Optical Pumping and Interaction of Atoms
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Optical pumping can be briefly described as the transfer of angular mo-
mentum from polarized photons to atoms. It provides very sensitive optical
detection of any change in the angular s‘ate of the atom, resulting from
RF transitions between Zeeman sublevels, relaxation processes, etg. ...

The principal applications of optical pumping may be divided into 3 parts:

—-Speciroscopic measurements

~study of relaxation processes and collisions

~study of the interaction of oriented atoms with the e.m. field.

This course wiil describe some effects related to the third part.§

We will study how oriented atoms are perturbed when they are irradiated
by light or RF photons. When the frequency of the impinging photon is equal
to the Bohr frequency of an atomic transition, the atom absorbs it. Energy
is conserved during such a transition and the process is called a real absorp-
tion. If energy cannot be conserved during the transition, the interaction is
described in terms of virfual absorption and reemission of photons by the
atom, The purpose of these lectures is to describe some effects of these real
or virtual absorption of optical and RF photons.

The first iwo lectures will be devoted to the interaction with optical pho-
tons. It will be shown, first. theoretically then experimentally, how atomic
sublevels in the ground state are broadened and shifted by irradiation with
resonant or near resonant optical photons. The last two lectures will describe
the interactions with RF photons and will essentially be devoted to the study

® Leciurc Notes taken by J. Dupont-Roc, D, Ostrowsky and N. Polonsky.
1 For a detailed description of the basic principies, experimental techniques and the
other upplications of optical pumpmg, see references’.
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343 CARGESE LECTURES IN PHYZICS

of higher order processes involving several quanta. The possibility of can-
celling the Landé factor of an atom by interaction with a BF field will also
be described. The understanding of all these effects requires the knowledge of
crossing and anticrossing of energy levels. So this concept will be first
deseribed in the third lecture,

i. Interaction of Atoms wlih Optical Photons

Insroduction

When atoms, in the ground state, are irradiated with resonant or quasi
resonant optical photons, the problems to be solved are the following:

How are the atoms excited?
What do they do in the excited state?
How do they fall back to the ground state?

These problems have been studied in great detail in references,? In this
course we will focus our attention only on the first step {excitation process)
and use a different approach based on the resoivant formalism,®* As this
formalism will prove to be useful also for the other chapters of this course it
will be first briefly reviewed (§ A). We will then apply it to the problem of
the light shifts (§ B). We wiil finally describe the experimental results some
of which have been obtained very recently (8 C).

A. Resolvant formalism
(1) Definition. The resolvant G(z) of the Hamiltonian J# is by definition:

G(z) =

z - (D)

G(z) is simply related to the evolution operator U(f) == ¢~ '**;

& ____l__ =izt
Un S .L e~ Gz} dz (1.2)

where C is the following contour of the complex plane

>0

real axis

t<o
Fig. 1
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It may be easily shown that G{z) is an analytic funclion on the complex
z plane ¢xcept eventually on the real axis where poles and cuts corresponding
to the discrete and continuous eigenvalues of £ may be found.

For ¢ > 0{s < 0), only the part of the contour C above (below} the real
axis gives a non zero contribution.

~—The matrix elements of G(z) are often more easily evaluated than those
of U{f). This explains the importance of G(z). If # = #°, + V, and if
@) is an eigenstate of #, evaluation of (a| G(2) la) gives, by (1.2), the
probability amplitude that, the system being in state |a) at ¢ = 0, it remains
in the same state at time £, This is important for decay problems. Evaluation
of {b} G{z) |a) leads also to the transition amplitude from la) to another
state |5 of 3%, under the efiect of V.

—1It is usually not necessary to calculate all the matrix elements of G.
Depending on the problem to be solved, only a few of them must be evaluated.
So we will now derive an explicit expression for the projection, G(z2), of G(2)
into a subspace, £}, of the Hilbert space. If P (and Q) are the projections

onto {out of) & PrupP PtOuli PQ =0
Q' =Q [P,#]=0 [Q,#] =0
C(z) = PG(2) P (1.3)
and in general way for any operator A4:

A = PAP
G and A operate only inside e,

(2) Explicit expression for G(z). Using the identity:

iea i =0

A B A B
we obtain:

G = Gy + G, VG (1.4)
where G is the resolvant of the Hamiltonian 3¢,
Go = !
z - 3,
From (1.4) it is easy to compute G = PGP
Gt P vep

+
L - x 'o L - -#’ o
t spanned by eigenstates of .
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Using the equality P + Q = 1, we have also:

P 1
G = o VG + VOGP . L5
z—Hy z-3H, z — 3, 9 o

On the other hand, from the definition of G

we get :
QG- -V)(P+Q)GP =D
or
[z — 'y — QVQI OGP = QVPE (1.6)
Replacing in (1.5) @GP by this new expression, we get:
PR SRS B PO S SRR, | M T
z=#, z-H, 2=, z-—Hy~QV0
or
ydly = Ve Wl oyl ip
z - ~QVQ
We finally obtain:
0 PR an
Z - -#g — R(Z} ’
where
E(z) = PVP + PV--—-—-Q-;----- 174 (1.8)
z - H#y - QVQ

R(z) can be expanded for small ¥:

Rey=pPvPopv—L2 ypipr 2 _y_ 2 yp, ..
() z"—u#o Z"-n#o Z"'"uafo

(19
The structure of the matrix elements of R(z) is simply the product of
matrix elements of ¥ and energy denominators. But, due to the presence of @,
all the intermediate states must be outside &. In other words, the diagrams
representing R{z) must be irreductible, in the sense that internal and external
lines do not correspond to the same subspace.
~—Equation (1.7) is rigorous. If R(z) is small compared to #, one can
develop (1.7) in a power series of R(z):

G = Go + GQR‘GO + GoRGoRGo - e (l.iO)



OPTICAL PUMPING AND INTERACTION OF ATOMS 351

and represent the development so obtained by diagrams:

- ! + + + 4oe0 {IL11)
!

the full line (true propagator) being associated to G(2), the dotted line (free
propagator) to Gy, and the circles to B(z).

Up to now, no approximation has been made. If ¥is small, we can replace
in (1.7) R(z) by an approximate value, R'(z), obtained for example by keep-
ing only the first two terms of equation (1.9):

‘1
z -y — R(2) {1.10 bis)
= Go + Goﬁ-’ag + GQEGQEGQ o+ v

This amounts to replacing in (1.11) all the circles by the diagrams asso-
ciated with the approximate expression R'(z) and represented by squares

in (L.12).
i
= l + é * + 4+ voe (]’_]2)

G(z) =

But it must be emphasized that this is much better than an ordinary
perturbation treatment where we would have kept only a finite number of
the diagrams of (1.11). By making an approximation only on R(2) in the
expression (1.7), and so by keeping all the terms of the expression (L.10 bis),
we do in fact sum an entire class of diagrams which are the most important
and we keep terms with arbitrarily high powers of ¥ as it appears in (1.12).
This is of great interest in many problems such as the decay of excited atomic
staies which we discuss in the next paragraph as an application of the resol-
vant formalism,

(3) Decay of an atomic excited state. Consider a two-level atom (Fig. 2),
coupled by the hamiltonian V to the electromagnetic field, We study the
decay of the excited state. The hamiltonian for the problem is #° =, + V
where O, represents the energy of the atom and of the free radintion field.
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To the first order, ¥ couples only the two states le, ¢) (excited state with no
photon) and |gke,) (ground state with a photon of momentum & and polar-

ization s;). e

3

1%

Fig, 2

The two stationary states for the problem are |g, &, 2,) and |e, o) = |a).
We have (a| ¥ |a) = 0 and {a| ¥ |gks,) # 0.
Taking the zero of energy as the ground state, we have:

