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1. General introduction
1.1. Purpose of this course

The purpose of this course is to discuss the basic processes and the physical
mechanisms which govern atomic motion in laser light. During the last few
years, spectacular results have been obtained concerning the possibility to
“manipulate” atoms with laser light. A new expanding research field, called
laser cooling and trapping, has come out (see for example the courses of
W. Phillips, R. Blatt and H. Walther in this volume). In order to explore
the limits of these new methods, several theoretical approaches have been
developed. In this course, we review some of these approaches and we
compare their advantages, their difficulties and their domains of validity.

The emphasis will be put here on physical ideas and physical mechanisms.
The details of the calculations will not be given when they are available in
the literature. We will just recall the principle of such calculations, devoting
more time to the interpretation of the results and to the discussion of the
various approximations which are introduced. We will consider only the
case of neutral atoms. Laser cooling of ions is discussed in detail in the
courses of R. Blatt and H. Walther.

1.2. The interacting systems

The atomic medium is supposed to be very dilute, so that one can ignore
atom-atom interactions. We thus consider here a single atom A, with an.
excited state e and a ground state ¢ separated by an energy interval

E, — E; = hwa, (1.1)

wya being called the atomic frequency. Important atomic observables are
the electric dipole moment d, the position R and the momentum P of the
center of mass. This atom A is coupled, on the one hand, to the laser
field L, and on the other hand to all the other modes of the radiation field
which initially do not contain any photon and which form what we call the
quantum vacuum field V' (see fig. 1).

7
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Var Vav

Fig. 1. The interacting systems and their various couplings.

The laser field L is assumed to be monochromatic, with a frequency wy,.
If the initial state of the laser field is a coherent state, one can show (see
ref. [1] and exercise 17 in ref. [2]) that it is legitimate to describe it as a
c-number external field

Ey(r,t) = e(r)E(r) coslwrt + D(r)], (1:2)

where €(r), £(r) and @(r) are, respectively, the polarization, the amplitude
and the phase of the laser field in ». The atom-laser coupling Vi, is
characterized by the Rabi frequency (2, which is proportional to the scalar
product of the dipole moment matrix element (e | d | g) and the laser
field Ey(r,t). The Hamiltonian evolution due to Va1, can be analyzed in
terms of elementary processes of absorption and stimulated emission of
laser photons by the atom.

The atom-vacuum field coupling Vay is responsible for spontaneous emis-
sion of photons by the excited atom. It is characterized by the natural width
I' of the excited state e, which is also equal to the spontaneous emission
rate of photons from e. Since V is a large system with an infinite number of
degrees of freedom, the coupling Vay introduces damping and fluctuations
in the evolution of A. One of the main objectives of this course is to study
the limits introduced by these fluctuations and to explain how it is possible
to reduce them to their minimum value, and even to circumvent them.

Two extreme regimes can be considered for the evolution of A. For very
short interaction times, i.e., for ¢ < I'"!, one can neglect spontaneous
emission, and the evolution of A+L is described by a Schridinger equation.
For very long interaction times, i.e., for ¢ > I'"!, several spontaneous
emission processes occur during the interaction time £, and the “reduced”
evolution of A (traced over the vacuum field degrees of freedom) is then
described by a master equation or by a Langevin equation. This second
case is the most frequently studied and it will be analyzed in detail in the
following.

1.8. Characteristic times

For subsequent discussions, it will be useful to introduce here a few char-
acteristic times and to compare their orders of magnitude.

The shortest time of the problem is the correlation time 7. of the vacuum
field. Vacuum fluctuations (see ref. [3], Chap. 3 and ref. [4], Chap. III)
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have a very broad frequency spectrum J(w), which varies very slowly with
w around the atomic frequency wya: the typical frequency scale for the
variations of J(w) is wy itself. It follows that

Te = 1fwy. (1.3)

The fact that 7. is much shorter than all other characteristic times will
allow us to consider the vacuum field V' as a “reservoir” and to describe its
effect on the evolution of the atom A as a relaxation process (see ref. [5],
Chap. 4 and references therein and ref. [2], Chap. IV).

For the atomic internal degrees of freedom, the most obvious character-
istic time is the radiative lifetime 7 of the excited state e

™ = 1/I (1.4)

which is the inverse of the natural width I" of e and which can be considered
as the relaxation time associated with spontaneous emission. The well
known relation I' < wp implies that g > 7.

The existence of several Zeeman sublevels in the ground state gives rise to
other internal relaxation times which are associated with optical pumping
[6]. Absorption-spontaneous emission cycles, which are also called fluores-
cence cycles, can transfer the atom from one Zeeman sublevel g, of g to
another one g,,,. At low laser intensity Iy, it is possible to define a rate I
for the occurrence of such optical pumping cycles, which is proportional to
I1,. The inverse of this rate

=1/ (1.5)

is called the optical pumping time 7p and can be considered as the mean
time the atom has to wait before undergoing an optical pumping cycle. At
low laser intensity Iy,

TP Sy TR- (1.6)

We will show in the second part of this course how the existence of such
long internal relaxation times for multilevel atoms can give rise to very
efficient new cooling mechanisms.

Note that, for two-level atoms, one can still define at low intensity a
fluorescence rate I and a mean time 1/I" between two fluorescence cycles
experienced by the same atom, a mean time which is much longer than x.
But such fluorescence cycles bring back the atom into the same ground state
and they do not give rise to additional internal relaxation times. Actually,
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for a two-level atom, the only damping times appearing in the optical Bloch
equations which describe the evolution of the internal degrees of freedom
are all on the order of 7g.

For the external (i.e., translational) atomic degrees of freedom, a very
important characteristic time is the damping time of the atomic velocity.
We will show in chapter 4 (section 4.1) that it is on the order of

Text = h/ERs (17)
where
Er = B?kE /2M (1.8)

is the recoil energy of the atom when it absorbs or emits a single laser
photon. In eq. (1.8), M is the total mass of the atom and ki, = wy,/c.
For most allowed atomic transitions,

hI' > Eg. (1.9)

For example, for the resonance line of sodium, Al" = 400Er. When there
is a single internal time Ty = g, it follows from eqs. (1.4), (1.7) and (1.9)
that

Tcxt = Tint.- (1.10}

This separation of time scales introduces great simplifications in the anal-
ysis of atomic motion. As shown in the next chapters, one can then adia-
batically eliminate the fast internal variables and derive reduced equations
of motion for external variables.

However, it must be kept in mind that condition (1.10) is not always
fulfilled. For atoms with a degenerate ground state, the internal time 7p
can become, at low intensity, comparable to the external time (1.7), and
even longer. External times shorter than T, can also appear, such as the
oscillation period Ty of the atom at the bottom of an optical potential well.
In such cases, it is no longer possible to eliminate the internal variables, and
the theoretical analysis is more complicated. But, as shown in the last part
of this course, such situations are also quite interesting, since they generally
lead to much lower limits for the temperatures which can be achieved by
laser cooling.

1.4. Qutline of the course

In the first part of this course, i.e., from chapter 2 to chapter 7, we restrict
ourselves to atoms with a non-degenerate ground state. This is for example
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the case for a transition J, = 0 «— J. = 1. If we suppose in addition that
a high static magnetic field B is applied, which pushes the two Zeeman
sublevels |e,m = £1) very far away from resonance, we are left with a
two-level atom {|e},|g)}, with |e) = |e,m = 0) and |g) = |g,m = 0). The
only non-zero matrix elements of the dipole moment operator d can then
be written

(eld|g)=de.=(g|d]|e), (1.11)
where we have assumed that d is real and where €, is the unit vector along
the Oz-axis. Note however that some papers [7] keep the three Zeeman
sublevels |e,m = —1,0,41) of the excited state with B = 0.

Assuming that the atomic wave packet is very well localized in the laser
wave (semi-classical limit), we first derive in chapter 2 the expression of
the radiative force operator which governs the motion of the center of the
wave packet. The mean value of the force operator is then analyzed for
an atom initially at rest (chapter 3) and for a moving atom (chapter 4),
which allows us to introduce the notions of reactive, dissipative and friction
forces. The fluctuations of the radiative force around its mean value are
responsible for a diffusion of atomic momentum which heats the atom and
which limits the efficiency of laser cooling. These fluctuations are studied
both in the Heisenberg picture and in the Schrodinger picture (chapter 5).
All these results are now well known and we just present here a brief sketch
of their derivation, referring the reader to existing publications for more
details. On the other hand, we devote more time to the discussion of the
physical mechanisms. In particular, we present in chapter 6 original results
concerning the intriguing problem of an atom put at the node of a laser
standing wave. We show that the anomalously large momentum diffusion
which occurs in such a place (where there is no light) is due to interference
effects between different scattering amplitudes and reveals the existence of
a new kind of “correlated redistribution” process. The physical mechanisms
occurring at high intensity are also analyzed in chapter 7, using the so called
dressed atom approach.

The second part of the course (chapters 8 to 11) deals with atoms having
several Zeeman sublevels in the ground state. We consider for example sim-
ple atomic transitions with J, = 1/2 or J, = 1. We first recall in chapter
8 a few basic results concerning the effect of weak intensity light irradia-
tion on the internal dynamics of a slowly moving multilevel atom. Several
effects, such as optical pumping and light shifts are briefly reviewed. We
then show how these effects can conspire to improve the efficiency of laser
cooling by orders of magnitude. Two recent developments are studied in
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detail. The first one concerns laser cooling with laser configurations ex-
hibiting strong polarization gradients (chapter 9 and 10). The physical
mechanisms responsible for the very low temperatures which have been
recently measured (a few micro Kelvins) are analyzed. Some new results
concerning the limits of polarization gradient cooling are presented. Fi-
nally, we discuss in chapter 11 a method using velocity selective coherent
population trapping for cooling atoms below the so called recoil limit.

