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1. Introduction

The previous course [1] contains a few simple physical discussions of
the spin anomaly g - 2.

ln section 4, which is actually a reprint of reference [2], a dynamical
equation is derived for a nonrelativistic electron after elimination of
the radiation field variables. The analysis of such an equation [§5 of
reference 2] shows that, at the lowest order in the fine structure
constant a and in lie, the main effect -of the electron-field coupling is
to increase the mass appearing in the kinetic energy term [and in the
rest mass energy term], whereas the coupling of the spin magnetic
moment with a static magnetic field Bo remains unchanged. ln other
words, the cyclotron frequency of the orbiting charge is slowed down,
as a consequence of the mass increase, but the Larmor frequency of
the spin is not modified. When re-expressed in terms of the corrected
mass appearing in the kinetic energy (or in the corrected cyclotron
frequency), the spin magnetic moment appears to have ag-factor
larger than 2. Such a simple treatment therefore leads to the correct
sign for g - 2.

Corrections to the Larmor frequency only appear at the next order
in lie, as shown in reference [3] (see also section 5.3 of the previous
course [1]). They are due to the vacuum fluctuations of the radiation
field which, among other effects, produce a random angular vibration
of the spin, and, consequently, a decrease of its effective magnetic
moment. A similar vibration also exists for the charge and has been
considered by Welton [4] in order to interpret the Lamb shift. [The
mass correction considered above does not remove the degeneracy
between the two states 2sl/2and 2pl/2 of hydrogen which have the same
average kinetic energy.] The vibration of the charge in the Coulomb
potential of the proton produces a correction of the potential energy
which is not the same for the 2s and 2p states, and one gets in this way
the correct order of magnitude for the 2s1/r2p1/2 splitting. For g - 2,
the main effect seems therefore to be the slowing down of the charge
motion due to the mass increase and not the vibration of the spin (in
the non-relativistic domain, electric effects predominate over magnetic
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Effective Hamiltonian approach to g - 2 - relativistic calculation 159

ones). This explains the failure of a Welton's type picture for explain­
ing the sign of g - 2 (see also reference [5]).

The previous treatments start from nonrelativistic Hamiltonians and
they consider only the contribution of the nonrelativistic modes of the
radiation field (hw «:: mc2). On the other hand, it has been suggested
that the positive sign of g - 2 cou Id be due to pure relativistic effects,
related to the complex dynamics of the Dirac electron, and cor­
responding for example to a modification of the "Zitterbewegung"
induced by high frequency vacuum fluctuations [a brief review of such
suggestions is given in §4.3 of reference [3]). It seems therefore
interesting to try to extend the effective Hamiltonian approach of [3),
in order to include the effect of relativistic modes (hw 2:: mc2), and to
see if they change drastically the main conclusions given above. This is
the main purpose of this lecture.

More precisely, we would like to determine the explicit frequency
dependence (for aIl values of w and not only for hw «:: mc2 as in [3]) of
the various correction terms which describe the modification of the
motion of a slow electron in a weak static magnetic field. To answer
such a question, the powerful covariant Q.E.D. formalism, which deals
with the S-matrix (and not with the Hamiltonian) doesn't seem ap­
propriate. Furthermore, the integration parameters which appear in
the various integrals of such a formalism are not directly related to the
frequency of the photon emitted in the virtual intermediate state. This
is why we have preferred here to extend, in the simplest possible way,
the effective Hamiltonian method of reference [3) to the relativistic
domain, using the "old fashioned perturbation theory" and limiting the
ca1culations to the lowest order in the fine structure constant a.

ln section 2, we introduce our method of ca1culation. We start from
the full Hamiltonian H of the interacting quantized Dirac and Max­
well fields, given in section 6.3 of the previous course [1), and we
derive from H an effective Hamiltonian in the single-electron zero­
photon subspace. We th en ca1culate the various terms of the effective
Hamiltonian (section 3) and discuss their physical meaning (section 4).