Holad =kola) (L.13)

To study the decay of |a), we shall consider a one dimensional subspace ¢,
subtended by |a) and calculate the matrix element G,{z) = {a| G |a) using
(1.7) and (1.13); we get: :

G2) = ————
z - kg o RAZ)

We shall approximate R,(z) by the first twe terms of its expansion in
powers of

(1.14)

PV - 2

Z—'Ho

Riz) = CalV]a) + <a VP|a)

or

s = \I12
OED® KaiVigkep® irlf'f:*)‘ L15)

U'E(z) 1s small and smooth, the only values of z for which 3‘:(3) is ime
portant are near z = k,. We approximatet G.(2) in the upper half plane
near the real axis by i

z — ko — R, (ko + i8)

So R}, imay be written in the following way:

E,{z} o~

= {lal ¥ |gke))?
R, = ol Rl o[£ M
§§ ko -k + ig

+ A more correct and rigorous treatment based on analytic continuation of G,(z) is
nresented in references®.
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or, replacing the summation over k by integrations over the length and the
solid angle 2 of k:

2 :
ko —k + 15 2
where

il "
AE = J‘?(ko e k) k2 dk;:J’d!? IKa |V| gkedi
- hj&(kg - pR fdsa Ka V| kel

The final expression of -C-?:(z) is thus:

Gz) = 1 = (L16)
z - ko e AE "‘§' i“"i"

From (1.16), one gets easily
a|U)] @)y m g™Mo" o' 45 gmUIRN (L17)

We have then found the shift AE and the natural width I' of the excited
state.
In this treatment we have made a partial summation of an infinite set of
diagrams: :
neglecting diagrams of the type:

« LES .
@ & gjk & @' -}-o.c

‘This means we have approximated e~ ¢ by

(5 (5
o 2l aN 2L

I+
2 21 K}

L

We have done an infinite summation to find the exponential behavior, the
only approximation being associated with the value of I’ which differs
slightly from (I')rue.

2% Tavwy
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B. Light shifts

We shall now use the resolvant formalism to study the evolution of an
atom irradiated by a light beam,

In & first step, we shall consider a simple atomic model with no Zeeman
structure, and give a physical interpretation of the results obtained.

In the second part we shall generalize the theoretical formulas to the more
complicated case of an atom with a Zeeman structure. We shall then give
some experimental evidence for the predicted effects.

(1) Simple model. No Zeeman structure, We consider an atom which has a
ground state and an excited state separated by the energy kq. It is irradiated
by N optical photons k,, ... k;, ... ky whose energy distribution is given
by the line shape u(k) (Fig. 3). We shall call k the center and 4 the width
of wu(k).

ulid) A
/N
l
| %
K K
Fig. 3

All the N photons have the same polarization gy,
We consider the iwo following states of the total system atom <+ radiation
field:

lg>: atom in the ground state in the presence of the N photons.

le, —k;>: atom in the excited state; the photon %, having been absorbed.

lg> and e, —k,> are eigenstates of the unperturbed hamiltonian #, with
eigenvaiues Eq and Ey + ky — &y and are coupled by the interaction hamil-
tonian V. ¥ couples also |g) to other states with N + 1 photons: le, +%)
(photon k emitted) but we shail neglect them because of the large energy
difference between {g) and |e, +k).

The system at time £ = 0 is in the state {g>; we look for the probability
that it remains in the same state at time 7. We thus have to compute

Gz) = (g |G} &>
As in equation (1.14), we write:
Gule) = et

z = FEy = R.(Z)

(1.18)
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We approximate now R,(z) by the first non-zero term in its expansion in
powers of V:

T (0 LA
RO = Y T T Ak &)

The basic diagram associated to K is the following

94/ Eia ke ik

& J4cen'

g \E'

In order to improve slightly the expression {119}, we take into accouat
spontancous emission during the intermediate excited state e, by replacing

the free propagator : of the excited state by the true pfow
z - Eﬁ = ka + k(

pagator of this state. If the induced emission due to %y, &, ..., Kx is negli-
gible in comparison to the spontaneous emission, which is the case for
ordinary light sources, we can calculate this propagator as if the atom was
isolated, i.e., without incident light beam: according to § I-A.3 we hawe to

replace ko by ko + 4E ~ i -;:» where AE and I'"are the shift and the natursl

width of the excited state. So we get for the improved approximation of &,
T LS vie ~kpf*

‘ T (1.20)
2”50“Eg+f‘§“ + &y

with kg = ko + 4E.

Diagrammatically one gets (1.20) by adding to the basic diagram associated
with -ﬁi, an infinite number of other diagrams which were omitted in the
approximation (1.19)

ol fli} |
R

\g

M O @
k3]

3‘! K
A
.1

W

4+
[T+ B JNT R s & T4}

i s
e
=
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(we neglect also the possibility of coincidences between k, k' and %, - &y
when we simply replace ko by kg — -#'g-) .

Now, as in section § I-A-3, we notice that in the expression (1.18) of G (2)
one can neglect K (2) except when z is nearly equal to E,. We shall therefore
approximate R"(z) by R"(E, + fe):

Kg [Vie, —koI?

R (Eo + ie) = 5. =
k, — kg + ie +f—£-

!

(1.20)

We separate now the angular part of the matrix element of V
KgVie, kDI = |42 [<g [22,D] )}

D is the angular part of the electric dipole operator.

Ay, contains the radial part.

We replace the summation over all the photons k, by an integration over k,
weighted by the line shape u(k) and we get

RI(Eo + le)=p (:SE' i :—{;—) (1.21)
where i
p = {g |&;,D] ) (1.22)
AE' = [ |Ad? utk) k =k = dk (1.23)
k= ko)* + —
4
I
i} -~ Iu(k) [ Al . = dic (1.24)
(k = ko) + —
4
Finally we have
© Gf2) = - (1.25)

z — E, mp(AE’-:'-I-;—)
from which we deduce
U'(,j - e-”fn+ﬂd£‘}' e"ﬂ'f"}:”



OPTICAL PUMPING AND INTERACTION OF ATOMS 357

The interpretation of AE' and I follows immediately. Under the effect of
the light irradiation, the ground state has now a finite life time 1/pl™, and
an energy which is shifted from E, to Es + p AE' (light shift).

Fig, 4

We see from (1.23) and (1.24) that to get 4E’ or I, we must multiply sk}
by the atomic dispersion or absorption curve, and integrate over & from 0
to oo (Fig. 4) =

Let us now study how I and AE! vary with & — k. From (1.23) and (1.24)
one can plot the theoretical curves (Fig. 5). The value of & ~ K, correspond-
ing to the maximum of A’ is of the order of 4.

Furthermore, Fig. 4 shows that I depends only on resonsnt photons
whose energy lies between ky — Mand k, + I7; on the contrary, AE’ depends
only on non resonant photons which have an energy either larger than kg + I°
or less than k, — I'. This leads us to consider two types of transitions.

Fig. §

If & — kg is small enough, effective absorptions of photons are possible,
and those real transitions give a finite life time 1/pI™ to the ground state.
On the other hand, if & — %, is large, the photons can only be absorbed

during a very short time of the order of -.-_—-—E— : through those virtual

k""&a
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absorptions, the wave functions of the ground and excited states are mixed,
and consequently the energy of those states are shifted.

What are the effects of these transitions on the photons?

In real transitions, photons disappear. This is absorption.

In virtual transitions, during a very short time, photons are absorbed and
do not propagate. This is the basis of anomalous dispersion.

