
Optlcal Pumping and Interaction of Atoms

with the Electromag netic Field

C. COHEN-T ANNOUDH*

Laboratoire de Spectroscopie Hertzienne de l'E.N.S.
Par/s, France

Optical purnping can be briefly described as the transfer of angular rno

mentum from po!arized photons to atoms. It provides very sensitive optical
det.ection of t\ny change in the angular s'ate of the atom, resulting from
RF transitions between Zeeman sublevels, relaxation processes, etc ....

The principal applications of optical pumpir.g may be divided into 3 parts:

-spectroscopie measurements
·-study of reJaxation processes and coUisions
-study of the interaction of oriented atoms with the t.m. field.
This course wiil describe sorne effects related to the third part.t

We will study how oriented atoms are perturbed when they are irradiated

by light or RF photons. When the frequency of the irnpinging photon is equal

tci the Bohr frequency of an atomic transition, the atom absorbs il. Energy
is conservcd during such a transition and the proccss is callcd a rea/ absorp
tion. If encrgy cannot be conservcd during the transition, tht interaction if)

describcd in terms of l'irtua/ absorption ,Incl reemission of photons by the
atom. The purpose of thesc lectures is to describe sorne cffccts of these real
or virtual absorption of optical and RF photons.

The first îWO 1e1:tures will be dcvoted to the interaction with optical pho
tons. It will be shown, finit. thcoretically thcn experimcntally, how atomic
sublevels in the ground state are brondened and shiftcd by irradiation with
resonant or near resooant optical photons. The last two lectures will describ~
the interactions with RF photons and will essentially be devoted to the study

•• Lecture Notes takcn by J. Dupont-Roc, D. O~trowsky and N. Poionsky.
t For Il detaikd description of the hasic principlc5, experimentu! techniques and the

other IIpp\j<:.üions (If opticnl pumpmg. ~ roerc:ncc:sl•
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of higher orcier processes involving severa! quanta. The possibiJity of can
cclling the Landé factor of an atom by interaction with a RF field will a180

be dcscribcd. The understandins of aH these effects requîTes the knowledge of
crossÎng and anticro5sing of energy levels. So this concept will be fil.'st
described il< th~ thin:11ecture.

1. Intefi'lction of Atoms with Optkal Photoi11fJ

Introduction

When atoms, in thc grollnd staie, are irradiate(\ wi!'h resonant or quasi

resonant optica! photons, the problems to be solved are the foHowing:

How are the atoms exdted?

What do they do il! the exdted state?
How do they fait back tû the gtound state?

These problems have been stuclied in great detail in references.:2. ln this
course wc will focus our attention only on the fust step (excitation process)
and use a different approaçh bas(:d on the resolvani forma1ism.~·4 As tbis
forma)Îsm wm prove to he 'Usf.ful aiso for the other chapters of this C01.!!'S~ it

will be first briefly revieWéd (§ A). We will the!"! app1y it to the probiem of
the light shift!; (§ B). Wc wiiJ finally describe the experimental results sorne

of which have been obtained very recendy (§ C).

A. Re:soh'cmtformaliJm

(1) DejinÎlioll. The resolvant G(z) of the HamiJtonian :Jr 1sby definitÎoli:

"'() • 1Gz --
1 Z - ,'}f'

G(z) Îs simply reJated to the evoJution operator U(r) "'" e-1JilfI:

Uer) ..., _1_ f e-I:U G(z) dz2~i c

where C is the following contour of the complc:x plane

••---------------r~(!' axis
t<o

Fia. t

(U)

(1.2)
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Jt may bc easily shown that G{z) is an analytic function on the complex

z plane cx.cept evcntuaHy on the real axis where l'oies and cuts corresponding
to the discrete and continuous eigenvalues of.JP may be found.

For t > 0 (t < 0), only the part of the contour C above (below) the real
axis gives a non zero contribution.