2. General method

2.1. Hamiltonian H - definition of Ho and V

As in section 6.3 of the previous course [1), the full Q.E.D. Hamil­
tonian can be written
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(1)

where HR is tQe free Maxwell field Hamiltonian,

(2)

(at and ai being the creation and annihilation operators of a photon of
mode i), HD is the free Dirac field Hamiltonian,

(3)

1Jr+ and 1Jr being the quantized Dirac fields, Ao the static vector
potential (we suppose that there is no static scalar potential c/Jo), and

H1= VCou1+ U.l (4)

is the interaction Hamiltonian which, in Coulomb gauge, contains the
electrostatic interaction

VCoul = 8q2 l l d3r d3r' 1Jr+(r)1Jr(r)1Jr+(r')1Jr(r')7T80 Ir - r'i

and the interaction

U.l = - l d3r j(r)· A(r)

= - qc l d3r 1Jr+(r)a1Jr(r)· A(r)

(5)

(6)

of the Dirac CUITentj(r) with the transverse Maxwell field A(r).
The splitting of H into an unperturbed part Ho and a coupling

V = H - Ho will be different from the one considered in section 6.4 of
[1]. We take noW

(7)

and, consequently, for V,

(8)
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Ho describes states containing an arbitrary number of noninteracting
electrons e-, positrons e+ (orbiting in the static field Ao) and photons. V

describes the coupling between these three types of particles.

2.2. Relevant manifolds of Ho

Sin ce we are interested in the dynamics of a single slow electron, with
no incident (real) photon, we must first con sider the manifold 'if:: 1 of Ho
corresponding to one e- and zero photon. Such a manifold is non­
degenerate since HD is the second quantized form of the single particle
Hamiltonian

'JeD = {3mc2 + ca . 1ro ,

7To = P - qAo(r),

'(9a)

(9b)

not restricted, as in section 6.4 of [1], to the {3mc2 term. The energy
spectrum of 'if:: 1 is therefore the (positive) energy spectrum of a single
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electron orbiting in a static magnetic field. We will cali Un (vn) the
eigenspinors of 'Jeo corresponding to a positive (negative) energy. We
are inter~ted here in the matrix element of the effective Hamiltonian
HetT between two states n and n'of the bottom of the 'if: 1 manifold
(associated with the nonrelativistic spinors Un and Un' of 'Jeo).

Since the electron can virtually emit a photon w, we must also
consider the manifold 'if:2, corresponding to one e- and one photon w,
and which starts at a distance hw above the bottom of 'if:1 (fig. 1).
Starting from n', the combined system can make a virtual transition to
a state a of 'if:2, and then come back to n (single arrow of fig. 1).
Contrarily to n and n', there is no restriction on the state a which can
be relativistic for the electron.

Finally, by studying the selection rules of the coupling V, it appears
that one must also consider the manifold 'if:4, corresponding to two e-,
one e+, and one photon w (creation of a pair e--e+ and of a photon w
from 'if:1), and which starts at a distance 2mc2 + hw from the bottom of
'if: 1 (fig. 1). As for 'if:2, the combined system can follow the path
n' ~ b ~ n where b is an arbitrary state of 'if:4 (double arrows of fig. 1).

2.3. Expression of the effective Hamiltonian

From the results of section 5 of [1], the matrix element of the effective
Hamiltonian HetT between the single particle states ln and ln' of 'if:1, is,
to lowest order in the fine structure constant CI' = q2j41T"Eohc

<ln 1HetTl ln') = <ln 1 V CoulI1n')

+! L <lnIUIJa)<aIU-L11n')[En~Ea +En,~EJaE\rz

+! L <lnIU-Llb)<bIU-L11n')[En~Eb +En':EJ·bE\r4
(10)

Since VCoul is already of order q2, only its restriction to 'if:1 has to be
considered, whereas U-L, which is of order q, couples 'if:1 to 'if:2 and 'if:4.

As in subsection 6.4.3. of [1], in the following we will also subtract
from HetT a unit operator proportion al to the shift of the vacuum, since
ail energies are measured with respect to the vacuum.

We now calculate the various terms of (10) and show that

(11)
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where 'Jeeff is a single-partic1e Dirac Hamiltonian. Since Un and Un' are
nonrelativistic spinors, we will then transform 'Jeeff into an "even" form
(only acting upon two-component spinors) more appropriate for phy­
sical discussions.