This can be summarized in a short table

Effects on the phoions Effects on the atoms
5 P finite life time of the atomic
absorption 4 | real transition |— roand st :
. . . e shift of the ground state
enomalous dispersion « | virtual transition | — encrgy level

We are now ready to study the more general and usual case where both
the excited and the ground states have a Zeeman structure.

e -r-<Iu, im>

ke

s & ¥

Fig. 6

(2) More exact model. Zeeman structure. Let us call [u) and |m) the
atomic Zeeman sublevels of the ground and excited states in a steady mag-
netic field H, (Fig. 6)

If y, and ¥, are the gyromagnetic ratios of the excited and ground states,
we call

w, = y,H,

w, = YHy

We assume, as is generally the case in an optical pumping experiment,
that w,, w, <€ 4, the width of the line shape, u(k), of the incident beam.
The calculations are very similar to those of § I-B-1. For this particular
problem, we consider a subspace & subtended by all the substates |u). The
projector Pon gis: P =Y |ud (| and we have to compute G = PGP.
]
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As in § I-B-1, we obtain

¢ 1

Tz = B, —R"(E, + io)

where R” instead of being a number as in (1.20’) is now an operator which
acts on the ground state multiplicity and which represents the effective-
hamiltonian #, describing the effect of the light beam on the atomic ground
state. :

The generalization of (1.21) is

(1.26)

R™(Ey + le) = #p = (AE’ " :%)A

where AE’ and I have been defined in (1.23) and (1.24) and where 4 is a
matrix which generalizes (1.22)

@AWy = Ay = T [ef D) m {m |e;, D p'>

As A is hermitian, it has real eigenvalues. Let us call &) the eigenstate
corresponding to the eigenvalue p,:

Alay =p, o).

According to (1.26) the state |a) has a width p, I’ and an energy shift
P AE'.

In general, the p;s are not all equal. So the various ground state sublevels
are shifted differently. This is important for the experimental observation of
the light shifts as we shall see later on. -

Let us take, as an example, the simple case of '°°Hg which has only two
Zeeman sublevels in the ground state. The two dimension matrix 4 may be
expanded as:

. A= 001 <+ Z a;o,
I=x,y.2
where 7 is the unit matrix and the g;'s are the Pauli matrices,

This means that, if the incident beam contains mostly non resonant pho-
tons, #, is approximately equal to 4E’A4 and is similar to a Zeeman hamil-
tonian: the effect of the beam on the atoms is equivalent to that of a fictitious
mag netic field 1.

In arealexperiment, theatomisalsoacted on by a real magnetic field H, par-
allel to Oz. Let us call #, the real Zeeman hamiltonian. The total hamiltonian

t By symmetry considerations, one can easily show that }?f is parallel to the incident
beam.
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of the ground state is then:
xﬂ = f!' + -#‘

and we have the two relations: _
ey =p (45 =1 ) )

.ﬂ”, i.“) - l“”a' F)

To study the energy diagram of the sysiem, let us consider the two extreme
cases:

a) o#; > 3, the eigenstates of the system are the |a) states which have
different energies: the Zeeman degeneracy is removed. The splitting at H, =0
is due, of course, to 3,

b) #, <€ H,: the eflect of the light may be treated as a small perturba-
tion. According to perturbation theory, the eigenstates |u) of the system
have an energy which differs slightly from zw, by the amount '

AE, = (ul o, |y
: TR
= (AE i -5—) Am‘

The two energy levels of the system are plotted as functions of the magnetic
field Hy in Fig. 7 (in the particular case where the light beam is perpendicular
te Hy)

Fig. 7

C. Experimental observations on *°*°Hg. (1) General principles: With a first
light beam B; we do an ordinary optical pumping experimentf to measure
with great precision the Zeeman splitting w, between the two sublevels of the
ground state of '*°Hg (Fig. 8a)

We then add a sccond light beam B, (Fig. 8b) and remeasure, with the
help of B,, the encrgy difference between the two sublevels of the ground
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state, We determine in this way the perturbation of the ground state due to the
B, irradiation. The characteristics of the two beams are completely different.
B, is a “good” pumping beam, containing many resonant photons. B, is a
“good” shifting beam, with mostly non resonant photons.

B B
gt e ] %
EaB containing
Hg aloms
() Fig. 8 ®

We shall consider two extreme cases: the high field case where 36, € #,,
and the low field case where 3¢, » 37,

(2) High field case #, € 3,

a) First experiment. The pumping bzam B,, circularly polarized, comes
from a lamp filled with the isotope *‘Hg whose line coincides with the
ko component F =} of 1%¥Hg. The sicady magnetic field H, is paraliel
to B, ; the radiofrequency field H, cos wt is perpendicular to Hy (Fig. 9). We
measure ¢, by the usual magnetic resonance technique.

The second beam B, is produced by a lamp filled with the isotope 2°'Hg
whose line center wave number & is longer than ko by approximately a
Doppler width which, according to experimentalt{ and theoretical (Fig.5)
results, corresponds approximately to the maximum value for 4E". A filter F
filled with '®?Hg is placed before the cell and suppresses all the resonant
photons from the B, light:

As k& — ko > 0, AE' > 0: the levels are shifted towards the higher
energies.

From the polarization scheme (Fig. 10a) and the expression of the matrix
clements of 4 given in § I-B-2, it appears that: if the polarization of B, is ¢¥,

+ For a detailed description of the optical pumping of the odd isctopes of mercury
see B. Cagnac thesis (ref.*)
1 &ee later, fig. 12,
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the only non zero mairix element of A is { —|A4}~>; thus only the state | =)
is shifted (Fig. 10b),

If now the polarization of B, is 0™, we have {+]4]+) s 0 and only the
state |+ is shifted (Fig. 10¢).

So the sign of the shift must change with the sense of thecircular polarization.

a
& Py
F='la
6" 35,
I")“".IE/-’I_‘ =
e 3 (4> e’
b e

Resenonce intensily
4

1% beom &* o Without gecond beem

% Second beam 6%
A Second beom &7
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The experimental results-are shown in Fig, 11 and agree with these pre-
dictions (as we operate at a fixed frequency and a variable field, an increase
of the Zeeman separation corresponds to a shift towards lower field value).

4 Frequency
Shift A€’
Dople it
-0-5 cps
[ =Ko
Fig. 12

By magnetic scanning, we have also changed the value of k and measured
AE' for different k — ko. The experimental results are in agreement with the
theoretical predictions (Fig. 12)

b) Second experiment. We have improved the first experimentin the following
ways:3

—The light beam B, (Fig. 13) is perpendicular to the magnetic fields H,
and H, cos wr which are now parallel. Using the technique of the transverse

z
i

"_::l
o
| B 0 [
2 pIH_Ll
';I;E{J
2
&8
y
&

Fig. 13
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optical pumping}, we have obtained resonance curves with no RF broaden-
ing and whose width is typically of the order of 0.3 hz.

—The second beam B,, parallelto H,, is produced by a 2°Hg lamp placed
in an axial magnetic field H,. The linc emitted .is then split into a ¢* com-
ponent which has a % > ko and shifts the state |~) towards the higher
energies and a ¢~ component which has a k < ko and shifts the state |+
towards the lower energies (Fig. 142 and 14b)

204y
""’"E‘f:
6“1_'L_l 1 163 g
e N
o b

Fig. 14

As the effects of the two components add, there is no need to place, in the
B, beam’s way, a polarizer which absorbs a large part of the incident
intensity, We thus get a larger shift AE' and double the effect as is shown in -
Fig. 14b,

Figure 15 is an example of the experimental results we have obtained.