-The matrix eJemcnts of G(z) are oftcn more easily evaluated than those

of U(t). This exp1ains the importance of G(z). If ,Yt' = ,ri'c + V, and if
la) is an cigenstate of .J!f 0 evaluation of (a! G(z) la) gives, by (1.2), the

probabi1ity amplitude that, the system bcing in state la) at t == O. it remains
in the same state at time t. This is important for decay problems. Evaluation

of <bl G(z) la) leads also to the transition amplitude t'rom ja) to another
state Ib> of Jf'0 under th~ eireet of V.

-It is usua1Jy not neccssary to ca!culatc aH the matrix elements of G.
Depending on the problem to bc:solved, only a few ofthem must be evaluated.

So wc 'will YWW derive an exp1icit expression for the projection. (j(z). of G(z)
1nto a subspace. d. of the Hilbert space. If P (and Q) are the projections
onto (out of) e

p2 ",' P P + Q = 1 PQ ••••0

Q2 "" Q [P,Yt'o] == 0 [Q ••*'o] "'"0

C(z) = PG (z) P (1. 3)

and in general way for any operator A:

J ....PAP

() and J operate oniy inside e.

(2) Explicit expression for G(z). Using the identity:

1 1 1 1
- - - =: - (B - A) 
A B If B

wc obtain:
G = Go + GoVG

where Go is the resolvant of the Hamiltonian Jro:

1
Go = --

z -.Jf"o

From (1.4) it is easy to compute G == PGP

a = P + P vaP
z - JI('o Z - J()o

t spanncd by cigcnstatcs of .if'n.

(1.4)
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Using the equatity P + Q ;::::1, we have aIso:

Ci== _P- + _1__pa + _P_ VQGP, (1.5)
z -.Jfo z -80 z -.Yt'o

On the other hand, from the definition of G:

Q (z - :If 0 - V)(P + Q) GP "" Ci

[z '- ,)(('0 - QVQ] QGP •••QVPC

Rifplacing in (I.5) QG!' by this new expression, we get:

. Pl. ,ftI P Q(j •••-- + --- Pu + -- - V----- VpO
z - ;;Fo z - J'Po z -.JI!'o z -.JFo - QVQ

l
G(z) = ..gJ _ ~(z)Z -,.no

where

R(z) =: PVP +}'JV Q Vp
z - ;}f 0 - Q VQ

R(z) can be expanded for smaU V;

(1.6)

(1.7)

(1.8)

R(z) II< PVP + PV Q Vl' + PV Q V Q VP + ...
z -Jf'o z -)(fa Z -.Jt'o

(1.9)

The structure of the matrix clements of ll(z) is simply the product of
matrix clements of Vand encTgy denominatoTs. But, due to the presence of Q.
ail the intermediatc states must De outside e, ln other words, the diagrams
representing R(z) must be irreductible, in the sense that internaI and externat

lines do not correspond to the same subspace.
-Equation (1.7) is rigorous. If R(z) is smaJ! compaTed to Jf?o one can

develop (1.7) in a power series of ~(z):

(I.1 0)
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and represent the development so obtained by diagrams:

(Ul)

(LlO bis)

the fullline (truc propagator) being associated to G(z). the dotted line (free
propagator) to Go. and the circles to R(z).

Up to MW, no approximation has becn made. If Vis small, we can replace

in (L7) R(z) by an approximate value. ~'(z), obtained for example by keep
ing only the first two terms of equation (1.9): .

. 1
G(z) .., ---

z - ..•"f' 0 - R'(z)

= 00 + GoR'(jo + GoR'GoR'(]1J + ...

This amounts to replacing in (1.11) an the circles by the diagrams RSSO

ciated with the approximate expression ]('(z) and rcpresented by squares

in (Ul).

+ ••• (1.12)

But it must be emphasized that this is much better than an ordinary

perturbation treatment where we would have kept only a fillite number of

the diagrams of (1.11). By making an approximation only on Rez) in the

expression (1.7), and 50 by kecping al! the terms of the expression (1.10 t?is),
we do in fact sum an entire class of diagrams which are the most important
and we kecp tcrms with arbitrarily high powers of Vas it appears in (1.12).

This is of great interest in many problcms such as the decay of excited atomic

states which wc discuss in the next paragraph as an application of the resol
vant formalism.