I Two-level atoms

2. Radiative force in the semi-classical limit
We will follow in this chapter the presentation of ref. [8].
2.1. Hamailtonian

The Hamiltonian H of the global system represented in fig. 1 can be written
H =Hy + Hy + Var + Vav. (2.1)

The first term
HA = th + H_:{lt o0 P_2

ong T hwale)el (2.2)

is the atomic Hamiltonian, which is the sum of the kinetic energy of the
center of mass and of the internal energy (we take E; = 0). The second
term

HV = Zhwj(a;'aj + %) (23)
J

is the energy of the quantum radiation field (see ref. [4], Chap. III),
initially in the vacuum state, expressed as a sum of contributions of the
various modes j. Note that, since the laser field L is treated here as a
c-number external field, there is no Hamiltonian Hy for L in eq. (2.1).
The third term of eq. (2.1) is the coupling

VaL = —d- EL(R,?) (2.4)
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between the atomic dipole moment d and the laser electric field Ey (R, )
given in eq. (1.2) and evaluated at the position R of the center of mass
(electric dipole approximation). Finally, the last term of eq. (2.1) describes
the atom—vacuum field coupling

Vav = —d- E(R), (2.5)

where the mode expansion of the electric field operator (see ref. [4], Chap.
III) is given by

E(r)=i)_&jaje; €57 the, (2.6)
i

a; (and a;) being the creation (and annihilation) operators of a photon of
momentum hk;, energy fw; = hck; and polarization €;, and £; being a

normalization constant equal to

ﬁw}'
R 2.
gj 2EDL3 ( 7}

(L? is the quantization volume).

One very often uses the so called “rotating wave approximation” (r.w.a.)
which consists of neglecting the “antiresonant” terms of Vaj and Vay.
Using for d the expression

d=de. (le)(gl+ (lg){el), (2.8)

which results from eq. (1.11), introducing the Rabi frequency {2, given by

Wi (r) = —d E(r) €, - €(T) (2.9)

and neglecting the antiresonant terms e Lt |g)(e| (and h.c.) of Vay, then
leads to

Vip = @ [e=2(® e=ient o) (g] + hc. ©(2.10)

One can similarly neglect the antiresonant terms a;|g)(e| (and h.c.) of Vay.
2.2. Heisenberg equations

In order to study the dynamics of the center of mass of A, we start from
the Heisenberg equations for R and P. The equation of motion of R is

ol P

: 1
R_E[RaH]_@_Hs

(2.11a)
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and shows that P/M is the velocity of the center of mass. It follows that
the force operator, F(R) = MR = P, is given by the Heisenberg equation
for P

oo o] oH
= —VVaL(R) — VVav(R)
= Force operator F'(R). (2.11b)

The quantum electric field operator E(R) appearing in VVay(R) can be
transformed using the Heisenberg equation for a;(t). The general solution
of this equation, which is a linear differential equation with a source term,
can be written (see ref. [9] and ref. [2], Complement Ay)

a;(t) = a;(0) e« +a3”" " (t) (2.12)
where the first term
ay®*(t) = a;(0) e~"st (2.13)

is the general solution of the homogeneous equation and corresponds to the
vacuum field evolving freely between the initial time ¢t = 0 and ¢, and where
the second term is a particular solution of the inhomogeneous equation
which corresponds to the “source field” originating from the atomic dipole
moment between ¢ = 0 and ¢. Inserting eq. (2.12) into the mode expansion
(2.6) of E(R,t) allows one to separate two contributions in the electric
field operator

E(R,t) = E™(R,t) + E*"°(R, 1), (2.14)

corresponding, respectively, to the vacuum free field and to the source field.

In all previous expressions, the total field operator a;(t) commutes with
all atomic operators taken at the same time, since field and atomic op-
erators commute at ¢ = 0 (they act in different spaces), and since the
unitary Hamiltonian evolution between 0 and ? preserves the commutation
relations. All possible orders between a,(t) and atomic operators are thus
equivalent. This is no longer true for a}*¢(t) and a$*""*°(¢ ) separately. De-
pending on the choice made initially for ordering the a;(t) and the atomic
operators, the respective contributions of the vacuum field and of the source
field will appear to be different, whereas their sum of course does not de-
pend on this initial choice (see ref. [9] and ref. [2], Complement Ay ). From
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now on, we will choose the normal order, where all the annihilation opera-
tors a;(t) are put at the extreme right, and all the creation operators a}r(t)
at the extreme left. Such an order leads in general to simpler calculations,
in particular when one takes average values in the vacuum state |0} of the

quantum field. As a consequence of the well known relations
a;(0)0) =0, (0a; (0) = 0, (2.15)

the contribution of the vacuum field to the vacuum average values vanishes.
It must be kept in mind however that other orders may be useful. For
example, the completely symmetrical order is more convenient for physical
interpretations [10].

We insert now eq. (2.14) into the second term, —V Vay (R), of the second
line of eq. (2.11.b). One can show that the source field E*°"*¢(r,¢) due
to the atomic dipole moment d has no gradient at the position R where
this dipole moment is located (this field is an even function of r — R). The
contribution of the source field to the force operator thus vanishes, and we
get finally

F(R,t) = —VVAL(R,t)— : VV2(R, 1) : (2.16)

where V5 is obtained from Vay by replacing the total field by the vacuum
field and where the notation : X : means that the normal order has been
chosen for ordering X .

2.5. Semiclassical limit

Up to now, no assumption has been made concerning the atomic wave
packet. We now assume, as in refs. [8] and [11], that such a wave packet
is sufficiently well localized in position space and in momentum space to
allow the quantum description of atomic motion to be as close as possible
to the classical description where the atom has a well defined position and
a well defined momentum.

2.3.1. Localization conditions
At t = 0, the external atomic state is supposed to be described by a wave
function 1(r) centered on

ro = (R(0)) )

and having a width AR(0). In momentum space, the same state is de-
scribed by a wave function centered on

po = (P(0)) (2.18)
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with a width AP(0) related to AR(0) by the Heisenberg inequality
AR(0) AP(0) > h. (2.19)

We will say a few words below (in subsection 2.3.2) on the more general
case where the external state is a stastistical mixture described by a density
operator rather than a pure state described by a wave function.

The force exerted by the laser wave on the atom varies over distances
on the order of the laser wavelength Ar, or larger. It also depends on the
velocity v of the atom because of the Doppler effect kv, where ky, = 2w /Ar,.
The velocity change év producing an appreciable change of the atomic
response to the laser excitation is such that kpdév is on the order of the
natural width I' of the excited state, or larger.

If one wants the force experienced by the atomic wave packet to be
quasi-classical, i.e., with very small fluctuations around its mean value,
two conditions must be fulfilled. First, the position spread A R(0) must be
small compared to Ap

AR(D) < AL or equivalently kL AR(0) < 1. (2.20)

Secondly, the velocity spread Av(0) = AP(0)/M must be small enough to

allow the corresponding spread of Doppler shifts to be negligible compared
to I'.

kL AP(0)

o (2.21)

Note that condition (2.21) does not imply any relation between I" and the
mean Doppler effect kppo/M of the wave packet. Such a mean Doppler
effect may be large compared to I'. Condition (2.21) bears on the spread
of Doppler shifts, not on the mean Doppler shift.

Equations (2.20) and (2.21), which express the localization of the wave
packet in position space and in momentum space, impose upper bounds on
AR(0) and AP(0), which can be in conflict with the Heisenberg inequality
(2.19). Multiplying both sides of eq. (2.20) by the corresponding sides of
eq. (2.21) and using eq. (2.19), we get the compatibility condition

hk?

— < I. 2.22
L« (222)
One finds again the condition Er < hl', written in eq. (1.9), and equiva-
lent to Toxe > Tine (see eq. (1.10)). The existence of two time scales thus
appears as a necessary condition for the semi-classical limit.
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2.3.2. Is localization maintained at later times?
Conditions (2.20) and (2.21) have been imposed at time ¢ = 0. Can we still
consider the atom as well localized both in position and momentum at a
later time 77

Suppose first that 7 < T.x, so that one can neglect the change of atomic
momentum between ¢ = 0 and t = 7 (remember that T,y is the damping
time of P). One can thus write

P(r) = P(0), (2.23a)

from which one deduces, using eq. (2.11.a)

R(1) ~ R(0) + %T. (2.23b)
It follows that

AP(r) ~ AP(0), (2.24a)

AR(7) ~ AR(0) + %(D)n (2.24b)

Because of eq. (2.24.a), momentum localization is unchanged. Equation
(2.24.b) describes the well known spatial spreading of the wave packet. In
order to maintain spatial localization at time ¢ = 7. one must have

kLAP(0)

e (2.25)

which means that 7 must not be too long. If 7 ~ T},; ~ I""!, one easily
checks that eq. (2.25) is equivalent to eq. (2.21). The spatial spreading of
the atomic wave packet during a time on the order of ', or a few ' !,
is thus negligible. It follows that one can choose time intervals T such that

Tiop & 7 Ty (2.26)

which are short enough compared to Tey¢ so that one can neglect the vari-
ations of atomic momentum during 7, and sufficiently long compared to
Tint to allow the internal degrees of freedom to reach an equilibrium state.
It is therefore possible to use the concept of steady-state force for a well
localized wave packet.