To avoid any broadening due to real transitions, we still have to use a

1 Intensity of the resonance

unshified rescnance

i cps shilted resononce

SiCPl 39cpn l’ o=y
Fig. 15

filter Fin the B, beam. However, as this filter is not perfect, the sh;ftcd curve
is slightly broader than the original curve.

The shift obtained is approximately equal to 20 times the line width of the
resonance curves,

4 in an amplitude modulated field (")
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(3) Low field case: 3, » H,. As the shift obtained in the previous experi-
ment is much larger than the energy lcvel width, we have been able to study
the removal of the Zeeman degeneracy in a zero magnetic field.®

The direction of the two beams is the same as that of Fig. 13,

To eliminate any stray magnetic fields we have placed the resonance cell in
a triple magnetic shield.

The experiment is performed in the following way: in & zero magnetic
field, the magnetic dipoles are first oriented by the beam B, in the Ox direc-
tion {Fig. 16a)

We then suddenly introduce B,: the dipoles stari to precess around the
fictitious magnetic field H, which is associated with B, and which is parallel

5 :
iPhoio cell
By
Yy

% 0 1 tmels)

a b

Fig. 16

absorbed light

to Oyp; as the shift is much larger than the width of the levels, many oscilla-
tions occur during the life time of the ground state. This effect may be
observed on the transmitted light along the Ox direction (Fig. 16b).

We have also studied experimentally the Zeeman energy diagram in the
presence of the B, light for two different cases: H,y and H, parallel or per
pendicular, :

The energy difference wg between the two Zeeman sublevels has been
measured _

a) by the resonances described in § I-B-2 (transverse optical pumping in
an amplitude modulated field)

b) by modulating the polarization of the pumping beam B, at the fre-
quency w'’; resonances occur when @ = @y,

For H, J|H,, wh = wy + », (w, is the Larmor frequency associated
with the fictitious field H,), we get a displaced Zeeman diagram,
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For Hy, L H,, 0} = \Jo? + 02, the two levels do not cross any more.
This phenomenon might be compared to the Back-Goudsmit effect, with the
Yight beam B, playing the role of the hyperfine structure.

Pig. 17 .

{"‘ Hofﬂf
O H,LH,

il, Crossings and Anticrossings of Atomic Energy Levels
Introduction

We will show in this lecture that important variations of the resonance
radiation scattered by an atom occur in the neighborhood of what is called a
“crossing’’ or an “anticrossing” point,

We shall first give a definition of a crossing or anticrossing point. We shall
then determine the scattering cross section for resonance radiation at these
points.

Those effects are very important in atomic spectroscopy. They allow &
simple and precise determination of atomic structures and radiative life-
times. We will also need the concepts introduced here for the interpretation
of the effects described in the two last lectures,

A. Crossing

(1) Definition: Let us consider an atom which has three levels: a ground
state [g)> and two excited states le, > and |e,), both having the same lifetime,
Let o, be the atomic hamiltonian. We have:

Holg) = Elg) #ple) =Ele) i=1,2
We shall call &y = E, ~ E,.
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Let us assume that, as we plot the energy of these states as functions of
the magnetic field H, (Fig. 1), the two excited levels cross for H, = H,; at
this crossing point, these two excited states have the same energy k..

We define the principal polarizations 2, and z; in the following way: ab-
sorbing a photon of polarization &,(z,), the atom can only jump from the
ground state to the excited state |, ) (Je;)). We have, therefore, the following
relations:

el Dlgd #0  <ealey Blgy =0

(e, 182 Dig> =0 (el Dig) w0

><I@1b
ke 18>
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H i Hﬂ
&

Fig. 1

Any linear superposition 2 of #, and &, is called a "*coherent polarization™:
; L 1131 + A;Eg

Absorbing a photon of polarization &, the atom, starting from the ground
state, can go to [e,> and to je;). Both matrix elements {e,} 2+ D|g) and
(eal & P lg) are different from zero.
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Fig. 2
(2) Resonant scattering amplitude, We deal now with the following prob-
lem: sending a photon (%, &) on the atom, we look for the scattering ampli-
tude for reemission of a photon (%', 2') (Fig. 2)
The two physical processes which may occur are drawn on Fig. 3:
We suppose that we are near resonance, so that k and &’ are close to k;
and k;. In this case, the second process is negligible (antiresonant) and the
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scattering amplitude S; corresponding to the first process may be wriiten:
as:®

S) = O3 (k = ka) i&klg’ IVE f_f) <eJ {V’ g}}}) (}I.l)
i : I
k—kyj+1i ?

The & function is nothing but the energy conservation reguirement,

The resonant character of the scatiering appears in the denominator; the
angular dependence of the scattering is contained in the numerator, whose
explicit form is {402 (gl ¢’D ie;> el 2+ Dig).

o
ol &
g k,.g 4 E:, E
a : b
j= 12
Pig. 3

There are two possible intermediate states for the scatiering: je;» and
lesh (Fig. 4); each path corresponds to a different scattering amplitude §,
or 3, ;

The total scattering amplitude § is the sum of S; and S, which are both

different from zero if and only if s and ¢’ are coherent polarizations. We have
then

S =C"3k — k)[R, + Ra @y
KE K E
g g
91 .z
g e et g il
k& ke
Fig. 4
with
e 5 . (iL3)
k -k + f?
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et B, = 1? (g ¢ Bl > <o, s Bl 2

(3) Resonant scaitering cross section o. o is proportional to |$]2, Thus from
§ 1I-A-2 we have:

o = C*[|Ry|* + [R]* + 2Re (R, R])] (i1.4)

It wili appear later that che interference term Re (R, Rf) is responsible'for
the resonant variation of o at the crossing point.

From {I1.3), one sees immediately that R,(R,) is important only for
e —~k,| 8 I'(lk —k;} S I'). Therefore the interference term which depends
on R RY is important only for {k—k;| S I" and k —k;| S T, ie. for
ki ~ kil S I The effects associated with this term will appear only at the
crossing point.

So far, we have considered monochromatic excitation. In a real experiment,
we have a broad line excitation u(k) plotted on Fig. 5:

ulbd] A
i
!
| .
K X
Fig, §
We assume that
4 {115}
and k,, k3, k. are very close to k, so that
u(k,) = ulks) = ulke) = u(k) (11.6)

So far, we have computed the cross section o{k) for a single incident
photon k (11.4). As there is no phase relation between photons of different k,
we must average the cross secrion (and not the scattering amplitude) over
the wave number of the incident photons,

The cross section @ that we measure in a real experiment is thue:
o = {u(k) o(k) dk
Taking into account the conditions (11.5) and (11.6), we get

J [RAE)? u(k) dk = 2m = ’3;} u(k)
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and :
ZJ' Re (R, (k) RE(K)) k) dk = e DB
= E, k=il
. U (k) dk _J u(k) dk
P F}
b oo kg b §omem E~ky, ~1—
1 ‘2 3 5
®
= 4nRe --»--—-M-—-——- u(k)
I+ ik, ~ ky)

We finelly have

= 1B, 1B B, B}
= {1 + 4+ 2Re 1.7
: [ Ee YT

The interference term gives rise to a Lorentzian resonance (absoi'ption or
dispersion shaped according to B, B ,i.e. to zand ') in the scattering cross
section,

If we plot the scattered Jight in function of My, we get, in the case of an
absorption shape, the curve shown on Fig. 6.