(3) Decay of an alomie excited stale. Consider a two-!eve! atom (Fig. 2),

couplcd by the hamiltonian V to the clcctromagnetic field. Wc study the
decay of the cxcitcd statc. The hamiltonian for the problem is Jr' = .Jf'0 + V
where .)If" 0 represenls the cnemy of the utom and üf the frct' radiation fi~Jct
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~ .To the first order, V couples only the two states le, 0) (excited staie with no

photon) and IgkÉ.t) (ground ~tate with a photon of momentum " and polar
iution 6).

"Ko

FiS; :2

The two stationary states for the problem are !g, k, é;.) and le, 0) = la).
We have (al V la) = 0 and (al V 18ké.t> '" O.
Taking the zero of energy as the ground state, we have:

~ 0 la > == kol a > (1.13)

To study the decay of la), we shall con sider a one dimensionai subspace e,
subtended by la) and ca1culate the matrix element Giz) == (al a la) using
(1.7) and (1.13); we get:

(1.14)

.R;.(z) = (0 1VI a) + (0 \PV _.~ vpl a)z - Ho

(1.15)

Wc shaH approximate Rft(z) by the fust two terros of its expansion in

powers of V:

or

R~(z) == L L: 1(01 VI gkë.t>r~
"A Z - k

If R~(z) is small and smooth, the only values of z for which G.(z) is im

portant are near z = ko. We approximatet G.(z) in the upper half plane
near the reai axis by

G,,(z) ~
z - ko - R~ (ko + ie)

So R~ may be written in the following wa)':

R~ -= L L <101 V!gke,,'>12i .t ka - k + k
t A more correct and rigorous treatmcnt bascd on analytic continuation of G.(z) is

nrelented in rcfcrenccs·.
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or, replacing the summation over " by integrations oveT the length and the

solid angle D of k:

R~ •••:E JP dD dk j<a IV!gkB!>12 '"" AE _ i rA ko - k + is 2
where

{ AE = f ~(_1_)P dk l rdQ I<a IV!gké,)!"

ko - k Jo ••

r := ln f b (ko - k) P dk ~ JdSJ 1<0 IVI gké.a)I::

The final expression of G,,(z) is thus:

1

Ga(z) "" r
z - ko - dE + i 2'

From (I.16), one gets essi1y

(a IU(t)1 a) "" e-ll;tl e-1AE1 e-!T/Z)f

(!.16)

(LI1)

We bave then found the shift LIE and the natural width r of the excited

state.

ln this treatment wc have made a partiaJ summation of an innnite set of

diagrams:

i

@J

neg1ecting diagrams of the type:

-~-
This means wc have approximated e-<r~I1W!r by

+ ...

We have donc an Infinite summation to find the exponential behavior. the

only approximation bcing associatcd with the value of r which differs
slightly from (F).ru,'
23 Law
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B. Lfght shifts

We shaH now use the resolvant formalism to study the evolution of nn

stom irradiated by a light beam.

ln a first step, we shaH consider a simple atomic model with no Zeeman
structure, and give a physical interpretation of the results obtained.

ln the second part wc shaH generalize the theoretical formulas to the more

compticated case of an alom with a Zeeman structure. We shaH th en give
sorne experimental evidence for the predicted effects.

(1) Simple mode!, No Zeeman structure. Wc consider an atom whien has Ii .
ground state and an excited state separated by the energy ko. It is irnidiated

by N opticai photons k 1 •••• kif ... kN whose energy distribution is given
by the line shape u(k) (Fig. 3). Wc shall cali k the center and A the width
of u(k).

uUd

R K

AU the N photons h8ve the sam~ polarizatiol1 ë..l.().

We consider the two following states of the tota1 system atoro + radiation
field:

!g): atom Î!1 the ground state in the: presence of the N l>hotol'ls.

le, -kt): atom in the excited s!ale; the photoii kl having been absorbed.
Ig) and le, -kt> are eigeT!stat~s of the unperturbed hamiltonian ott>(} with

eigenvalucs Eo and Eo + "0 - kt and are coupled by the interaction hamiJo

tonian V. V couples aiso Ig) to other sta.tes with N + 1 photons: le, +k)
(phote.n k emitted) but we shaH neglect them because of the large energy
difference between !g> and le, +k).