At much longer times, 7 3 T.y, it is no longer possible to consider that
the atomic momentum has not changed. Because of the random character
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of the momentum exchanges between the atom and the field, there is a
momentum diffusion which tends to increase AP. But if the laser frequency
is properly tuned, there is also a laser cooling which tends to reduce AP.
One can show (see subsection 5.2.4) that, as a result of the competition
between these two processes, AP tends to values which still satisfy eq.
(2.21). There are therefore situations where the atomic momentum remains
well localized. By contrast, and except for a few special cases where the
atom is strongly confined by a trapping potential (for example, near the
nodes of an intense standing wave), it seems impossible to maintain eq.
(2.20) for all times. Spatial diffusion tends in general to increase AR well
above Ap,.

There is however an important point which is overlooked by such an anal-
ysis. At long times, the state of the center of mass can certainly no longer
be described by a wave function, even if this was true at £ = 0. Several
fluorescence cycles have occurred and quantum non-separable correlations
have appeared between the various degrees of freedom, with the result that
the reduced state of the center of mass is a statistical mixture of states
described by a density operator 0§, rather than a pure state described by
a wave function. In such a case, the characterization of spatial localization
by condition (2.20) is too crude, and a more precise definition must be
given. Let (r' | o** | r”’) be the density matrix representing o$** in the
basis of the eigenstates of the position operator R of the center of mass.
The width of the spatial distribution R(r) = (r | o** | r), given by the
diagonal elements of 0¥, is the width AR considered above, which can
increase well above Ap. But there is also another important characteristic
length, called the spatial coherence length £, and defined as the typical
distance beyond which the off-diagonal elements of o§** (spatial atomic
coherences) vanish

(| ot |y ~0  if | =" > Ea. (2.27)

Now, one can show that, in the problem considered here, £4 remains al-
ways much smaller than Ap. This is due to the fact that photon scattering
destroys atomic spatial coherences [12]. Consider a target particle 7 that
scatters at random times projectile particles P having a de Broglie wave-
length Ap. One can show [12] that the spatial coherence length of 7T is re-
duced to values much shorter than Ap by these scattering processes. Here,
the target is the atom A, the projectiles are the laser photons with wave-
length Ar, and the scattering processes correspond to fluorescence cycles
occurring at random times. It follows that

€a < AL (2.28)
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In order to understand the implications of eq. (2.28), imagine that we
express 05" at time t = 7 as a statistical mixture of wave packets. Each of
these individual wave packets must have a spatial extension much smaller
than Ap, since, otherwise, eq. (2.28) would be violated; and the centers of
these wave packets are distributed over an interval AR, which is the width
of the spatial distribution and which can be much larger than Ap. Such an
analysis shows that we can consider that localization is maintained for all
times, but this localization concerns the individual wave packets in terms
of which the statistical mixture can be expressed, and not the whole spatial
distribution. The fact that we are obliged to consider several wave packets
at time t = 7, even if we start from a single wave packet at ¢ = 0, is due to
the randomness of fluorescence cycles, which introduces fluctuations in the
atomic evolution. Actually, the various wave packets into which o§** can
be decomposed at time ¢ = 7, can be considered as a statistical ensemble,
in the classical sense, representing the various possible “histories” which
can happen to the atom between t =0 and ¢ = 7.

2.4. Mean force and Langevin force

Suppose that, at ¢ = 0, the atomic wave packet is well localized around ry,
with a sufficiently small velocity spread around

_»

Vo M

(2.29)
If we are interested in the rate of variation of the mean value of P, d(P)/dt,
and of the variance of P, d(AP)?/dt, in the neighborhood of t = 0, we
must calculate one-time average values such as (F(R(7), 7)) and two-time
average values such as (F(R(7),7) - F(R(7'),7')) where F is the force
operator defined in eq. (2.16) and where 7 and 7’ are times close enough to
0, i.e., much smaller than T, (but which can eventually be as large as a few
Tint = I'"1). Since 7,7" < Teoyt, we can use eq. (2.23.b) for re-expressing
R(7) and R(7') as a function of R(0), P(0), 7, 7’. Furthermore, since the
wave packet is well localized in position and in momentum, we can replace
in the one-time and two-time averages the operators R(0) and P(0) by
the c-numbers 7y and pg. It thus appears that, for calculating d(P)/dt
and d(AP)?/dt around t = 0, we can replace F(R(7),7) by F(ro+voT, 7).
Note that F(rp+wg7,7) acts only on internal atomic variables and field
variables whereas F(R(7),T) acts also on external variables.

The rate of variation of (P) is equal to the mean value of F(ro+wvot,t),
which we note F(ro+wvot,t). Since the mean value of the second term of
the right-hand side of eq. (2.16) vanishes because of the normal order (see
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eq. (2.15)), we get for the mean force
f(rﬁ'l"vﬂt:t) — _(VVAL(T; t)>|r=rn+unt- (230)

The fluctuating part of F(rg+uvgt, t), i.e., the difference between the force
and its mean value,

SF(r,t) = F(r,t) — F(r,t), (2.31)
plays an important role in the calculation of d(AP)?/dt. Such a fluctuating

force, with zero mean value, is called a Langevin force. Using egs. (2.16)
and (2.30), we get

SF(r,t) = 8Fas(r,t) + 8 Fyac(r, t), (2.32)
where

SE;\S(Tvt) = _VVAL(T: t) o ‘F(T! t)! (2333)

SF ac(r,t) = — : VVay(r,t): (2.33b)

represent, respectively, the contributions of the laser field and of the vac-
uum field to the Langevin force.
We finally re-express —V Var(r, ). Using eq. (2.10), we get

—VVar(r,t) = —%|e} (g] e7 et V[ (r) 7% ] 4 hec. (2.34)

The calculation of the gradient gives

Vi (r) e M) = Q) (r) e M a(r) — iB(r) ], (2.35)
where
s VQ] (T)
a(r) = AR ") (2.36a)
B(r) = V&(r) (2.36b)

characterize, respectively, the spatial variations of the Rabi frequency and
of the phase. If we insert eqs. (2.35) and (2.36) in eq. (2.34) and if we use
eq. (2.30) and the fact that the mean value of |e)(g| is o4.(t) where o is the
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internal atomic density operator, we finally get the following expression for
the mean force

F(r,) = Re {o5e(t) B (r) e 20N () - iB(r) ]}

= -2 (r) [u(t)a(r) + v(t)B(r) ], (2.37)

with
u(t) = Re 0ge(t) e7ilnt+2(m] (2.38a)
v(t) = Im 04 (t) e wrt+er) (2.38b)

In all these equations, » means rq + vpf.
2.5. Optical Bloch equations (OBE)

The force operator (2.34) depends on the internal atomic operator |e)(g|,

and the mean force (2.37) depends on the average value of |e)(g|, i.e., on

the off-diagonal element o4, of the internal atomic density matrix o. We

now briefly explain how it is possible to derive the equations of motion of

o, which are called the optical Bloch equations (for more details, see ref.

[9] and ref. [2], Complement Ay ). :
We start from the equations of motion of the four operators

I = |a)(b], (2.39)
with a,b = e or g, which can be written
ih Moy = [Hap, H] = e, HY* + Var + Vav], (2.40)

since I1,, commutes with H§*" = P2/2M and Hy. As in section 2.2 above,
we replace the field operator a;(t) appearing in the mode expansion of Vyy
[see eqs. (2.5) and (2.6)] by the solution (2.12) of the Heisenberg equation
for a;(t). One can then show that, if normal order has been chosen in eq.
(2.40), the contribution of the source field, a3°""°(t), to the rate of variation
of I1,;, reduces to damping terms, proportional to the spontaneous emission
rate I'. On the other hand, the contribution of the free field appears as a
Langevin force with zero average value. The structure of the equation of
motion of I1,; is thus the following

I, =— —[H,,, H* +V,
ab ﬁ[ ab; 11 p + AL] (241)

+ Damping terms + Langevin force.
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Taking the average value of eq. (2.41) and using the fact that the Langevin
force has a zero average value, we get

: i in d
Tba = _E <b“HAt e VAL 30—]|a> a (ao—ba) ? (242)
sp

where the damping terms (due to spontaneous emission) have the following
form

i)
7;0ee —— 1 Oy (2.43&)
().
d
aagg =+ I oc, (2.43b)
sp
d I
(&), =7 s
d ig
($ oge) == 5 ge- (2.43d)
sp

Equations (2.43.a) and (2.43.b) describe the departure of the atom from
e by spontaneous emission and its transfer to g with a rate I". Equations
(2.43.¢) and (2.43.d) describe the damping of optical coherences with a rate
I'/2. (Strictly speaking, there are also terms describing a radiative shift of
the evolution frequency of the optical coherences, but this shift is supposed
to be reincluded in the atomic frequency wa.)

From eqs. (2.42) and (2.43), it is clear that

d
EE(Jee + Jgg) =0, (244)

since the trace of a commutator is zero. It follows that .. + 0,44 is constant
and equal to 1 and that the four matrix elements o,; are not independent.
We introduce the so-called Bloch vector with three independent compo-
nents u,v,w, where u and v are given by egs. (2.38.a) and (2.38.b) and
where

Ww(t) = 3 [0ee(t) — ogq(t)]. (2.45)

Note that u(t) and v(t) depend on ¢, not only through o4.(t) and o.4(t),
but also through @(r) = &(ry + vot).
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From egs. (2.38), (2.45), (2.42) and (2.43), we get, using egs. (2.2) and
(2.10), the following equations of motion of u,v,w, written in matrix form

i -r/2 6+é 0 u 0
v )= —-(6+®) -I/2 —( v |k 0
w 0 P -r w —Iy/2
(2.46)
In these equations,
& =vy- VP =g B (2.47)

and {2, and @ are evaluated at r = rg + vot.