The width of the resonance 44 is determinad by the condition (k; — &,
= I'; it depends only on the natural width I" and on the slopes of the crossing
levels,

It must also be emphasized that, apart from some very small relativistic
corrections, the effects we have described do not depend on the velocity of
the atom. So the resonance of Fig. 6 is' not Doppler broadened.

lscattered light
AH

He '%
Fig. 6
Let us finally give some well known examples of crossing points.
—2Zero field Zeeman crossing: the corresponding resonance is the Hanle

effect or the magnetic depolarization phenomenon, discovered in 1924.}°
It allows measurement of cither I” or the Landé factor g of the levels.
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—Hyperfine or fine structure crossings: they have been discovered by
Franken.'' From the positions of the crossing points, one can deduce the
zero field atomic structure.

B. Anticrossing

(1) Definition: We use the same notations as for the crossing case, We
assume now that, in addition to the ztomic hamiltonian #,, we have &
perturbation i which couples the two excncd states |e;» and |e,). The only
non zerc matrix element of 4 is

d w (e, [hles)

The new energy levels [&) and |&') of #°, + 5 do not cross each other any-
more. The minimum distance between those two levels occurs for Hy = H,
and is equal to 28 (Fig. 7). Such a situotion is called an anticrossing.

&>

o, - IG1}
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Hc Ho
Fig. 7

Let us take now an example where anticrossings can occur.
We consider an atom which has a nuclear spin 7 and an electronic angular
momentum J in the excited state, In a magnetic field H, parallel to Oz, the

total hamiltonian is: e, WA W, K

where w, and w, are the Larmor frequencies of J and 7 around H,, and 4 the
hyperfine coupling constant.
We may write # as the sum of two hamiltonians
H =Ho+ h
with :
Ho = wdy + waly + AlJ,

- —’25-();1_ ELID
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as .usuai Fosd g

Jy = Jy & iV,

le,> and je;) are two cigenstates of 5, labelled |mym,) with the same
value of my = my + mi;: b has then a matrix slement between these two
states. If for some value of 3, the two states je,) and {e;) have the same
energy, we have an anticrossing situation,

(2) Problem: The problem we want to solve is the follwing. Suppose that
at time 7 = { the atom is excited in the state |e, ) {this may be achieved by 2
pulse of light of polarization £,. As the coupling between the atom and the
radiation field is purely electronic, one prepares in this way eigenstates of
He). We ask now for the probability P(7) that the atom is in the state |es)
at time ¢ (by looking for example at the light polarization z, emitted at that
time). This physical process is diagrammativally represented ss:

g : ga
I
&

g k, &

If we take into account the life time 1/I" of the excited state, we get the
probability £ of having a photon ¢, reemitted after excitation bya photon 8, :

P=T[Pt)e ™ adr (11.8)

Pis actually the quantity which 1s measured in an anticrossing experiment,
(3) Caleulation of P(t) and P in a simple case. Let us consider first an
atom which has no other excited states then |e,) and |e,); h is a non diagonal

hamiltonian: leyJhle) =0 for im1,2
ey lhles) = hyp =8

P(r) may be easily determined by an elementary quantum mechanical
calcuiation. Nevertheless, we shall use the more sophisticated resolvant
formalism so as to be able to generalize the results to more complicated cases.

Let us call G and G, the resolvant of #° = 3, + h and #,:
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As we have shown in a previous chapier {eq. 1.4):

G = Gy + GohG
By iteration, we derive:

G =G, + Gtho = Gthth

We have to compute the matrix element {e;| G |e,) = Gy;.
Assuming that .??? le> = E/le> (I = 1, 2), we get:
1 1 1 1

Gy == k + h Ry G
21 o “z—-El R nz-—-E; 12 Gay

or
[z - E) (z — Ey) ~ 31"} G2y = by
which comes to: a*

Gay = 19
Y @ -E)@-E) - 8P &)

G, has two poles, z, and z_, given by:

E( + E; \/” E, — E; \?
2, = ——— 4 )| s O S
* 3 19} ( > )

We may now compute U, = {e,]U{1) le,) (see reiation 1.2):

1 -1z
U’I = 5}!6631(2)8 “dz

=g .t ~1z_2
€ e
= §* +
2’+ - & 2.¢

dnc gets for P(r) the Breﬁ-Rabi formuila:

P() = [D;u(?ﬂz - L = sin? \/iﬁl2 (E..__._.__.3 = E.i) t
B + [ .]
' (11.16)

1f the excited levels have infinite life times, the probability that the atom
passes from the state je;) to the state |e,) is periodical in time. It has 2
maximum amplitude at the anticrossing point where E; = E,,
When we take into account the finite life times of the excited states, we get
from (I1.8):
2912

= {1L1D)
I? 4 418]* + (E, — E,)?
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—F is resonant at the anticrossing point.
~When [8] € I, the intensity of the resonance is proportional to |42,
For |4] » I, the intensity is constant: we have a saturation of the resonance.

-=The width of the resonance is JI_; + 4 1812, Contrary to the resonance
which occurs at a ¢rossing point, this resonance has 2 width which depends
not only on I" but also on {4]. For 8] » I, the width is proportional to |8].

(4) Calculation of P(t) and P in the general case. We now consider excited
states other than je,)> and |e,>: Let us call them |e,>. We assume that &
couples 2&;} and Je,» to the le,), but not necessarily le, ) to Jes): we may

hawve (* fi j23» = 0; nevertheless Je, > and Je,) are still coupled by higher
order tooine; for instance: {eyl hle,) (el hile) # 0.

e siall use the results of § 1A and consider a subspace ¢ subtended by
the two vectors je;) and |e;). We have to compute G(z) = PG (2) P with
Poley s +leg) ezland @ = 1 =~

We get (see 1.7)

G(z) =

i
z - 5?70 - Ri{D)
with
K@) = h + Ph 2 hP A vee (i1.12)

Z - sig

G(z) is the inverse of the iwo by two matrix z — 3, -~ R(z):

(Z*EI“RH - Ryy - )
- Ry, z = E; — Ry,
It is easy to invert such a matrix, and one gets for G,,(2):
Ryi(2)
[z~ E, - B\ (@) [z — E; —~ Raa(2)] ~ K@)
So far, the formula is rigorous,
We shall now make the same approximation asin § A.I and IT and replace
in R(z) z by E, where E, is the common value of E; and E, at the crossing

point. This approximation is justified if the energies E, of the other excited
states le.> are far enough from E, and £,

1E1 7 i Eea’ > Kei.ﬂi h lé’a)i

Ga(2) = (I1.13)

We then get:

G; 5(2) e Rﬂ I(Er)

[z~ E, = Ri(EN [z = E; — Rya(ED] — 1R, (B

(IL.14)
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Let us compare this formula to the result of the previous section: we see
that if we replace, in equ. (11.9), E, by E, + E,(E) (i = 1 or 2) and hy,
by R, ,(E,), we get the same equation as (I1.14).

. Using now equation (I1.11), we get directly the probability £ we are Jooking

for:
. 2Ry,
I'* 4+ 41Ry,|* + [E; + Ryp ~ By, ~ R,JP
The interpretation of this formula is the following: '

~—Becanse of the coupling with the states |e,, le,) and |e,) are ghifted
by the quantity K, and R,,. This shift is at least of the second order:

(1.15)

@ i &

2
R“*E—:L{!ﬂ'l‘"— "‘5‘1;2 fx.si 1,2

which is the well-known second order perturbation formula. The crossing
point H, is shifted to H; (Fig. 8).

: 22

—The coupling between le;> and le,> is more complicated. From
eq. (11.12), we see that even if Jiz; = 0, the two levels are coupled, for

. hig A ! .
instance to second order by R, = ¥ —%—22 ; the crossing becomes an anti-

& Y ] _
crossing which is centered at ;. Such a situation where by, = Obut R, £ 0
is called 2 higher order anticrossing.

lif, Interaction with R Photons

We shall report in the first part (§ A) some experimental resulis concerning
the interaction between atoms and an RF field; we shall explain these results
in the second part (§ B) by using the concepts of crossing and anticrossing.
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A. Description of experimental facts

We shall speak about experiments performed in the ground state of
198Hg (f = %) which has only two Zeeman sublevels |+ and | -).