The system at time t = 0 is in the state ig); wc look for the probability
that it remains in the same state at time t. We thus have to compute

GJ;z) ••• (g IG(z)1 g)

As in equation (U4), wc write:

G,,(z) ••• E _ R,.(z)Z - n

(US)
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Wc approximatc now R.(z) by the first non~zero term in its expanaion in

powers of V: • 2

R~(z) = L I<I! VI e, -kt>! (1.19)
1 z - Ho - ko + k,

The basic diagram associated ta R~ is the foUowing

ln ordcr to improve sHghtly the expression (U9). we take into ac(:oum

spontaneous emission during the intermedië.te excited state e, by repiadrlM,

the free propagator .l of the excited state br the tme pro-
z - 1::0 - kl} + k!

pagator ofthis state. If the induced emission due to kI• ~;:J.' ••. , KNis ni'gli~
siblt in comparison to the spontaneous ernission, which is th~ ('~St f02:
ordinary light sources, we can calculate this propagator ilS if the utom war.

isolated, Le., without incident iight beam: according to U·A<3 we havl:; to

rel'la(.'-e ko by ko + JE' - ff .!:.. where .dE and r arc the shifi am~ the nmtl.\rnJ
2

width of the excited fit.~te. So we get for the' improved approxim.ti\tion of f~~

K(z) = r'--!(g 1 !:J..~..;..:::.!!~e__ (1.20)
'" 1"', .. r

z - 1:.0 - ko + 1 --- + kt"
with ko ,." ko + J,E .••

Diagra mmatka1ly onc gets (I .20) by aélding to the basic ctiagrOtim !IS50d~h~d

with R~, an i!1fil1itt~Tiumber of otner diagrams which were omiHcd in the
approximation (l.19)
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(WC neglecl also the p05sibility of coincidences between k, kt and fI ••• kN

r) .when we simpIy replace ka by ko - i '2 .
Now, as in section § l-A-3, wc notice that in the expression (US) of G.,(::)

one cao l'lcg1cct R~(z} exccpt when z:)§ nearly equal to Eo. Wc shaH therefore
approximate R"(z) by Nf/(Eo + œ):

ï-i"; (E(\ + ie) = L _l9rJ VI e, -kl>Ft.__• (UO')
. 1 r

kt - k(J + fe + i-..•
,r.

Wc separate now the angular part of the matrix element of V

I<K 1 VI e, -kl>l:I. = IAt,l;/, I(g lëAoDI e)!2

15 is the angula.r part of the electric dipole operator.

Ale, contains the radial part.
We replace the summation over aH the photons k, by an integration over k,

weighted by the line shape u{k) and wc get

(1.21)

wherc

Finally wc bave

(1.25)

frorn which wc deduce
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The interpretation of AE' and F' fo!!ows immcdiate!y. Under the effect of

the light irradiation, the ground state has \?OW a finite life time IfpF'. aild
an energy which IS shifted from Eo to Eo + P AE' (!ight "nitft).

We see froni (1.23) and (I,24) that to get LIE' cr .r', we must muhiply ~$(k)

by the atomic dispersion or absorption curve, and intcgrate over k {rom Ci

to 00 (Fig.4)
Let us MW study how T'and ,jE' vary with k - ko. From (1.23) and (1.24)

one can plot the theoretical curves (Fig. 5). The value of k - KI) 'correspond~
iog to the maximum of l1E' is of the oider cf .1.

Furthermore, Fig. 4 shows that T' depends oniy 0.11 l'esonant photons

whose energy lies between k~ - rand ko + F; on the contrary, /JE' de~lIds
only on non resonant photons which have an energy either larger than ko +r
or less than ko - r.This 1eads us to l,.;of'lsÎder two types of transitions.

FiS. S

If k - léo is small enough, effective absorptions of photons are possible,

and those real transitions give a finite life timc IfpF' to the ground Slate.
On the other hand, if k -. ko is large, the photons can only be absorbcd

t

during a very short time of the orde. of - •. lé : through t.bose drtualk - 0












































