Equations (2.46) look like the usual Bloch equations of NMR. The com-
ponents u,v,w of the Bloch vector can be considered as the components
Sz, Sy, S. of a fictitious spin 1/2 submitted (in the rotating frame) to
two static fields, one along Oz, proportional to —(8 + @), one along Oz,
proportional to £2;.

3. Mean radiative force for a two-level atom initially at rest

The general results of chapter 2 are applied here to the particular case of an
atom initially at rest, at a point which we take as the origin of coordinates

ro = 0, (3.1a)
vo=0. (31b)

The origin of time can always be chosen in such a way that the phase #(0)
of the laser field in » = 0 is zero. The laser electric field (1.2) at the
position of the atom can then be written

Ep,(0,t) = €(0) £(0) cos wit = Ep cos wit, (3.2)

where £y = €(0) £(0). We use in the following the simpler notation

2:(0) = X, (3.3a)
23 VQ] N
a(0) = e (3.3b)

B0)=Vd|,_, =B. (3.3¢)
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Note finally that, as a consequence of eq. (3.1.b)

$ =vy- VS|, _o=0. (3.4)

3.1. Steady-state solution of optical Bloch equations

Using eq. (3.4) and the fact that the Rabi frequency (3.3.a) is time in-
dependent (since the atom is at rest at » = 0), we see that the optical
Bloch equations given in eq. (2.46) are here a set of coupled linear dif-
ferential equations with time independent coefficients. They thus admit a
steady-state solution which is easily found to be (see ref. [2], Chap. V)

(L LA
Ust = RN (3.5a)
I § -
Vgt = 2—(21 1—_‘_5: (30b)
1
T e 75
where
22/2
T E B

is called the saturation parameter.

We will also need in the following the steady-state value o3t of the pop-
ulation of the upper state, which can be deduced from eqs. (2.45), (3.5.c)
and the relation o§} + o5, =1

(3.7)

It clearly appears in eq. (3.7) that 0%t tends to 1/2 for high saturation
parameters (s > 1).

3.2. Reactive response and dissipative response
Equation (2.37) shows that the mean force JF is the sum of two contribu-

tions, respectively proportional to v and v. In order to interpret physically
these two contributions in steady-state, we first show in this section that
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ugy and ve describe, respectively, the reactive response and the dissipative
response of the atom to the laser excitation.

We take the steady-state average value of the dipole moment operator d
given in eq. (2.8). This gives, using eq. (2.39)

(d‘)St = dfz(”eg Zr ng)st

= dez(crgz + 02;) =2de, Re J;';. (3.8)

On the other hand, the definition (2.38) of v and v and the fact that
@(0) =0 lead to

Ust + Vg = 058 et = 12(0) — g (3.9)
so that

Re o5t = Re {[ugt +ivat] ghivet]

= ug oS Wt — Vst Sinwyt. (3.10)
From eqs. (3.8) and (3.10) it follows that
(d)st = 2d €, ugt coswrt — vg sinwrt]. (3.11)

Comparing eq. (3.11) with the expression (3.2) of the laser electric field
at the position of the atom, we conclude that ug and vy are proportional
to the components of the mean dipole moment, respectively, in phase and
in quadrature with the driving laser field. They thus describe the reactive
response and the dissipative response of the atom to the laser excitation.

The previous result suggests that, in steady-state, the mean energy ab-
sorbed per unit time by the atom, and consequently the mean number of
photons absorbed per unit time (dN/dt)s, are related to the dissipative
response vg:. For the following discussion, it will be useful to establish the
equation relating (dN/dt)g to vs.

The work dW done during dt by the laser electric field (3.2) acting upon
the charge g of the atomic electron is

dW = gcoswrt & - dr, (3.12)

where dr is the displacement of the charge during d¢. Using d= qr, we
conclude that the mean energy absorbed by the atom per unit time in
steady-state is given by

<M> = coswit & « (d gt (3.13)
dt /
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If we now use the expression (3.11) of (d)s, we get

dWw
< > = —2de,- Egwr[vst cos? wit + ug Sin wit cos wit ]
st

dt
(3.14)
Averaging over one optical period gives
dw
e = ﬁ.!?l Wi, Ust, (315)
dé /.
where we have used the definition h(2, = —d €.+ €y of the Rabi frequency.

Since each absorbed photon provides an energy hwy,, the mean number of
photons absorbed per unit time in steady-state is given by

dN 1 /dwW
<E>t ~ hy <T>t = v, (3.16)
or equivalently
dN -
<E>St N Fgee? (317)

since it follows from egs. (3.5.b) and (3.7) that

Rins, =400 (3.18)
Equation (3.17) has a clear physical meaning. It expresses that, in steady-
state, the mean number of photons absorbed per unit time (left-hand side)

is equal to the mean number of photons spontaneously emitted per unit
time (right-hand side).

3.3. Dissipative force - Radiation pressure

We will call dissipative force the component of the mean force (2.37) which,
in steady-state, is proportional to v

Fdissip e _h‘Ql Ust ;8 (319)

The physical meaning of Fgissip is particularly clear when the laser wave
is a plane wave with a wave vector kg,

Ey(r,t) = &, cos(wpt — ky,- 7). (3.20)
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It follows from eq. (3.20) that the phase of the field is then

D(r) = —ky-r, (3.21)
so that
B=V®|,._og=—k (3.22)

Inserting eq. (3.22) into eq. (3.19) gives in this case, using eq. (3.16)

dN
Faissip = hd2y ky vee = hky, <E> : (3.23)
st

The interpretation of eq. (3.23) is straightforward. During the time interval
dt, the atom absorbs dN photons and gets a momentum dP = dNhky,
corresponding to a steady-state mean force

dP dN
ol = hk i .24
< a > L< at > 2

In the previous argument, we have not considered the momentum associ-
ated with spontaneously emitted photons. The reason is that spontaneous
emission occurs with equal probabilities in two opposite directions so that
the loss of momentum due to the re-emission process is zero on the average.
The dissipative force is also called radiation pressure force, or scattering
force, since it originates from absorption-spontaneous emission cycles.

If one uses the expression (3.5.b) of vy and the definition (3.6) of the
saturation parameter s, one can write eq. (3.23) in an equivalent form,

iE 22/2

which displays more clearly the dependence of Fgjsip on the various pa-
rameters. Plotted as a function of the detuning § = wi, —wa, Faissip varies
as a Lorentz absorption curve centered about § = 0, as expected for a dissi-
pative process. Let us consider now the variations of Fgjssip with the laser
intensity Ir,, which is proportional to £2?. At low intensity (more precisely
for s < 1), one finds that Fgisip is proportional to Ir,. At high intensity
(more precisely for s > 1), Faissip tends to a maximum value given by
hky I'/2, corresponding to a maximum acceleration

hky I’

= — — 2
Py TATh (3.26)
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It is interesting to discuss some orders of magnitude. In eq. (3.26), hky /M
is the recoil velocity wvye. associated with the absorption or the emission
of a single photon. Such velocities are usually quite small, for example on
the order of 3 cm/s for sodium or 3 mm/s for cesium. But the number of
fluorescence cycles per second can reach (for s > 1) values equal to I7/2
which can be quite high since I""! is on the order of a few 10~% s. For
example, for sodium, I'"! = 16 x 10”9 s, so that amax is on the order
of 10° m/sz, i.e., on the order of 10° g, where g is the acceleration due
to gravity. This explains how it is possible to stop an atomic beam with
resonant radiation pressure in a small distance, on the order of one meter
(see W.D. Phillips’ lectures).

3.4. Reactive force — Dipole force

We will call Freact the component of the mean force (2.37) which, in steady-
state, is proportional to g

-Freact = —h{ ug . (327)

In a laser plane wave, €& cos(wpt — ki, - ), the amplitude & and the
polarization € of the laser field are independent of r, so that Vf2;. and
consequently c, vanish [see the definitions (2.9) of £2; and (2.36.a) of a.
It follows that F,cact = 0 in a plane wave. The reactive force can appear
only if the laser wave is a linear superposition of several plane waves. On
the other hand, Fieact cannot involve a net absorption of energy by the
atom since it is associated with the reactive response of the atom. These
two properties suggest that Fieacy is associated with a redistribution of
photons between the various plane waves forming the laser wave. Photons
are removed from one plane wave by absorption processes and transferred
into another plane wave by stimulated emission processes. During such
a redistribution, the energy of the field does not change since all plane
waves have the same frequency wy. There is no net absorption of energy
by the atom. But, since the momenta of the photons associated with the
various plane waves are not the same, such a redistribution changes the
total momentum of the field, and consequently the momentum of the atom.

In order to make such an argument more explicit, let us consider the
simple case where the laser wave is formed by two plane waves with wave
vectors ky and kg (see also ref. [2], chapter V, subsection C.2.d). Figure 2
represents, in the complex plane, the complex amplitudes £, and F, of the
two fields at a point r where they are assumed to be in quadrature, so that
the two vectors Fy and FE, are perpendicular. We will consider only the
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Fig. 2. Representation in the complex plane of a laser field E resulting from the
superposition of two fields #1 and Fs in quadrature. The vectors u, wy and ws represent
the dipoles in phase respectively with E, Ey and E5.

reactive response w of the atom to the total field E, which has the same
phase as E (or the opposite phase, depending on the detuning). Let wy
and wus be the projections of w onto £y and Fs. The component w, of w in
phase with F4 does not absorb energy on the wave 1. The same argument
holds for w; and E,. On the other hand, u, is advanced in phase by /2
with respect to E,, whereas w, is retarded by 7/2 with respect to Es.
It follows that if ) gains energy by interacting with us, Fo loses energy
by interacting with w;. Furthermore, since | E; || us |=| Es || uy |,
the energy gained by one wave is exactly equal to the energy lost by the
other wave. We understand in this way, on the one hand the existence of
a redistribution between the two waves, on the other hand the coherent
character of such a redistribution which has a sense (1 — 2 or 2 — 1)
depending on the relative phases of the two waves at the point where the
atom is located. Note finally that, depending whether w has the same phase
as F or the opposite phase, the sense of the redistribution is different. This
explains why the reactive force is an odd function of the detuning.