1} Muliiple guanium iransitions.t Experimental set-up: The cell contain-

ing the ***Hg atoms is placed in 2 magnetic field H,, paraliel to Oz (Fig. 1a).

4
Photocell
o
Hycon wt o
fgt b { e 52
e
a b
_Fig. i

The energy difference between the two sublevels is wg = yH, (i = 1); y is
the gyromagnetic ratio of the ground state {y < 0). The atoms are optically
pumped by a8 o* polarized light beam F parallel to H,: most of the atoms
are then in the state |+ (Fig. 1b).

Any change in the population of the two states may be detected by mea-
suring the intensity I of the transmitted pumping light.

We apply a2 RF field H, cos ef perpendicular to Hy. w being fixed, we
observe, as we vary wg, several resonant variations of 7. Transitions between
{4+ and |~ are induced by the RF field.

Description of the resonances. We observe an odd spectrum of resonances:
they occur for wg = (2n + 1) w (where 5 is an integer). They are broadened
and shifted as we increase the amplitude of H, (Fig. 2).

Qualitative interpretation, The linear RF field can be decomposed into
two rotating fields, Therefore the’ quantized field contains photons whose
polarization is either o* or ¢~ with respect to Oz. In a real RF transition,
the total angular momentum and the energy have to be conserved. ¢* and
o~ RF photons have an angular momentum +1 or -1, and an energy

4 The lirst observation of multiple quantum transitions on optically pumped stoms
has been performed on alkali atoms'2. Winter's thesis contains the first theoretical
explanation of this penomenon. We will use her= a different theoretical approach which
also applies to the more recently discovered effects described in § 111- A-2 and § I A-3,
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o (A = 1). Transitions between the atomic states [+ ) and | =) may thus
occur in the following cases:

@ = w and the atom absorbs one photon ¢~ (Fig. 3a).

wo = 3w and the atom absorbs 3 photons, one ¢* and two ¢~ (Fig. 3b) more
generally, one needs an odd number of RF photons to sat:s’y both aqgular
momentum and energy conservations:

g = (21 + 1) @ and the atom absorbs n photons ¢* and (n + 1) photons o™,

A\
,}: Vi=0-05
q
m .
! %=02
\L
! Ve=04
w\i\—
Jf
Juw ] Yi=05
—’\\\\}j\\\‘ V1 =[-8
j "
™ : %=1

£

N\ u’_’rz
_———\.\;m&\\ v1-1‘4

1 i 1 L ! wp=¥Ho

w aw Jw fw

Fig. 2 (each curve corresponds to a different value of H; measured by the parameter V;
(voliage at the RF coils))

As one increases the intensity of the RF field, more transitions between
{~> and |4 > may occur; the lifetimes of those states are therefore reduced
and the resonances broadened,

: e =
st g tet

o- |+> “ﬂ”"
B et £

a b

Fig. 3




378 CARGEZE LECTURES IN FHYSICS

Bloch-Siegert**® type shifts also occur: as we increase H,, the resonances
are shifted towards the low field region.

(2) Transverse optical pumping. Haroche’s resonances ** . The experimental
_ set-up is very similar to that of the previous section (§ 111.A.1) except for
the direction of F which is now perpendicular to H, (Fig. 4). This is a case
of transverse optical pumping. Let us recall briefly some of its features!!?:

Z
Ho
;3;’ . Hy coswt
Fig. 4

Transverse optical pumping (H, = 0). No population difference is pro-
duced between the two states |+ ) and | —); in other words, no longitudinal
magnetization is introduced by the pumping.

If Hy = 0, F orients the vapor's magnetic dipoles M in its own direction
(Fig. 5a). In mathetmatical terms, the density matrix which describés the
atoms in the ground state, has non-zero off diagonal elements (in the Oz re-
presentation).

If H, # 0, as soon as the dipoles are oriented, they start to precess around
H,. They are damped at a rate 1/T because of the relaxation (Fig. 5b. Hy is
perpendicular to the figure). The resulting orientation at time ¢ = 0 is the

dipole oriented
e -4 at time-t
e | F..-2* t
il i & dipole oriented
Ho=0 Ho#0 at hime t=o
a : b
Fig. 5

vectorial sum of all the dipoles created at time —r (¢ goes from 0 to + ).
They have an amplitude proportional to e=*" and make an angle wyt with
their initial direction.
Let us make this summation for two extreme cases (Fig. 6a and 6b):
Hence the transverse pumping creates a magnetization in the vapor only for
small fields. This is the Hanle effect”®, or the zero field level crossing,
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* The experimental facts we shall describe now occur for wy » 1/T,, so that
there is no orientation (longitudinal or transverse) introduced by the beam
F. We apply a RF field H, cos wt parallel to F (Fig. 4). Keeping w fixed, we
vary w, and look at the absorbed light of the pumping beam,

Description of Haroche’s resonances. No resonance appears for w,
= (2n + 1) w. Multiple quantum transitions actually occur, but they are
no longer detectable, because the two levels | —) ard |+ ) are equally po-
pulated. :

— New resonances appear for wg = 2nw. They form an even spectrum,
and may be detected on the various even harmonics 2pw of the signal. As

Nz
ZIN for

wp» ¢ Wo %
) @
The net resultant is zero ‘The net resultant is not
equal {0 zero
Fig. 6

the intensity H, increases, the resonances are shifted but not broadened s is
shown on the next 2 figures. Each resonancs corresponds to a different value
of H,, measured by the parameter ¥,:

One can show that the shift and the intensity (at the harmonic 2w) of the
resonance w, = 2w are proportional to H{; all the peaks of the curves of
Figure 7 are thus on a straight line.

For wy = 4, the shift of theresonances can be shown to be proportional to
H?, the intensity (at the harmonic 4w) to Hy:the peaks of the curvesof
Figure 8 must therefore be on a parabola (plotted with dotted line).

It is impossible to attribute these resonances to the absorption of an even
number of RF photons: although energy may be conserved in such a pro-
cess, the angular momentum carried by an even number of photons o* or
o~ cannot be equal to +1 or —1 which is the condition to make the atom
jump from |- to |+ or vice versa.

Before giving a theoretical explanation of these resonances, let us mention
another type of resonance which leads to similar difficulties.

(3) Transverse optical pumping. Resonance of Geneux, Alexandrov, Polons-
ky 715,
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intensity of the resonance w, = 2w, harmonic 2w

3 Amplilude of the rescncnce
hy=28, harmonic 26
%=8

. 20 milligauss
gy
| Vs 6
& ~, Yy=5

4 wWz3
Yo ™

Fig. 7

intensity of the sesonance w, = 4w, harmonic 4o

§ Ampliude of the resonance
Wo=4w, harmonic 4w
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~— Experimental set-up: The beam F is still perpendicular to H,, but
H, cos wt is now parallel to K, (Fig. 9):

Ho
P
Hg cost
Fig. 9

As the RF ficld contains only = photons, it is amposs:ble to have any tran-
sition from one Zeeman subleved to the other.

Furthermore, the experiment is performed for wq ¥ I so that there is no
transverse pumping.

Nevertheless, as we vary Hy, o being fixed, and observe the absorption of
the pumping light, we get @ full spectrum of resonances.

— Description of the resonances: They occur for w, = nw, As the intensity
of the RF field is increased, we cbserve no shift and no broadening of the
Tesonance curves.

