (5 D) 0 eto
2)
b b* 0 S = 0 b b*
bt 12 +2 ¢t
be -2 ¢ -2 be

Fig. 2. Identification of the terms of Ve conserving the total number of particles.
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Y*(r)¥(r) contains four terms varying the total number of particles by
AN;=0, *#2 (left column of fig. 2). The same results hold for
Y (r')¥(r') and AN, (right column of fig. 2)

There are therefore six ways of combining a term of ¥*(r)¥(r) and a
term of ¥ (r')¥*(r') with AN;+ AN,=0 in order to get a nonzero
matrix element of Vi, between two states with the same number of
particles as in (10). We now calculate the contribution of these six
terms.

Contribution of term 1. This term can be written
L Hge Wfidie [ j iy ]
(1) 16#380 kz ? 2 ? 2 | d ruq(r) € u,(r)
<[ [ @) e ue [[lesectelly - sutdlcsetclon.
(14)
The —8&,, term of the bracket corresponds to the subtraction of the
vacuum shift. The two integrals over r and r’ give the product of two
matrix elements
(ugle™ | u, Xus €% uy) . (15)

The two matrix elements of the last line of (14) are equal to

(1n|C§CrC§'Cr| ln‘) = anarsam‘ »
Olciectc|0y=0. (16)

Finally, we get

~T6r 33 JcPk — (u,|e® P, &7 7|, , a7
where

P. = 2 Ius)(usl (18)

is the projector into the manifold of positive energy states of the
single-particle Dirac Hamiltonian #p.
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Fig. 3. Coulomb interaction: diagram for term (1).

We can also introduce a diagrammatic representation of the results,
using full upwards (downwards) arrows for electron (positron) states, a
dotted line for electrostatic interaction, a wavy line for transverse
photons. The diagram associated with (17) is represented on fig. 3.

Contribution of terms 2 and 3. We have

Q=L [T 5SS wler |uXole ™ |v)
1611'3801(24_,_31‘; A !
X [(Lulcicbbi| 1) — 8,0l cte,bb?10)] . (19)
Using

(1n|C$Crbsb”1n‘) = asram'aqn )
Olcschbiloy=0, (20)

this expression becomes
= J:E__ dfi—k ik-r i —iker] .,
@)= TGz, | ez (tale™ ) 2 Corle™ o) (21)

In order to interpret such a result, we first note that

> (vsle ™ |vg) (22)
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Fig. 4. Coulomb interaction: diagram for terms (2) and (3).

is the Fourier transform of the charge distribution in the vacuum.
Expression (21) therefore represents the electrostatic interaction of the
electron with the charge distribution in the vacuum [see also the
diagrammatic representation of (21) on fig. 4].

Actually, in the presence of a uniform magnetic field By, which is the
situation considered here, the charge distribution in vacuum is uniform
(it must be, as the static field By, invariant under any translation). It
doesn’t give rise to any electric field. It follows that the contribution of
(21) is equal to zero.

It must be emphasized however that, for other situations, for exam-
ple in the presence of a static scalar potential ¢, the contribution of
(21) would not be zero, but would be associated with vacuum polariza-
tion effects (and also charge renormalization).

A similar calculation shows that the contribution of term 3 is equal
to zero.

Contribution of term 4. One gets
. dBk ik-r —iker
@=Ll [ T S T letnede ™ len

X [(1,|bgbi bebF|1,) — 8.:40|b,b7 bb7(0)] . (23)

The two matrix elements of the bracket are equal to §,,6,9, and
therefore cancel each other.
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Fig. 5. Coulomb interaction: diagram for term (4).

167

The diagrammatic representation of term 4 is shown on fig. 5. Such a
term actually represents the electrostatic interaction in vacuum, which
is the same in presence or in absence of the electron, and which

therefore disappears when one subtracts the vacuum shift.

Contribution of term 5. Such a term is proportional to
(Lalcybi byl 1n) — 8um0lc b7 bici|0)

and is therefore equal to zero.

Contribution of term 6. One gets

O= ok, | T =5 5 S tale luaalelen
X [(Lalbgcic s b711,) — 8un0lbgc,c s b710)] -
The second term of the bracket is equal to 8,88, Writing
cei=6y—cte,
one transforms the first matrix element of the bracket into
SrsOnOgt — OsnOqrOrm' »

so that expression (25) becomes (after changing k into —k
integral)

q2 dSk

e aK ik-r —iker|y,
6) o) &2 {r|e* P e *" 1.

where

(24)

25)

(26)

27)

in the

(28)
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Fig. 6. Coulomb interaction: diagram for term (6).
P_= 3 |v;Xv,] (29)
q

is the projector into the manifold of negative energy states of #p.