3. Calculation of the effective Hamiltonian

3.1. Contribution of the Coulomb interaction

3.1.1. Identification and calculation of the various terms
Introducing the Fourier transform of 1/1r - r'l, we first write VCoul as

p(r) = P+(r)P(r). (12b)

We then expand P(r) and P+(r) in terms of the creation and anni­
hilation operators for one electron (c+, c) and one positron (b+, b) (see
section 6.3 of [ID

P+(r) = 2: [c~u~(r)+ bqv;(r)],
q

c+c

o~a

c+ c
2)

b b+

(3)

b b+
o 0

(4)

c+ b+

+2 ;><,:2

c+ b+

(6)

b c
-2 -2b c

(13b)

Fig. 2. Identification of the terms of VCoul conserving the total number of particles.
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1.J1+(r)P(r) contains four terms varying the total number of particles by
tlNl = 0, ±2 (left column of fig. 2). The same results hold for
1.J1+(r')P(r') and ,1N2 (right column of fig. 2)

There are therefore six ways of combining a term of P+(r)P(r) and a
term of P+(r')P+(r') with ,1N1 + ,1N2 = ° in order to get a nonzero
matrix element of VCoul between two states with the same number of
particles as in (10). We now calculate the contribution of these six
terms.

Contribution of term 1. This term can be written

2 l d3k [f . ](1) = 16~38 k2 L L L L d3ru~(r) e1k'r ur(r)
o q , s t

X [I d3r' u~(r') e-ik'r' ul(r')][ <lnlc~c,c~ CIl ln') - 8nn,<0Ic~c,c~cliO)] .

(14)

The -8nn, term of the bracket corresponds to the subtraction of the
vacuum shift. The two integrals over rand r' give the product of two
matrix elements

The two matrix elements of the last line of (14) are equal to

<lnlc~c,c~ ctI1n') = 8nq8rs8tn"

<Olc~ c,c~CliO) = ° .

Finally, we get

where

(15)

(16)

(17)

(18)

is the projector into the manifold of positive energy states of the
single-particle Dirac Hamiltonian 'JeD•
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Fig. 3. Coulomb interaction: diagram for term (1).

We can also introduce a diagrammatic representation of the results,
using full upwards (downwards) arrows for electron (positron) states, a
dotted line for electrostatic interaction, a wavy line for transverse
photons. The diagram associated with (17) is represented on fig. 3.

Contribution of terms 2 and 3. We have

Using

<lnlc~CrbsbiI1n'> = 8sl>m,8qn,

<OIc~crbsbiIO> = 0 ,

this expression becomes

ln order to interpret such a result, we first note that

(19)

(20)

(21)

(22)
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--------~~o

Fig. 4. Coulomb interaction: diagram for terms (2) and (3).

is the Fourier transform of the charge distribution in the vacuum.
Expression (21) therefore represents the electrostatic interaction of the
electron with the charge distribution in the vacuum [see also the
diagrammatic representation of (21) on fig. 4].

Actually, in the presence of a uniform magnetic field Bo, which is the
situation considered here, the charge distribution in vacuum is uniform
(it must be, as the static field Bo, invariant under any translation). It
doesn't give rise to any electric field. It follows that the contribution of
(21) is equal to zero.

It must be emphasized however that, for other situations, for exam­
pIe in the presence of a static scalar potential <Po, the contribution of
(21) would not be zero, but would be associated with vacuum polariza­
tion effects (and also charge renormalization).

A similar ca1culation shows that the contribution of term 3 is equal
to zero.

Contribution of term 4. One gets

(23)

The two matrix elements of the bracket are equal to 8nn,8~st and
therefore cancel each other.
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lr - 1r-
q s

~--------------~

Fig. 5. Coulomb interaction: diagram for term (4).

The diagrammatic representation of term 4 is shown on fig. 5. Such a
term actually represents the electrostatic interaction in vacuum, which
is the same in presence or in absence of the electron, and which
therefore disappears when one subtracts the vacuum shift.

Contribution of term 5. Such a term is proportion al to

(24)

and is therefore equal to zero.

Contribution of term 6. One gets

(25)

The second term of the bracket is equal to Dnn,DrsDqt. Writing

(26)

one transforms the first matrix element of the bracket into

(27)

so that expression (25) becomes (after changing k into -k in the
integral)

(28)

where
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/

Fig. 6. Coulomb interaction: diagram for term (6).