On Figure 10, we have plotied the width of the resonances gs a function
of w; /2% which would be the real value of the resonance’s width in an ordinary
magnetic resonance:

4 Width of the resonance

e (B & : G
Fohz
40010 hz 'é%'h
Fig. 10

These resonances may be detected at the various harmonics pw of the
signal. Their intensity as a function of w,/w has been theoretically predicted
and experimentally measured (Fig. 11):
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Amplitude of the
4 resonance
We=W

9y
@

% harmonic 1

A " 3
@ » S
Fig. 11

B. Theoretical interpreiation

{1) introduction. We shall give a single theoretical treatment which applies
to the three preceding types of resonances.
Let us first define some simplifications we have made in this treatment:

a} although the experimental observations have ben done on a ground
state, we shall deal in the theoretical part with an excited state, The physical
¢ffects are similar in both cases but the theory is simpler for an excited state
because: ‘

1. the sublevels |45 and |~} of an excited state have the same lifetime
{which is not true in general for a ground state),

2. there are no complications due to the falling back of atoms after an optical
excitation.
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b) We also assume that the atoms and the RF field interact only in the
excited state. This amounts to assuming that the resonance conditions do
not occur simultaneously in both states. )

Let us now explain the general idea of this treatment. We shall deal with
the total system (8) which includes the atom plus the RF photons, We shall
assume that light is not scattered by the “bare” atom, but by (8) which is
something like a “dressed atom”. Studying the energy levels of (8), we shall
find a lot of crossing and anticrossing points, We shall thus interpret the
resonances described in the previous section (§ IILA) by using the result of
chapter I1. It will also be shown that these resonances may be understood in
terms of real and virtual multiple quantum transitions.

This study will suggest to us a new effect; the modification of the Landé
g-factor of an atom by an RF field:

Emma Blom '& ma aiom

We shall present a simple calcuiation of this effect, and some experimental
results, :

(2) General form of the hamiltonian of (S): atom + RF field. It may be
written as the sum of two hamiltonians:

H#, represents the sum of the energiss of the atom and of the RF photons, of
frequency w:
Wy = wylJy + wa'a _ (11L.1)
We assume that the static field H is in the Oz direction, wg = yHy, y and J
being the gyromagnetic ratio and the angular momentum of the excited
state, at and a being the creation and annihilation operator of a photon w.
h is the hamiltonian which couples the atom to the RF field. In the quan-
tized theory of fields, the RF field M, cos et is represented by:

H, = _E_ [ate'®* + gte~iu]
q
B is a constant, ¢ the wave number of the RF field.
In the dipole approximation, ¢'** is approximately equal to 1 and H, is
proportional to (a + at). Thus the full quantized version of the classical
interaction hamiltonian by, = -9} J, cos w! is:

b, = AJ, (2 + aP) (1.2
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where 1is a couphng constant, J; is the component of angular momentum in
the direction of H,.

Let ais evaluate the constant A:

The quantum state which easily describes the RF field is a coherent state
la>'®. The properties of such a state are well-known: |&) is an eigenstate
. alay = aloy |
The parameter & is simply related to the average number N of RF photons:

N =<{alalalad = &
{ws take o real))
The condition which determines 4 is the following:

<“‘ }‘:’Qn.ia> bl (/T
From (I11.2) it follows:
Aala + a'|a) = yH, =,

or :
2l = @,

We finally have:
Wy
e (111.3)
2./R
Actually, 1 may be computed from the first principles. If we consider a
coherent state corresponding to a known value of N, we may deduce from
(T111.3) the value w, of the classical field described by the coherent state.
We shall study in the following sections iwo different cases corresponding
to H, and H, perpendicular or parallel.

(3) H, perpendicular to Hy:

a) Hamiltonian: The geometrical arrangement of H, and H, is plotted in .

Figure 12: .

Ho

Hicos
X

Fig. 12

Using (111.1) and (111.2) we have
# = wod, + wala + M, (a + a') (111.4)
o — | —
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As the RF field interacts only with the excited atoms, the eigenstates of 3¢
in the ground state are very simple:

| gn> = (E, + nw)|gn>

The problem is more complicated in the excited state, We shall begin to
study the eigenstates of 5.

b) Energy levels of #°,
Let us call |2, £ the eigenstates of #%:

‘#Olﬂ) - o > o (nw s o )ini i)

We have plotted in Figure 13 the energy levels of 3, as a function of w,
(we suppose here that w, is >0):

This energy diagram shows an infinite number of crossing points: The
level [n, ~) crosses the level in', 4+ for wy = {(n — #') w. We shall call this
point an odd {even)crossingif{n — n'}is odd (even); it is impofiant to study
the effect of & in the neighborhood of those points,

nergy
Inel, +>
(a2 ! m}
e ln—?,-b)
(m-?)ml// b ¥l
S /‘\ \/
/< \
e & < S ine2,=>
\ ‘\
//( ‘\
(n-Ny” o, i" “> Splned,=>
o 4w big
Piz. 12

We consider in this paragraph (B.3) that k is a small perturbation, and
more precisely that @; <€ wg, @

¢} Effect of h at an odd crossing

Let us first study the crossing which occurs for wy = w between the two
levelsp + 1, =) = |e; Dand |n, +) = |es).

25 Levy
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Since J, has & matrix element between |+ and .{ —> and a and af have
matrix elements between the states |#) and [r + 1), the perturbation ficouples
the two levels |, and le;>: we are in an anficrossing situation. We notice
that Je, and |¢:) are also coupled to other states, for instance |n - 1, —3,
|n + 2, +) cte. Using the results of § I1.B.4, we see that under the effect of &,
the crossing becomes a shifted anticrossing.

if initially the system is in the state In + 1, g) and if one sends in the atom
light with a principal polarization &, corresponding to the transition |g)
«+ | =%, one prepares the system in the state {n + 1, —) of 2, (the electric
dipole operator and the RF operators commute so that 4n = 0 in an optical
transition). Similarly by looking at the light reemitted with a principal po-
Jarization ¢, (vorresponding to the transition |g) «+ |+)) one measures the
probability of the transition ln + 1, =3 = |n, +> under the effect of b, i.e.
the probability that the atom has absorbed one RF guantum, )umpm g from
| =) to | +). To summarize, by sending z, light and by looking at P light,
one measurcs the quantity P defined in § ILB.4. (see equ. 1L.15):

P & 25'&2!‘;
I'* + 4R, + [E, + Ry, — E, — R,P

Let us calentate the matrix element of R, In the lowest non-zero order, they

are.
B ~hymi<m+|@+adin+1, =)

"an+!

Using (111.3), wegetK;, = e 1Y
Similarly one finds
R _Kn+2 ka1, P _ o} R,
11 ==
Ewss,-) = Eaea, s 32

and finally we get for F

w|S,

R =

w} %
I 2L gl oy = wisd
4 16

With the ¢ . Pght the one RF quantum absorption appears as a Lorenizian
resonance corsamed at mg = @ ~ (w}/16w) with an intensity proportional to
o? (for w, < ." .4 width proportional to w,, for w, » I
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We shall now study a slightly more complicated case: The crossing between
les) = In + 3, =) and |e;> = |a, +) which occurs for wy = 3w,

There is only a third order coupling between |e;) and |e,). We get a
higher order anticrossing situation, The two levels are connected by the real
absorption of three RF photons.