In the diagrammatic representation of (28) (see fig. 6), we have now
in the intermediate state a positron line (instead of an electron line as
in fig. 3).

Combining all the previous results, we finally get

2 &Pk . )
(lnl VCOullln’) = ig%@'a‘[ ?(u,,|e"‘"(P+ = P_) eTikr |u,,:) 3 (30)

Remark. If we come back to section 6.4 of the previous course [1], we
can note that the calculation of the contribution of the Coulomb term
to the effective Hamiltonian considered in the previous course is
exactly the same as here, with the only difference that the single-
particle Hamiltonian %, given in (9) has to be replaced by #,= Bmc>.
Expression (30) remains therefore valid provided we replace u, and u,
by uo, and ugy, P. by Po., where ug, are the positive energy eigen-
spinors of o, Po. the projectors into the positive and negative energy
manifolds of ¥,. Since e** commute with %, they also commute with
Py. and we get

(1 |V00ulll ) 1671' £o J- kz (u0p|Pl]+ PD-i”Gp’)

_ 22 J’ d3k a 22’(1\{

16’?1'350 o kZ 41’1’280 i

@y
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where ky is the cut off in the k integral. This demonstrates the result
used in section 6.4 of [1].

3.1.2. Operatorial form for the contribution of the Coulomb term
It is useful now to use the identity

P.—P_= %/V%3, (32)

which can be easily checked by applying the two members of (32) to
any eigenstate |u,) or |v,) of #p. The denominator of (32) is easily
transformed. From the anticommutation relations of the Dirac
matrices, we get

Hy = m3c*+ cXa - w)

= m2c*+ ctwi— ghclo - By . (33)
q

On the other hand, since e*7 is a translation operator for p (and also
for o= p — gA,), we have

eil(-r m e—i.t-r = ry— hk : (34)
so that
e D e Bmc*+ ca - (79— hk)
€ e = o (35)
Vit [m2c*+ c¥(my— hk ) — ghc’o - Bo]'?

We now use the fact that the electron is not relativistic in the
initial and final states u, and w,. If, in the denominator of (35), we
neglect the terms in 7, and o - By, we get

1 1 1
(m2c*+ W2k 2~ me? (1+ %272’ (36)
where
x = hw/mc? . 37

We can then make an expansion of the denominator of (35) in powers
of 7 and o - B,. Keeping terms in a - m, 7§, o - By, we thus get from
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(35), after the angular integration,
(1n] V(bul“n') = (un1?/C0ul|un‘> ’ (38)

where

o [ 5 1 1 e
CVCoul_; ! dxq Bmc mﬁ‘f’ C® - Ty a T O i A+ xz)

1 qﬁ 1
B3 (1 A+ Py @ B ) &
with
¢ _ 1 _ how ;
4areghc  137° M= U

It must be noted that there is now no restriction on the cut off x,
which can be larger than 1. We have a complete relativistic calculatior
to order 1 in a. It also appears on (39) that the divergence is only
logarithmic in xy, and not linear as in the nonrelativistic theory (sec
expression 31).

3.2. Contribution of transverse photons

The general scheme of the calculation is the same as for Viou. The twe
operators U,, given in (6), and appearing in (10), contain the same fou
operators c*c, bb*, ctb* and bc as the two operators W* ¥ appearin;
in Ve, so that we can still use fig. 2.

The only differences are, first, that we must take the matri:
elements of @ - & exp(xik - r) instead of exp(xik - r) (where £ is th
polarization of the transverse photon), secondly, that we have nov
energy denominators and sum over intermediate states instead o
[ Bk/k>.

So, we will just give here the diagrams associated with the six term
of fig. 2 and the final result.

Term 1
In the intermediate state, we have one electron and one transvers
photon.
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Fig. 7. Contribution of transverse photons: diagram (1).

Terms 2 and 3

Fig. 8. Contribution of transverse photons: diagrams (2) and (3).

They describe the interaction of the electron with the transverse field
of the vacuum current. In a uniform magnetic field By, the vacuum
current is equal to zero (because of rotational and translational in-
variances) so that the contribution of these two terms vanishes.

Term 4

Such a term describes the transverse interactions in the vacuum
which are the same in presence or in absence of the electron and which
therefore do not contribute to H.g.
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Fig. 9. Contribution of transverse photons: diagram (4).
Term 5

It is equal to zero for the same reasons as for Voul-

Term 6

Fig. 10. Contribution of transverse photons: diagram (6).