P- = L Ivq>(vql
q

(29)

is the projector into the manifold of negative energy states of 'JeD•

ln the diagrammatic representation of (28) (see fig. 6), we have now
in the intermediate state a positron line (instead of an electron line as
in fig. 3).

Combining ail the previous results, we finally get

(30)

Remark. If we come back to section 6.4 of the previous course [1), we
can note that the ca1culation of the contribution of the Coulomb term
to the effective Hamiltonian considered in the previous course is
exactly the same as here, with the only difference that the single­
partic1e Hamiltonian 'JeD given in (9) has to be replaced by 'Jeo = {3mc2•

Expression (30) remains therefore valid provided we replace Un and Un'

by uOp and uOp', P± by Po±, where uOp are the positive energy eigen­
spinors of 'Jeo, Po± the projectors into the positive and negative energy
manifolds of 'Jeo. Since e±ik'rcommute with 'Jeo, they also commute with
Po± and we get

(31)
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where kM is the cut off in the k integral. This demonstrates the result
used in section 6.4 of [1].

3.1.2. Operatorial form for the contribution of the Coulomb term
It is useful now to use the identity

(32)

which can be easily checked by applying the two members of (32) to
any eigenstate lun> or Ivn> of 'JeD• The denominator of (32) is easily
transformed. From the anticommutation relations of the Dirac
matrices, we get

'JeÏ> = m2c4 + c2(a . 11"0)2

= m2c4+ C211"5- qhc2u· Bo. (33)

On the other hand, since eik•r is a translation operator for p (and also
for 11"0 = P - qAo), we have

(34)

so that

(35)

We now use the fact that the electron is not relativistic in the
initial and final states Un and Un" If, in the denominator of (35), we
neglect the terms in 11"0 and u . Bo, we get

1
(m2c4+ h2c2k2)1/2

where

x = hw/mc2•

(36)

(37)

We can then make an expansion of the denominator of (35) in powers
of 11"0 and u· Bo. Keeping terms in a· 11"0, 11"5, u· Bo, we th us get from
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(35), after the angular integration,

(38)

where

(39)

with

lX = q2 = _1_
47TEohc 137 '

It must be noted that there is now no restriction on the cut off Xl'.

which can be larger than 1. We have a complete relativistic ca1culatior
to order 1 in lX. It also appears on (39) that the divergence is onl)
logarithmic in XM, and not linear as in the nonrelativistic theory (sef
expression 31).

3.2. Contribution of transverse photons

The general scheme of the ca1culation is the same as for VCoul. The tW(
operators Ut> given in (6), and appearing in (10), contain the same fou
operators c+ c, bb+, c+ b+ and bc as the two operators 1Jt+ 1Jt appearinl
in VCou!' so that we can still use fig. 2.

The only differences are, first, that we must take the matri:
elements of lX· E exp(±ik· r) instead of exp(±ik· r) (where E is thl
polarization of the transverse photon), secondly, that we have nov
energy denominators and sum over intermediate states instead 0
f d3k/k2.

So, we will just give here the diagrams associated with the six term
of fig. 2 and the final result.

Terrn 1

ln the intermediate state, we have one electron and one transvers

photon.
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Fig. 7. Contribution of transverse photons: diagram (1).

Terms 2 and 3

Fig. 8. Contribution of transverse photons: diagrams (2) and (3).

They describe the interaction of the electron with the transverse field
of the vacuum CUITent. ln a uniform magnetic field BQ, the vacuum
CUITentis equal to zero (because of rotation al and translation al in­
variances) so that the contribution of these two terms vanishes.

Term 4
Such a term describes the transverse interactions in the vacuum

which are the same in presence or in absence of the electron and which
therefore do not contribute to Ref!.
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Fig. 9. Contribution of transverse photons: diagram (4).

Terrn 5

It is equal to zero for the same reasons as for VCoul.

Terrn 6

Fig. 10. Contribution of transverse photons: diagram (6).

ln the intermediate state, we have now two electrons, one positron
and one transverse photon.

Finally, only terms 1 and 6 contribute and give

+ same term with En ~ En' .