If one uses the expression (3.5.a) of ug and the definition (3.6) of s, one
gets for Fieact the following expression

w__ v
4 82+ (I2/4)+ (£22/2)

Freact = (328)

The reactive force varies with é = wp, — wa as a Lorentz dispersion curve,
as expected for a reactive process. For § < 0 (wp, < wy), the reactive force
pushes the atom towards the regions of higher intensity since it has the
same sign as V2. The opposite result holds for § > 0 (wy, > wa). For
each value of 27 (with (2, > I'), the value of § which optimizes Feacq is
on the order of (21, the corresponding maximal value of Feaer being on the
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order of

. RV (22
(-FreactJma,x = -Ql

~ AV ;. (3.29)

Contrary to Fgissip, which remains bounded when the laser intensity I,
increases, Feact increases indefinitely with I. Equation (3.29) shows that
Freact can reach values on the order of hkp (2 since V{2, can be on the
order of kp (2, for example in a standing wave. Such a result corresponds
to exchanges of momentum hky, occurring at a rate {2, as expected for a
redistribution process involving absorption—stimulated emission cycles. It
has to be compared with the corresponding result for Fisi, which reaches
maximum values on the order of hky times the spontaneous emission rate
2

Note finally that the reactive force (3.28) derives from a potential U since
one can write

fr(-'.a(‘.t = _VU. (330)
where
_hé Qf(r)/2 .
Ulr) = 5 In [1 + = (70| (3.31)

For § < 0 (wr, < wa), a region of maximum intensity appears as an attrac-
tive potential well for the atom. For a given (2, the maximum depth of such
a potential well occurs for a saturation parameter s ~ 4, and corresponds
t0 [ U] =03 | R 2002

In the following chapters, we will present other physical pictures for
the reactive force, which is also called the dipole force. In chapter 6, we
will interpret the redistribution process at low intensity as resulting from
interferences between different scattering amplitudes. The high intensity
limit will be considered in chapter 7, and the dipole force will be interpreted
in this limit in terms of gradients of dressed state energies.

4. Moving atom. Friction force

We consider now an atom moving with a velocity vg, so that its position r
is given by

r=uyt {—11)
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if we take » =0 at £ = 0.
4.1. Simple case of a laser plane wave
The laser wave is supposed to be a plane wave with wave vector ky, [see
eq. (3.20)]. Since the amplitude and the polarization of the laser electric

field do not depend on r, the Rabi frequency is position independent and
consequently does not depend on time

21(r = wvgt) = {21 = constant. (4.2)
On the other hand, the phase @ varies linearly with »r

d(r)= —kp-r (4.3)
so that

. dr

D= df‘V‘P:’UO'V‘PZ —kr - vg. (4.4)

Since (2, and @ are time independent, the optical Bloch equations are
still a set of coupled linear differential equations with time independent
coeflicients. They thus have a steady-state solution which is derived from
the solution obtained in section 3.1 ( where vy was equal to zero ) by the
substitution

§— 6+ = 6 —ky-vo, (4.5)
or equivalently, since § = wy, — wa, by the substitution
Wr = Wy, — kL' vy (’lﬁ)

Such a result means that the atom moving with velocity vy “sees 7 the
laser frequency shifted by the Doppler shift —kp - vg.

Figure 3a represents an atom moving with velocity vy in a laser plane
wave propagating along the negative direction of the Oz-axis, so that its
wave vector can be written ky, = —kp €,. If vg = €,- vy is the projection
of vy along the Oz-axis, we have —ky, - vg = ky vg. Figure 3b represents
the component along Ox of the mean force experienced by the atom plot-
ted versus krvg [we just replace in eq. (3.25) é by 6 + kpve ]. We have
assumed that ¢ is negative. The force is negative and reaches its maximum

value when & = —kp vy, i.e., when the apparent laser frequency wy, + kp, vg
coincides with the atomic frequency wa. Near vy = 0 we can write
Folvg) = Fulvg=0) —awvg+ -+, (4.7)

where the term linear in vg is a friction force, since it is proportional to vg
with the opposite sign. The coefficient « is called the friction coefficient.
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Fig. 3. (a) Atom moving with velocity vp in a laser plane wave with wave vector kp,.
(b) Mean force experienced by the atom versus ky vg.

Replacing 6 by 6 — kp, vo in eq. (3.25) and expanding the result obtained
for F,(vg) in powers of ky vo/I", we get for a the following expression

£ 1.2 5 or

L TR (T

o= (4.8)

where s is the saturation parameter defined in eq. (3.6). It clearly appears
from eq. (4.8) that a is positive for § < 0. For a fixed value of s, the
value of § which optimizes eq. (4.8) is 6 = —I'/2. Taking this value of §,
we can then look for the optimal value of s which is found to be s = 1,
corresponding to 21 = [I'. Taking these values of ¢ and {2;, we determine
the maximum value of

il (4.9)

Omax =

If we come back to eq. (4.7), and if we suppose that F,(vo = 0) is
compensated for by a static external force, we find that the equation of
motion of the center of the atomic wave packet is

d
M—EO B (4.10)
art

which means that the atomic velocity is damped with a rate

o hk2 E
o B _Er

= = ; 4.11
M 4AM 2k ( )

where ER is the recoil energy defined in eq. (1.8). We have thus established
the result announced in section 1.3 according to which external variables,
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such as the atomic velocity, have a characteristic damping time on the order
of Text = v~ ! ~ h/ER (ranging typically between 1 us and 100 ps).

4.2. Laser standing wave

The laser wave is supposed now to be a standing wave along the Oz-axis,
linearly polarized along Oz, so that eq. (1.2) becomes

Ey(r,t) = €. &(z) coswet, (4.12)
where the amplitude &y(z) is given by

Eo(z) = 2& coskpz. (4.13)
Inserting eq. (4.13) into eq. (4.12), we get

Ey(r,t) = €, &l cos(wrt — kra) + cos(wrt + kLz) |, (4.14)

which shows that the laser wave can be considered as the superposition of
two counterpropagating plane waves, with the same amplitude &. It must
be emphasized however that the force exerted by the standing wave is not
simply the sum of the radiation pressures of the two counterpropagating
waves. There are interference effects between these two waves which play
an essential role.

In a standing wave, the phase of the field is the same everywhere, so that
3 = V@& = 0. On the other hand, the Rabi frequency is position dependent
and can be written

d 80 (l‘)

2 (z) =- 7

= 2 () coskz, (4.15)

where

ulko

{h.= ~

(4.16)

is the Rabi frequency associated with each of the two counterpropagating
plane waves forming the standing wave. It follows that
s V.Ql(ﬂ:‘) l V«S'o(x)
2 () &o(x)

= —kptankLz € (4.17)

is different from zero. According to eq. (2.37), the mean force experienced
by the atom depends only on the component w of the Bloch vector,
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In order to find u, we have to solve the optical Bloch equations (2.46). If
the atom is moving with velocity vy along Oz, we can replace = by vgt. We
then see from eq. (4.15) that {21(x) becomes a sinusoidal function of ¢, with
frequency kpvo. On the other hand, @ vanishes since @ does not depend on
z. We conclude that, for an atom moving in a standing wave, the optical
Bloch equations form a set of coupled linear differential equations with
coeflicients depending sinusoidally on time. Contrary to what happens for
a plane running wave, it is in general impossible to solve analytically these
equations, and we must use some approximations.

4.2.1. Limit of small velocities (kpvg < I')
We present here a method of resolution of optical Bloch equations, first
introduced in ref. [8], and which consists of looking for an expansion of the
solution in powers of kvg/I'. The zeroth order term represents the “adia-
batic” solution, corresponding to a situation where the atom is moving so
slowly along Ox that its internal state, when it passes x, is the same as the
one associated with an atom at rest in x. The first order term gives the
first correction to the adiabatic approximation. It is linear in vy, more pre-
cisely in kuvg/I" which is the non-adiabaticity parameter, equal to the ratio
between the distance voI"~! over which the atom travels during the inter-
nal response time I""! and the laser wavelength k~! which characterizes
the spatial variations of the laser field. When inserted into the expression
(2.37) of the force, this first order correction gives rise to a force linear in
v, which is precisely the friction force.

In order to find the terms linear in v in the solution of the optical Bloch
equations, we first write eq. (2.46) in a compact matrix form

(X) = (; + Vg =— 0 ) (X) = (B)(X) — (X), (4.18)

where the column vectors X (Bloch vector) and X, (source term) and the
square matrix B (Bloch matrix) are given by

u 0 -I/2 § 0
X)y={v], X)=1{( 0 |, B =| -6 -I/2 —-{i(z)
w r/2 v Bl o

In eq. (4.18), we have used the “hydrodynamic derivative” d/dt = (0/0t)+
vp(0/0x). After a transient regime which lasts a time on the order of I"~!
the contributions of 8.X /0t vanish and we have

w3e(X) = (B) (X) - (Xo). (4.20)



Atomic motion in laser light 35

We now insert the expansion
X)= (XD + (XN +... (4.21)

of X in powers of kvg/I" into eq. (4.20). To order 0 in kvo/I", the left-hand
side vanishes and we get

0= (B)(X?) - (X,), (4.22a)
or equivalently
(X)) ={(B) (X)), (4.22b)

which is just the steady-state Bloch vector for an atom at rest in . To
order 1 in kvg/I", we then get

]
vo = (X(U)) = (B) (X(U}, _ (4.23)
which can be transformed, using eq. (4.22.b) into
. ] d
(= =l (0)y — -1, ~ -1
(X0) = (B) 0 2= (X ) = (B) w0 5= (B)™(Xy). (424

Finally, we insert the expansion u = u(®) +u(!) 4. .. of the first component
of X into the expression (2.37) of the force. We do not give here the
expression of the friction force which results from such a calculation, since
it can be found in ref. [8]. We just point out a few important characteristics
of such a friction force.