In the intermediate state, we have now two electrons, one positron
and one transverse photon.

Finally, only terms 1 and 6 contribute and give
<1u|HeJ3'ﬂ'|1n') = (unigféﬂluu’)
_gc J‘ St i flug
o) G2 e
x (e - @) ¥ | gt -

= : —iker|y,
B e =% B o =) € @< )
+same term with E, - E,, .

(41)
Now, we use
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Py 1o 1

E v % Eilo-® E 00 DV (“42)
and (32), which gives
2
1 _ E,+ ¥#p+ hodtp/V #D (43)

E, — %p— ho¥p/N ¥}  E2—[#}+ hPw?+ 2hoV X3

The effect of the two exp(+ik - r) operators in (41) is to replace
everywhere ary by o — fik. As for V,,, we expand the fraction in (43)
in a power series of , o+ B, and E%— m?* We then sum over &
perpendicular to k, integrate over solid angle, and get in this way a
single-particle Hamiltonian " analogous to (39), and given by

(trans) — a i 2 o _L]
FUE WJ; dx {ﬁmc [x T+ 0"
F— [Z_x_ 2% Mt
I T3A+ )7 31+ xz)m]

] [4_x_ 4xr  x*(2x*+ 5)]
Bomls 3ta0" i+ "

(44)

2 2
+B . By [2x - 2 e |

1+ x)7 31+ 2P

3.3. Transformation to an “even’ effective Hamiltonian final results

The sum of (39) and (44) is a single-particle Hamiltonian which still
contains an ‘“‘odd” operator, the term proportional to e - 7y, which
connects the two manifolds €% and €% of Bmc® We can, by a unitary
transformation, transform the sum of (39), (44) (and of the unperturbed
Hamiltonian) into an “even” Hamiltonian (operating only within &9
and &Y, ie., acting only upon two-components spinors). From the
results of section 6.4 of the previous course [1], it follows that any
Dirac Hamiltonian of the form

Bmc*(1+e)+ ca-m(1+ ')+ BE 45)

where ¢, ¢'<1 and € is an “even” operator (%€ < mc?) can be trans-
formed into
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2 "2
,B{mcz(l +e)+E (gm:’%(% :)“’ Ly %

=g[mcz(1+s)+$+(%—%0-30)(“25'—8)]. (46)

Applying such a result to the sum of (39) and (44) finally gives the even
form of the total effective Hamiltonian

Heg = mcz[l + % LXM fi(x) clx]

O T

47)
where

x2

1
filx) = a+ xz)lxz+ X = 1+ )7’

_ Ny 4 A X S
k)= [1 {1+ xR it Sx(l+x9% L2 (1 + xz)m] '

Ja) =% [g (1- § +J§c2)m) + a +];2)3f2] ' (48)

The graphs of the three functions f, f5, f; are represented on fig. 11.

4/3 f5(x)

fy (x)

/2
fy (x)

L 1 1
0 1 2 3 4

Fig. 11. Graphs of the three functions fi, fa, fs.
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Remark

One can check that the same result is obtained if one works in the
Lorentz gauge and if one computes the contribution of longitudinal
and temporal photons.

4. Physical discussion
4.1. Comparison with nonrelativistic calculations
From (47) and (48), it is possible first to calculate the contribution of

nonrelativistic modes by expanding fi(x), f2(x), f3(x) around x = 0.
To lowest order, we have

f1=1+x+.‘.
flx)=5+...
fax)=0+.... (49)

[Since f; is multiplied by mc? in (47), we must expand it one order
further than f, and f,]. Inserting (49) into the integrals appearing in
(47), and taking a cut-off xy <1, we get

2
%eﬁ=(m+aml+am2)c2+%(1—%%)—-2‘1%0-30, (50)
with
s 5

This is in complete agreement with the results of [2]. 8m, is the mass
correction associated with self-reaction, 8m, the mass correction due to
vacuum fluctuations. At this order, there are no modifications of the
spin magnetic energy.