Now, we use

(41)
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and (32), which gives

1
En - 'Jeo - (P+ - P_)fzw

(42)

1

En - 'Jeo - fzw'Jeo/V 'Jet

En + 'Jeo+ fzw'Jeo/~

E~ - ['Jet + fz2w2+ 2fzw~]'
(43)

The effect of the two exp(±ik· r) operators in (41) is to replace
everywhere 11"0by 11"0- fzk. As for V Cou" we expand the fraction in (43)

in a power series of 11"0, (T. Bo and E~ - m2c4• We then sum over E

perpendicular to k, integrate over solid angle, and get in this way a
single-particle Hamiltonian 'Je~t~ans)analogous to (39), and given by

a f XM { [ X2]'Je~rns)= 7T Jo dx {3mc2 x - (1 + X2)1/2

[2X 2X2 3x2 + 2 ]+ ca • 11"0 :3- 3(1 + X2)112- 3(1 + X2?12

11"B [4X 4X2 x2(2x2 + 5)]- {3 2m :3- 3(1 + X2)1/2 3(1 + X2)5/2

~ [ 2X2 3x2 + 4 ] }+ {3 2m (T. Bo 2x - (1 + X2)112 3(1 + X2?12 .
(44)

3.3. Transformation to an "even" effective Hamiltonian; final results

The sum of (39) and (44) is a single-particle Hamiltonian which still
contains an "odd" operator, the term proportion al to a· 11"0, which
connects the two manifolds I&'~and I&'~of {3mc2. We can, by a unitary
transformation, transform the sum of (39), (44) (and of the unperturbed
Hamiltonian) into an "even" Hamiltonian (operating only within I&'~
and I&'~, i.e., acting only upon two-components spinors). From the
results of section 6.4 of the previous course [1], it follows that any
Dirac Hamiltonian of the form

(3mc2(1 + E) + ca • 11"0(1+ E') + {31&' (45)

where E, E' ~ 1 and 1&'is an "even" ope rat or (1&'~ mc2) can be trans­
formed into
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{3 [ mc2(1 + 8) + C2(~~~O{;~: (?+ ~ ]

= {3[ mc2(1 + 8) + ~ + (;~ - ~ (T' Bo)(1 + 28' - 8)] . (46)

Applying such a result to the sum of (39) and (44) finally gives the even
form of the total effective Hamiltonian

where

1 x2

fI (x ) = (1-' __2\1/2 + x - ~7_\11? ,

[ x 4 x 2X]fz(x) = x 1- (1+ X2)1/2 + 3x(1 + X2)1/2 3(1+ x2)3/2 (1+ X2)5/2 ,

Nx) = x [~ (1- (1 +:2)1/2) + ~ (1+:2)3/2] . (48)

The graphs of the three functions fI, fz, h are represented on fig. 11.

o 2 3

x

4

Fig. 11. Graphs of the three functions /J, h h
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Remark
One can check that the same result is obtained if one works in the

Lorentz gauge and if one computes the contribution of longitudinal
and temporal photons.

4. Physical discussion

4.1. Comparison with nonrelativistic calculations

From (47) and (48), it is possible first to ca1culate the contribution of
nonrelativistic modes by expanding ft(x), fz(x), h(x) around x = O.

To lowest order, we have

fI = 1+ x +

!z(x)=±+3 •••

h(x) = 0 + .... (49)

[Since !t is multiplied by mcz in (47), we must expand it one order
further than fz and h]. Inserting (49) into the integrals appearing in
(47), and taking a cut-off XM ~ 1, we get

with

'!tefl = (m + 8ml + 8mz)cZ + 'iT6 (1-:!: 8ml) _!l!!..- (T • B2m 3 m 2m 0 ,
(50)

8ml a
m= 1TXM,

(51)

This is in complete agreement with the results of [2]. 8ml is the mass
correction associated with self-reaction, 8mz the mass correction due to
vacuum fluctuations. At this order, there are no modifications of the
spin magnetic energy.

By pushing the expansions of fI, fz, h one step further in Ile,

ft(x) = 1+ x - ~xz + ... ,

fz(x) = 1+ x + ,

h(x) = ~x + , (52)
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we can now make the connection with the results of [3]. Using (47) and
(52), we get now

'Jeeff = (m + 8ml + 8mz- 8m3)CZ

+ 7Tfi (1_~8ml_8mz)_~U.Bo(1_~8mz), (53)2m 3 m m 2m 3 m

with

(54)

The new terms appearing in (53) have a simple physical meaning. The
term -8m3cz represents a decrease of the electron self-energy due to
many-partic1e effects. We note that, if the nonrelativistic ca1culations of
[3] were done with an Hamiltonian derived from the single-partic1e
Dirac equation by a Foldy-Wouthuysen transformation, we would get
here a correction with the opposite sign. This shows that the relativistic
corrections to be added to the Hamiltonian must be derived from the
second quantized Dirac-Maxwell Hamiltonian (as in section 6.4 of [1]),
and not from the single-partic1e Dirac Hamiltonian.