Consider first the weak intensity limit: sq < 1, where sq is the satura-
tion parameter associated with each of the two couterpropagating waves
forming the standing wave. One finds in this limit that the friction force,
averaged over one wavelength, coincides with the sum of the two friction
forces exerted by the two counterpropagating plane waves. It thus appears
that, at weak intensity, the interference effects between the two counter-
propagating waves acting upon a moving atom vanish when averaged over
one wavelength. One gets, for ki |vg| < v and s¢ € 1, F = —a vy with

i b o2+ (r2/a)*

(4.25)

Such an important result, which remains valid for arbitrary velocities,
will be rederived in section 6.5 from a different point of view using scat-
tering amplitudes. It actually provides the justification for the physical
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Force
- (arb. units)

Fig. 4. Principle of Doppler cooling. Because of the Doppler effect, the radiation
pressures exerted by the two counterpropagating waves forming the standing wave get
unbalanced (curves in dotted lines), resulting in a net force opposite to the atomic
velocity (curve in solid line).

picture usually given for Doppler cooling [13]. Consider an atom moving
with velocity vy along a weak standing wave, formed by two counterpropa-
cating waves +ky, and —k, slightly detuned to the red side of the atomic
frequency (fig. 4). Because of the Doppler effect, the atom gets closer
to resonance with the wave opposing its motion, and farther from reso-
nance with the other wave, so that the two forces exerted by the two waves
become unbalanced, resulting in a net force opposite to vg.

At high intensity (sg 3> 1), one finds that, contrary to what happens at
low intensity, the friction force F(z,v), averaged over one wavelength, be-
comes an “antidamping” force for a red detuning (wy, < wa) and a friction
force for a blue detuning (wr > wa). The physical interpretation of such
a surprising result will be given later on, using the dressed-atom approach
(see chapter 7, section 7.4).

4.2.2. Arbitrary velocity. Method of continued fractions

When kv becomes on the order of I', or larger than I', it is no longer possible
to use the expansion (4.21) of the Bloch vector in powers of kvg/I. We
present in this section another approach to the problem, first introduced
in ref. [14], and using the fact that the components of the Bloch vector are
periodic functions of time, which itself is a consequence of the sinusoidal
dependence on t of 2;(z) = 21(vot) [see eq. (4.15)].

Since u,v,w are periodic functions of time, we can expand them in
Fourier series. Inserting these expansions in the optical Bloch equations
(4.18) leads to a set of recurrence relations between the various coefficients
of the Fourier series expansions of u,v,w. It turns out that these equa-
tions can be formally solved in terms of continued fractions, which are very
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Fig. 5. Variations with kyvg of the static part of the mean force experienced by an
atom moving in a high intensity standing wave. This curve corresponds to § = —21I",
{27 = 5I". The radiative shifts of the Doppleron resonances are already quite large.

convenient for computer calculations. We will not give here the details of
such calculations, which can be found in ref. [14]. We just mention a few
important results obtained in this way, and give their physical meaning.

In fig. 5, we have sketched the variations with kpvg of the static part of
the force F = —hi (z) u(z,v) e, averaged over one wavelength. We have
supposed a red detuning (§ < 0), and an intensity high enough so that
the slope at vy = 0 is positive, contrarily to what happens at low intensity
where we have a friction force for § < 0 (see end of the previous subsection
4.2.1). For larger values of ky,vg, we see in fig. 5 that the force changes sign
and exhibits resonant variations around values of kpvy which correspond
to kvg = —68/3,-6/5...

The resonances appearing in fig. 5 can be simply interpreted in terms
of resonant multiphoton processes. For example, figure 6 represents such
a multiphoton process, responsible for the resonance krvg = —6/3. In the
atomic rest frame, the apparent frequencies of the two counterpropagating
waves forming the standing wave are Doppler shifted to wr, + kpvg and
wr, — kyvo, respectively (fig. 6a). The atom can make a resonant transition
from ¢ to e by a three-photon process involving the absorption of one
wr, + kpvo photon, the stimulated emission of one wy, — kpvg photon and
the absorption of a second wy, + kpve photon (straight arrows of fiz. 6b).
Such a process is resonant if

2(wr, + krvg) — (wL — kpLvo) = wa, (4.26)
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Laboratory frame

W v, LdL

Rest frame
e @ b
W -k vy W +k vy
(a) (b)

Fig. 6. (a) Frequencies of the two counterpropagating waves forming the standing
wave in the laboratory frame and in the rest frame. (b) Resonant multiphoton process
responsible for the resonance kyvg = —6/3.
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£

ie., if
Wy, —Wa = —3}(,'[,1?0‘ {427)

The width of the resonance is determined by the natural width I' of the
upper state. Once in e, the atom falls back in g by a spontaneous emission
process (wavy arrow of fig. 6b). Similar diagrams involving n + 1 absorp-
tions, n stimulated emissions and one spontaneous emission could be given
explaining the resonance kpvg = —6/(2n + 1). Such resonant multipho-
ton processes involving photons with Doppler shifted frequencies are called
“Dopplerons” [15].

4.8. The ot~ 0~ configuration for a J, =0 « J, =1 transition

Figure 6b clearly shows that redistribution processes play an important
role in the resonances appearing in fig. 5, since we have absorption of
photons from one wave followed by stimulated emission of photons in the
counterpropagating wave. Actually, all the difficulties encountered in the
theoretical description of the force experienced by an atom in a standing
wave come from these redistribution processes, which involve interference
effects between the two waves. We will come back to these problems in
chapter 6. We present now another laser configuration and another atomic
transition, for which there are no redistribution processes, and which con-
sequently lead to much simpler results for the velocity dependent force [7].

We consider an atom with a transition J, = 0 « J, = 1, having a
single Zeeman sublevel gy in the ground state and three Zeeman sublevels
€_1, ep and e4 in the excited state (fig. 7a). This atom is moving with
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Fig. 7. (a) Zeeman sublevels for an atomic transition Jg = 0 «— Je = 1. (b} Laser
configuration formed by two counterpropagating waves having, respectively right circular
(o) and left circular (o) polarization.

velocity v along the same axis as two counterpropagating waves having
respectively a right circular (¢") and a left circular (o) polarization (fig.
7b). Because of angular momentum conservation, the ot wave excites
only the transition gy < ey and the o~ wave excites only the transition
go < e_1. It follows that if the atom absorbs a ¢™ photon and goes from
go to eyq, it cannot come back to gy by stimulated emission of a photon
in the other ¢~ wave. In other words, conservation of angular momentum
prevents any redistribution of photons between the two counterpropagating
waves. This explains why the calculation of the velocity dependent force
is, in this case, much simpler than for a two-level atom. As shown in ref.
[7], the force can be exactly calculated. For a red detuning (wy, < wa), it
remains a friction force for all intensities. No resonances, corresponding to
Doppleron multiphoton processes, appear in the curve giving the variations
of the force with the velocity.

5. Fluctuations of radiative forces

After having studied in the preceding two chapters 3 and 4 the mean value
F of the force, we consider now the fluctuating part 8 F' of this force given by
egs. (2.32) and (2.33). Such a fluctuating force introduces noise in atomic
motion and is responsible for a diffusion of atomic momentum which limits
the efficiency of laser cooling and laser trapping. In this chapter, we explain
how it is possible to describe theoretically such fluctuations and we discuss
the physical content of the results.

Since atomic motion in laser light presents great similarities with Brown-
ian motion, we have thought it would be useful to recall first (section 5.1) a
few basic results concerning classical Brownian motion. We then approach
the problem of fluctuations of radiative forces, first in the Heisenberg pic-
ture (section 5.2), where we follow closely the presentation of ref. [8], then
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in the Schrédinger picture (section 5.3), where we summarize the results
derived in ref. [17].

5.1. Classical Brownian motion
The topics presented in this section are described in detail in ref. [16].

5.1.1. Langevin equation

In order to describe the random motion of a heavy particle, with mass M
and momentum p, immersed in a fluid of light particles, Langevin intro-
duced the following equation (for each component p of p)

3 P(®) = —w(t) + F(t). (5.1)
The total force acting on the particle is split into two parts: a friction

force, —yp(t), representing the cumulative effect of collisions which damp
the particle momentum with a “relaxation time”

Tp=~"1 (5.2)

and a fluctuating force F(t), called the “Langevin force”, responsible for the
fluctuations of p(t) about its mean value. In eq. (5.1), F'(t) is considered
as an external force, independent of p(t), having a zero average value

F(t)=0 (5.3a)
and a correlation function equal to
F)F(t') =2Dg(t - t'), (5.3b)

where D is a coefficient which will be interpreted later on, and where g(t—t')
is a normalized function of t — ¢/

+oo
/ g(T)dr =1, (5.4)
which is an even function of ¢ — ¢’ (since F'(¢) is stationary), and which has
a width on the order of the collision time 7.