By pushing the expansions of fi, f,, f; one step further in 1/c,

f(x)=1+x—-3>+...,
fx)=5+x+...,
filx)y=%+..., (52)
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we can now make the connection with the results of [3]. Using (47) and
(52), we get now

%eﬂ e (m + émy+ sz— 6»‘?’!3)6‘2

ks _ﬂ%_%)_ﬂ . _zm)
e (1 L o Bo(]. 2 M), (53)

™ 2 (54)

The new terms appearing in (53) have a simple physical meaning. The
term —&msc? represents a decrease of the electron self-energy due to
many-particle effects. We note that, if the nonrelativistic calculations of
[3] were done with an Hamiltonian derived from the single-particle
Dirac equation by a Foldy-Wouthuysen transformation, we would get
here a correction with the opposite sign. This shows that the relativistic
corrections to be added to the Hamiltonian must be derived from the
second quantized Dirac-Maxwell Hamiltonian (as in section 6.4 of [1]),
and not from the single-particle Dirac Hamiltonian.

The term —(8my/m)(w3/2m) represents a correction to the kinetic
energy due to the mass correction associated with vacuum fluctuations.
It appears at a higher order in 1/c than the contribution of self-reaction
(term in dm,/m).

Finally, the last term of (54) represents a correction associated with a
decrease of the spin magnetic moment. As shown in [3] and [6], such a
correction is due to the angular vibration of the spin in vacuum
fluctuations, plus some “‘crossed” relativistic effects between the vibra-
tion of the charge and the motion of the spin. It is actually possible to
give a complete semi-classical interpretation of the factor 5/3 appearing
in the last term of (54). One can show also [3] that, at this order,
self-reaction does not introduce any dynamical effect on the spin. It
gives rise to a term proportional to o= 1, which shifts the two spin
states by the same amount, so that the motion of the spin is not
changed.

4.2. Contribution of high-frequency modes — mass renormalization

For x =1, we have

Fi) = ) = fo) = 5. (55)
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We get therefore the same logarithmic divergence, which will be

“reabsorbed” in the mass renormalization.
Taking x> 1, we can write

Heg = mcz[l +%(§]0g xu+ Cl)]
2m [1 ——(glog XM+ CQ):I

-2 o B[ 1-2 Glog xu+ G|, (56)

where C, C,, C; are three constants,

C=3og2-1%,
C=3og2-5,
Ci=3log2—-5. (57)

Since a = 1/137, a log x; = 1 when xy = €'¥ which is a huge number.
We can therefore choose

1<xy<e (58)

so that we describe correctly the effect of a wide spectrum of relativis-
tic modes (since x> 1), while keeping

(a/m)log xm<<1. (59)
Using (59), we can write the second term of (56), to order 1 in «, as

76 [ e [™ B )

e [1 i L falx) dx] = (60)
with

= a [™

— m[1+—j f(x) dx] . (61)

T Jo

Such a mass m, which appears in the kinetic energy term, is the
experimental mass, which is measured in deflection experiments.
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4.3. Spin anomaly (g — 2)/2

We can now re-express the last term of . in terms of the renor-
malized Bohr magneton —gfi/2m,

__‘?f’TﬂP‘%J:Mfs(x)dx] o=, 62)

2m m
Expression (62) can also be written

h
—g-z-?nfzo' B, (63)

where g is the g-factor given by
m a [™
g=221-2 ™y ax]. 69
Using (61), we finally get for the electron spin anomaly
= E52=2 ™ (£~ Aol dx. (©5)

The contribution of f, in (65) is the contribution of the mass renor-
malization to the spin anomaly.

The graph of f,— f5 is represented on fig. 12. The integral of f,— f5
from 0 to « is convergent and equal to 1/2. We therefore get for a. a
result independent of the cut-off xy, as it should be

a.= af2m. (66)

The curve of fig. 12 shows how the various modes of the elec-
tromagnetic field contribute to g — 2. It clearly appears on fig. 12 that
the main contribution comes from the domain x <1 and that it is not
necessary to invoke ultra-high relativistic modes for explaining the sign
of g—2 (actually, the contribution of the domain x > 1 to the integral
is negative!). The quantitative results derived in this lecture therefore
show that the main physical conclusions derived from nonrelativistic
calculations are not drastically changed by including the effect of
relativistic modes.
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Fig. 12. Graph of the function f>— fs.

Remark. If we come back to the expressions (57) of C, G, s, we see
that

: (67)

bl

Cz - C3 —
which is the result used in the evaluation of the integral (65). But

G#G, (68)
which means that the constant term (after the logarithmic one) is not
the same in the rest mass energy and in the kinetic energy. Such a
surprising result is actually due to the noncovariant character of the cut
off (see also the discussion of §2.1.4 of [2]). By using a covariant
procedure for the cut off, we have checked that one obtains new values

1, C5, C4 for Cy, C;, C; such that
Ci=10Cs,

G- Ci= G— G (69)
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