The term -(8mz/m)(7T5J2m) represents a correction to the kinetic
energy due to the mass correction associated with vacuum fluctuations.
It appears at a higher order in 1/c than the contribution of self-reaction
(term in 8mrfm).

Finally, the last term of (54) represents a correction associated with a
decrease of the spin magnetic moment. As shown in [3] and [6], such a
correction is due to the angular vibration of the spin in vacuum
fluctuations, plus sorne "crossed" relativistic effects between the vibra­
tion of the charge and the motion of the spin. It is actually possible to
give a complete semi-c1assical interpretation of the factor 5/3 appearing
in the last term of (54). One can show also [3] that, at this order,
self-reaction do es not introduce any dynamical effect on the spin. It
gives rise to a term proportion al to (Tz = 1, which shifts the two spin
states by the same amount, so that the motion of the spin is not
changed.

4.2. Contribution of high-frequency modes - mass renormalization

For x ~ 1, we have

3
fl(x) = fz(x) = h(x) = 2x . (55)
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We get therefore the same logarithmic divergence, which will be
"reabsorbed" in the mass renormalization.

Taking XM ~ 1, we can write

1;"Z [a 3 )]
+_0 1--(210gXM+Cz2m 1r

- ~ eT • Bo [ 1- a (~logXM + C3) ] ,2m 1r

where Ch Cz, C3are three constants,

CI = ~log2 - L
Cz = ~log2 - -l2 ,

C3= ~log2 - H.

(56)

(57)

Since a = 1/137, a log XM = 1 when XM = el37which is a huge number.
We can therefore choose

(58)

so that we describe correctly the effect of a wide spectrum of relativis­
tic modes (since XM ~ 1), while keeping

(a/1r) log XM «:: 1 . (59)

Using (59), we can write the second term of (56), to order 1 in a, as

(60)

with

(61)

Such a mass Iii, which appears in the kinetic energy term, is the
experimental mass, which is measured in deflection experiments.
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4.3. Spin anomaly (g - 2)/2

We can now re-express the last term of 'Jeeff in terms of the renor­
malized Bohr magneton - qh!2m,

Expression (62) can also be written

-.!Lfl U· Bo,- g 2m 2

where g is the g-factor given by

Using (61), we finally get for the electron spin anomaly

g-2 cr rXMae = -2- = 7T Jo [fz(x) - h(x)] dx.

(62)

(63)

(64)

(65)

The contribution of fz in (65) is the contribution of the mass renor­
malization to the spin anomaly.

The graph of fz - h is represented on fig. 12. The integral of fz - h
from 0 to 00 is convergent and equal to 1/2. We therefore get for ae a
result independent of the cut-off XM, as it should be

(66)

The curve of fig. 12 shows how the various modes of the elec­
tromagnetic field contribute to g - 2. It clearly appears on fig. 12 that
the main contribution cornes from the domain x < 1 and that it is not
necessary to invoke ultra-high relativistic modes for explaining the sign
of g - 2 (actually, the contribution of the domain x> 1to the integral
is negative!). The quantitative results derived in this lecture therefore
show that the main physical conclusions derived from nonrelativistic
ca1culations are not drastically changed by including the effect of
relativistic modes.
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Fig. 12. Graph of the function fz - h-

Remark. If we come back to the expressions (57) of Ch Cz, C3, we see
that

(67)

which is the result used in the evaluation of the integral (65). But

(68)

which means that the constant term (after the logarithmic one) is not
the same in the rest mass energy and in the kinetic energy. Such a
surprising result is actually due to the noncovariant character of the cut
off (see also the discussion of §2.1.4 of [2]). By using a covariant
procedure for the cut off, we have checked that one obtains new values
C;, Cz, C3 for Ch Cz, C3 such that

C; = CL

(69)
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