Usually, the collision time 7. is much smaller than the relaxation time
Tr

7. € Th, (

w
T
—
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which means that we have two well separated time scales in the problem. It
follows that, with respect to functions of ¢t — ¢’ varying with a characteristic
time Tk, eq. (5.3.b) can be approximated, taking into account eq. (5.4),
by

F(t)F(t') ~ 2D é(t —t'). (5.6)

5.1.2. Momentum diffusion coefficient
The solution of eq. (5.1) corresponding to p(tg) = pp can be written

t
p(t)=p0e—‘f““‘°)+/ dt' F(t') e~ 7)., (5.7)
tp

From eq. (5.3.a), it follows that
p(t) = poe 7t 0), (5.8)

which means that the mean momentum of the particle is damped with a
time constant Tg = y~1.

We now evaluate the variance o2 (t) of p
p;

o2(t) = [p(t) - p(D)]

Using eqgs. (5.7), (5.8), (5.3.b) and (5.6), and assuming t — tg > 7., we get

(5.9)

t t
o2(t) = / at f at" F@)F(7) e ¢t) et
to ‘o (5.10)
= Y |:1 —e‘zﬂt—tu)} ;
Y

For time intervals short compared to the relaxation time (t —to < v~ 1),
we can expand the exponential of eq. (5.10) and we get

. €t—tg €7t — o2 (t) ~ 2D (t — to). (5.11)

It follows that, at short times, the variance of p(t) increases linearly with ¢ —
to, with a rate 2D. This shows that D is a momentum diffusion coefficient.
For long time intervals (¢—#y > v~ 1), the exponential of eq. (5.10) becomes
negligible and we get, using eq. (5.8)

(5.12)

t—t >y —  ol=p?-P=p’=

1 o == ——2
3 ¥
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The variance of p tends to a fixed value equal to D/v. On the other hand,
if the particle is assumed to reach an equilibrium at the temperature 7" of
the surrounding fluid, we have

|

— = —kgT. 437

SWE 2B (5.13)
Equating (5.12) and (5.13) gives the Einstein equation

D = M~kpT, (5.14)

which relates the fluctuations of F', characterized by D, to the damping rate
« which characterizes the dissipative force damping the particle momentum.

5.1.3. Classical regression theorem
In this section, we present a simple method for calculating the correla-
tion function of p(t), which can be easily extended to quantum correlation
functions.

We first calculate the correlation function F(t)p(#'), involving both F(t)
and p(t'). If we let tp go to —oo in eq. (5.7), we get a steady-state corre-
lation function given by

F(t)p(t') = /_ t dt” F(t)F(t") et~ (5.15)

2D6(t—1")

If ¢t > ', more precisely if t — t' > 7, the delta function 6(¢t — ") of eq.
(5.15) is outside the domain of integration, so that

t—t' > — F(t)p#') = 0. (5.16)

Such a result means that p(¢'), which depends on the Langevin force F'(t")
in the past of ¢/, cannot be correlated with the Langevin force F(t) in the
future of . On the other hand, if ¢ < ¢/, more precisely if t' — ¢ > 7., we
can extend to +oo the upper limit of the integral of eq. (5.15) which is
then easily evaluated

t=t>r = Ft)p(t') = 2D e 7'-9) (5.17)
Finally, for ¢ close to ¢/, F(t) p(t') varies rapidly between 2D and 0 over an

interval of width 7., taking the value D for ¢ = t' ( since F(t)F(t") is an
even function of £ — ¢"). All these results are regrouped in fig. 8.
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' Fop ()

Fig. 8. Variations of F(t) p(t') versus t.

We calculate now the autocorrelation function p(t) p(¢') of p(¢). For this
purpose, we multiply both sides of eq. (5.1) by p(t') and we take the average
value

< ORE) = PO ) + FO D). (518)

For t—t' > 7., the last term of eq. (5.18) vanishes, according to eq. (5.16),
and we get

e %W = —yp(t) p(t)). (5.19)

For 0 <t —t' < 7., F(t)p(t') is on the order of D, according to fig. 8, so
that the contribution of the last term of eq. (5.18) to p(t) p(t'), which is
equal to the integral over t” from ¢’ to t of F'(t) p(#"), remains bounded by
Dr.. Since 7. < 71, this contribution is very small compared to Dy~ 1,
which is nothing but the initial value p2 of p(t) p(t'), for t = t' (see eq.
(5.12)). We can therefore ignore, for ¢t > t, the last term of eq. (5.18) and
consider that the “two-time average ” p(t) p(1') obeys the equation

< PP ~ O (), (520)

which is quite similar to the equation

<90 = 20 (5.21)

obeyed by the “one-time average” p(t). In other words, the fluctuations
“regress” as the mean values. Such a result can be extended to quantum
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correlation functions and is known as the “quantum regression theorem”
(see ref. [18] and ref. [2], Complements Cyy and Ay ).

5.1.4. Kramers—Fokker—Planck equation
Consider a Brownian particle moving in a one-dimensional potential well
U(x). Its position z(t) and its momentum p(t) obey the following equations

dz _  p(t) .
dt =+ M 1 (0223)
dp d o
3 = 1P — L U(=) + F(2), (5.22b)

which are a straightforward extension of the Langevin equation (5.1). We
want here to give the principle of the derivation of the evolution equation
of the distribution function P(z,p,t), which is the probability density of
finding the particle with position 2 and momentum p at time ¢.

It is clear from eq. (5.22) that the rates of variation of z(¢) and p(t)
depend only on the state of the system at the same instant ¢, and not
on its “history” in the past of t. For that reason, the stochastic process
{z(t),p(t)} is called a “Markov” process. Note that {p(t)} alone would not
be a Markov process, since dp(t)/dt depends, according to eq. (5.22.b) on
dU(z)/dz, i.e., on z(t) = jioo dt'p(t'")/M which involves the whole history
of p(t).

The distribution function P(z,p,t) associated with the Markov process
{z(t), p(t)} obeys the equation

P(z,p,t) //dxdpﬂ’ Bt o ) Pzl ' ), (5.23)

where II(z,p,t/z',p',t') is the conditional probability for ending in z, p at
time ¢ if one starts from z’, p’ at time #’. This probability is normalized, so
that

//dzd’p Hizp.ile 0.t) =1. (5.24)

We now choose a time interval 8¢ such that 7. < 8t < Tr. Replacing in
eqs. (5.23) and (5.24) ¢ by ¢ + 8¢ and ¢ by ¢, we derive from eq. (5.23) the
following equation

P(z,p,t + 8t) — P(z,p,t)
= —I—f/da:’ dp’ I (z,p,t + dt/x',p', t) P(a',p',t)

—f/dz”dp”ﬂ(:r”,p”,t+6t/i~‘:,p,tJP(i~‘3,p,t), (5.25)
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which has a clear physical meaning. After division by 8¢, such an equation
expresses that the rate of variation of P(x,p,t) in z,p is equal to the rate
in minus the rate out. It can thus be considered as a master equation for
P(z,p,t).

We suppose now that the variations

b= x4 ot) —x(2),
6p = p(t + 6t) — p(t)

of z(t) and p(t) between t and t + d¢ are small compared to the widths Ax
and Ap of P(z,p,t) in = and p, respectively (limit of small jumps). By
expanding in eq. (5.25) P(z’,p’,t) in powers of 2’ — z and p’ — p, it is then
possible to approximate the master equation (5.25) by a partial differential
equation. If the Taylor series expansion of P(z’,p',t) is stopped after order
two, one gets

(5.26)

aQ

where we have used the simplified notation z; = z,z2 = p and where M;
and D;; are given by

. 6:[.',;
M= s 5 (5.28a)

1 ox;bx;
Dt'j ] 4 i 3.

N rcdt&Tn O (5.28b)

In order to calculate M; and D;; we come back to egs. (5.22), and we
derive, after calculations similar to those of subsection 5.1.2., the following
relations

_p Bp_ o O
5t M’ BE T gt (5.29)
S22 _ . Szbp @ =
FEEE R
which inserted into eq. (5.27) give the Kramers-Fokker-Planck equation
0 0
ap(xsp! t) - Ea_’P(“T P, t)
az
[ } (z,p,t) + a —=P(z,p; ).

(5.30)
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5.2. Analysis of momentum diffusion in the Heisenberg picture

5.2.1. Momentum diffusion coefficient and Langevin force operator
By definition, the momentum diffusion coefficient D is related to the rate
of increase of the momentum variance

d
2D aAP?( Y. (5.31)

with
AP (t) = ([P(t) — (P(t))]?). (5.32)
Starting from the Heisenberg equation for P(t), given in section 2,

d
S P(t) = F(t), (5.33)

where F(t) is the force operator, we get

< (IP@) - (PO) = = (P) - 2 P) - (P) s
=(F-P+P-F)—-2(F)-(P).

Inserting into eq. (5.34) the solution

P(t) = fo dr F(t— 1) (5.35)
of eq. (5.33), and using eq. (5.31) leads to

2D =2 Re /Uoo dr [(F(t)-F(t—1)) — (F(t)) - (F(t—7))]

=2 Re /oodT (6F(¢)-0F(t—7)),
0
(5.36)

where 8F(t) is the fluctuating part of F'(t)

SF(t) = F(t) - (F(t)). (5.37)

It thus appears that the momentum diffusion coefficient is related to the
time integral of the correlation function of the Langevin force operator.
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In the following subsection, we give a brief outline of the calculation of
such a correlation function, leading to the expression (5.44) for D. The
physical interpretation of this expression is then given in subsection 5.2.3.
The reader, not interested in the method of calculation of eq. (5.36), can
thus directly proceed to subsection 5.2.3.