Let us calculate the matrix elements of R:

R Smtlhintl, =d<n+ 1, —hln+2,+3<n+2, +|hln+3,-)
. . (Eu e R'I-I.-)(Eﬂ o En+z.-i-)

m—-Jn+3..,’n+2,fn+!—-—-—-—i——-
2w —2w
Finally
3
By mmsiaced
“ 25605

In the same way
€n + 2, + {hjn + 3, =2 {n + 4, + lhjn + 3, =>*
Rll = +

En-i-a.- . Ea+z.+ Eu-a,- = Anhd, v

Jw?
m ot o =Ry,

So that: 5 (__l___)z E_;

Z 6 i
p=+4(_!..) (N PO VR )
2w

I w ; £
We get a resonance centered at wy = 3w — — ~—- whose intensityispro-
w

portional to wf and whose width varies as w {for &3, » I').

More generally, it can be shown that any odd crossing becomes an anti-
crossing. The corresponding resonance is related to the real absorption of an
odd number of RF quanta. This resonance is shifted and broadened as the
intensity of the RF field increases, Principal polarizations have o be used
for the incoming and outgoing light.

All the experimental’ features described in § IIILA.1 arc quantitatively
understood.

d) Effect of i at an even crossing

For we = 2w, the two levels fe;> = ln, +) and je;) = |n + 2, —) cross
each other, When / is applied, |n, + is coupled to |n + i, ~> which is
coupled to ln + 2, +) ete.
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There is therefore no coupling at any order between |e,) and le,). Thisisa
conseguence of the conscrvation of angular momentum. But, as |e;)> and
fe2) are coupled to other states, the crossing peint is shifted (see Figure 14)

It is now possible to give an explanation of Haroche’s resonances 17 . They
correspond to the level crossing resonances of the “*dressed” atom. One sees
in Figure 14 that the resonances are shifted when H, increases; but as we have

, Energy

jnele>

- == unpertuorbed level e 3 DETLUTREA level
Fig. 14

shown in § ILA, the width of a level crossing resonance depends only on the
width and the slopes of the two levels which cross and that explains why one
does not observe any RF broadening, One understands also why these re-
sonances appear in transverse optical pumping: a necessary condition for
the observation of level crossing resonances is that the polarization of the
light must be coherent as we have seen in § IL.A; and it can be shown that
in transverse optical pumping, this condition is fulfilled.
According to (11.4), the crossing signal is proportional to :

(&, 13 ﬁl gn) {gn !5 ﬁi &>

where 2 is the polarization of the incoming light and [2,), |&;) are the two
(perturbed) states which cross.

If instead of [&,) and |2,), we had le;) and le,), i.e. the two unperturbcd
states, the matrix elements would bz 0 because the matrix element of ¢ D
must fulfil the condition An = 0, so that {(n + 2, —| 2 Dgn) = 0.
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In fact, we must use the perturbation expansion of |&,) and 1&,). For
example we have

B =+ 2 =>+nn+1, +>+@Pln = +..

where n and %’ are proportional to the perturbation, that is to say, to @,

In the state |e,) appears now, to the second order, the state {n, —). We
say that the state |n + 2, —) is “contaminated” to the second order by
[, —> through “virtual absorption and reemission of two guanta”. As a conse-
quence of these virtual processes, the matrix clements of formula (I11.5) are
no longer zerc. We have: (&) & - D lgnd = (') {n, ~| 2 D gn).

A similar treatment can be applied to other crossing points, where
we = 2nw. We find shified but not broadened resonances, which can be inter-
preted as being due to virtual absorption and reemission of 2n quanta.

(4) B, parallel to H,. The hamiltonian of the problem is:

H# = o, + wa'a + AJ, (@ + oY)
et Mmoo ———

‘The energy levels of #, are plotted in Figure 13. Since J, has no matrix ele-
ment between |+ ) and | =), there is no coupling at any order between two
crossing levels |n, +) and [#', —). There is no anticrossing at all in the
energy diagram of J&,

There is no need, in this particular case, to con51der A as & smail perturba-
tion. It is possible to find the exact eigenvalues and eigenstaies of 3715,
We write 3¢ in the following way:
.#m-g-wo-i-?’, &= +or ~
with
v, = wa'a + f;-—{a + a%

2
V, = (a“ + -253;-) (a # -Ei) i % (11L.6)
{2 i3]

Using the property of the displacement operator®? Dig)

DaDtma~g
Da'D'mal ~¢g

mn(- ) 2] (-2)

or

We find:
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We then easily get the eigenstates [A,) of V,:
| i Bl ol ' INK)
Fop= e e {0 .
y=b (=55 )in _
The eijenstates and eigenvalues of # are:
e A2
10l = (5 o0+ na - 2= 1> 10> @

3
Each energy level of 5 is shifted by the same quantity —% sothatall the

crossing points of the energy diagram of 5 remain at wy = na.

We understand now the main features of the resonances described in
§ III.A.(3). We observe in transverse optical pumping a full spectrum of re-
sonances which are not shifted and not broadensd by the RF field.

A useful identity may be derived for very large n{1%;

B\ T= D = I, (i:;‘-) | (L)

(J, is the Bessel function of order ¢.)

By using this identity it is possible to compute exactly the intensity of the
resonances as a function of w,/w. Some experimental verifications of these
calculations have been shown in Figure 11,

(8) Modification of an aiomic Landé g-factor by the coupling .with @ RF
field 1® , We return to the sitvation where H, and H, are perpendicular and
we now focus our attention on the limit H; » H,.

‘We want to study the energy disgram of # (Fig. 14) around the zero
magnetic field value and determine the slopes of the crossing energy levelsasa
function of n {or w,).

We now consider wyJ, as a small perturbation of the main hamiltonian

H, =wd'a + M. (a + a').

Using the results of § 1I1.B.4, the eigenstates and ¢igenvalues of #°, can be
easily determined.

One finds =

Ho ledel i) = (m,.. 5 -}w-s) e8>

where [e), are the eigenstates of J, and |f,) is given by (111.7). For each value
of n, the states |+, |, > and | =), |5 have the same energy. We have 8
two-fold degeneracy, which is removed by the perturbation wgJ;. The new
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snergies are the eigenvalues of the matrix weJy in this 2 x 2 multiplicity
3]
o -Eg* (A Ryd
=LA,y 0

Using the relation (111.%), we easily find the twe eigenvalues

w ws \
o Jo =2},
3+ ( w)

The slopes of the two energy levels (i.e. the g-factor of the “dressed™ atom)
are thus different {rom those of the free atom by the factor J; (w, fw):

Btnsom + BF field) = B L ( 1 )
Btgres atomy o @

We have observed this effect experimentally. As we make 2 zero ficld cross-
ing experiment (Hanle effect), we get a resonance whose width is inversely
proportional to the slope of the crossing levels. As we increase H, (measured
by the parameter V), the width of the resonance curve increases, becomes
infinite for a certain value of M, , decreases agsin and so on (Fig.15)

By measuring the variation of the inverse of the resonance width as a
function of w,/w, one can obtain g,/g, as a function of the same variable,

fniligouss)
Honle signel V=19
o, A =20
. /” 1=225
S ‘%!’1 =30

Fig. 1§
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The results obtained are in good agreement with the theoretical prediction
represented by the full curve of Figure 16,

g
Yo

Fig. 16

Finally, all the experiments described in the chapter III have been ex-
_plained within the same theoretical framework. Considering the atom dressed
by the RF photons as a whole quantum system (S) has been very useful.

Conclusion

“We will conclude with the following remark.

Several other courses of this session have been devoted to the study of the
Lamb-shift and of g — 2, These two basic effects of Q.E.D. may be visualized
as due to virtual emissions and reabsorptions of photons. We hope that we
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have shown in this course that similar effects exist when the atom absorbs
first and reemits impinging quanta: atomic levels can be shifted (light-shifts);
atomic g-factors can be considerabiy modified.
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