5.2.2. Correlation function of the Langevin force operator

We have seen in chapter 2 (see egs. (2.32) and (2.33)) that the Langevin
force 8.F' (v, t) is the sum of two forces 8 F,5(r, t) and dF,,.(r,t) represent-
ing, respectively, the contributions of the laser field and the vacuum field
to the Langevin force. From the expression (2.4) of Vi1, and the fact that
only the z-component of d is non-zero, we easily get

8 Fias = [d; — (d.)]VELs, (5.38)

where dd, = d, — {d.) is the fluctuating part of d.. A similar calculation
starting from eqs. (2.5) and (2.14), allows one to transform eq. (2.33.b)
into

8Fac = d,V(E2)t + [V(EP) ] d.. (5.39)

Replacing 8 F by 8 F.s + 8F,,. in eq. (5.36) shows that the correlation
function (8F(t) - 0F (¢t — 7)) is a sum of three contributions, one involving
only 8 Fj.s, one involving only 8 F,.. and one involving both 8 F,; and 8 F ..
One can show that this last cross term is zero as a result of the fact that the
vacuum free field gradients, appearing in eq. (5.39) and evaluated at time
t, commute with the dipole operator d.(t') evaluated at any other time
*. This allows one to put V(EY*¢)" at the extreme right, and V(E}2)~
at the extreme left, which then gives zero when the vacuum average value
is taken (see eq. (2.15)). This shows that D can be written

D = Diys + Dy, (540)
where

il —Re f dr (5Fius(t) - 5Fhas(t — 7)), (5.41)

. 0

* To demonstrate such a result, one can express the annihilation operators a; (t) ap-
pearing in the field gradients as a function of aj(t’) and of the source field radiated
between ¢’ and £. aj(t") commutes with d:(t'). The remaining commutator appears as
an integral over the modes ke of an odd function of & and thus vanishes.
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Diis—Re foo A7 {6F ac(t) - S Fyac(t — 7). (5.42)
0

In eq. (5.38), VEL, is a c-number, so that the correlation function
of 8Fj,s is proportional to the correlation function of dd,. To calculate
(dd.(t)dd.(t — 7)), one can first express dd. in terms of dI1,, and 8II,.
where Iy = |a}{(b] with a,b = e or g (see eq. (2.39)). Now, we have
already mentioned in section 2.5 that the equation of motion of I1,; has
the structure of a Langevin equation with damping terms and a Langevin
force (see eq. (2.41)). Multiplying both sides of the equation giving
Ha,b(t) by H.4(t'), and taking the vacuum average value, one can then
show, by an argument very similar to the one used above in subsection
5.1.3, that, for ¢ > ¢/, the two-time averages (IT,5(t)[T.4(t")) obey the same
equations as the one-time averages (IIo(t)) (¢ and d being fixed), i.e., op-
tical Bloch equations. Such an important result, known as the “quantum
regression theorem” (see ref. [18] and ref. [2], Complements Cjy and Ay)
means that the correlation functions of the atomic dipole moment can be
calculated from optical Bloch equations.

It remains to evaluate eq. (5.42). Inserting eq. (5.39) into eq. (5.42),
one sees that, due to eq. (2.15), the only non-zero term is

(0ld=(t) [V (EZ*)* ()] [V(E7*) (¢ — 7)] d=(t — 7)]0). (5.43)

The order of the two field operators appearing in eq. (5.43) can be changed
using their commutator, which is a c-number. The contribution of this com-
mutator is therefore proportional to the correlation function of d., which
can be calculated from optical Bloch equations. The remaining term can
be transformed, using the fact mentioned above that the vacuum free field
gradient operators commute with the dipole operators at any time. One
can then easily show that this term is equal to zero, as a consequence of
eq. (2.15).

To summarize, we have shown that D is a sum of two terms. The first
one, Dy, involves 8F,s and thus VEy., ie., a and 3 given in eq. (2.36).
The second one, D¢, comes from the commutator of the vacuum free field,
i.e., from the quantum nature of this field, and is independent of « and
3. Both D5 and Dy, involve correlation functions of the atomic dipole
moment which can be calculated from optical Bloch equations, using the
quantum regression theorem.

5.2.8. Physical discussion
For a two-level atom at rest at » = 0, the method of calculation outlined
in the previous subsection leads to the following result [§]



Atomic motion in laser light 49

r

D=+ﬁgk§,zli+3
T ﬁz’gzg (153)3 {1 = 1425622;1{;28 % 32}
+h2a? % a —fs)3 {1 _jfjiifz s+3s% + %33}
~ra-po g fs)s {4af£2r? +s}, (5.44)

where s is the saturation parameter at » = 0, given by eq. (3.6), and where
a and 3 are the logarithmic Rabi frequency gradient and phase gradient
at 7 = 0 given in egs. (3.3.b) and (3.3.c).

The first line of eq. (5.44), which is independent of e and B is Dy,
which comes from the non-commutation of the vacuum free field operators

okl g
L4145
Such a term describes the momentum diffusion due to the random direction
of the spontaneously emitted photons. The atomic momentum P accom-
plishes a random walk in momentum space, the size of each step being fikr,,
and the number of steps during ¢ being equal to I' 03! 8¢, where of! is the
steady-state population of the upper state, given by (3.7). It follows from
the well-known properties of random walk that the increase of the variance
of p during &f can be written

Dyac = B%E (5.45)

©p?) — (%p)” = 12k2 I" o=t 5t
5
1+s

The comparison of egs. (5.45) and (5.46) then shows that the right-hand
side of eq. (5.46) can be written as 2D,,.6¢, which confirms the physical
interpretation of Dy...

The three other lines of eq. (5.44) correspond to D),s. For a laser plane
wave, 3 = —ki, and a = 0, so that only the second line of eq. (5.44)
contributes to Dj,;. Such a term then describes the momentum diffusion
due to the fluctuations of radiation pressure, more precisely due to the
fluctuations in the number of absorbed photons. It can be written, using
eq. (3.6), as

= h*ki g 5t. (5.46)

1
Zh%iFL(HQ), (5.47)

5 P
aka 1+s
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where @) is a dimensionless factor given by

o 202%(46% — 3I?)
(2022 + 462 + I'?)?

(5.48)

In order to interpret eq. (5.47), we introduce the number 8N of laser
photons absorbed during 8¢, and the corresponding momentum transferred
to the atom dp = hkpdN. Since dN is a random variable, there is an
increase of the atomic momentum variance due to the fluctuations in the
number of absorbed photons

®%) - (Bp)" = Wi, [382 - EW)° . (5.49)

Consider first the mean number of photons absorbed during 6f, which is
given by (see eq. (3.17))

o r
BN =Io% 6t =2 —

£ 5t. ;
G} (o50)

If 8N was following a Poisson law, the variance of 8N would be equal to
ON. Actually, this is not the case, and one can show [19] that there are
corrections to the Poisson statistics in resonance fluorescence which are
precisely described by the factor @ given in eq. (5.48)

SN2 — (5N)* =8N (1+ Q). (5.51)

It thus appears that eq. (5.49) can be rewritten, using egs. (5.51), (5.50)
and (5.47) as

(89 — (5p)” = 2 Dans 8, (5.52)

which confirms the physical interpretation of D,s as being due to the fluc-
tuations in the number of absorbed photons. The comparison of eqs. (5.45)
and (5.47) shows that Dy, and D,ps have the same order of magnitude.
In a laser standing wave, 3 = 0, so that only the third line of eq. (5.44)
contributes to Dj,.. Such a term then describes the fluctuations of dipole
forces and will be denoted by Dgip,. We consider here a laser standing wave
along the Oz-axis, linearly polarized along Oz, and having a node in z = 0

Ep(z,t) = €, 2E sinkrx coswrt, (5.53)
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In eq. (5.53), & is the amplitude of each of the two counterpropagating
waves forming the standing wave, the corresponding Rabi frequency being
equal to ;. The standing wave Rabi frequency in z is thus equal to

2,(z) = 202 sinkyz, (5.54)
so that
Vi (z) 1
= = fy -, 5.55
= Qq (a:) & 5 tan k‘]_,.’x’,‘ ( )

Finally, the saturation parameter in x, s(x), is equal to
s(z) = 4sg sin? kpz, (5.56)

where

0z T s
T (e T 4 (5:57)

is the saturation parameter of each of the two counterpropagating waves
and $pyay the maximum value of s(z). We will not discuss here the general
expression of Dgj, obtained when eqs. (5.55) and (5.56) are inserted into
the third line of eq. (5.44). We will restrict ourselves to the low intensity
limit (sg < 1) and to the high intensity limit (so > 1).

If sg <« 1, the third line of eq. (5.44) reduces to

Daip ~ h2k2 T sgcos® kyz = h2k2 T S“T cos? kLz, (5.58)
whereas the first line is equal to
Dyac =~ R2k2 I sy sin’ kpz. (5.59)

Note that Dgj, + Dyac is independent of = and equal to the sum of the
diffusion coefficients associated with each of the two counterpropagating
waves. Near a node, for example near x = 0, we get a very surprising
result. Since there is no light in a node, we expect that there are no
fluorescence photons. Effectively, Dy, — 0 if # — 0. But Dy;, takes at
r = 0 its maximum value, equal to hzkf I'syg = ?‘izkﬁ I' $max /4. We will
come back to this problem in section 6.3 and show that, near a node, the
large value of Dgj, is due to a new kind of correlated redistribution.
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If sp > 1, the third line of eq. (5.44) tends to*
2202 i
Dy = h'ki cos” knz ETak (5.60)

Contrary to Dyae and to Daps given in eqs. (5.45) and (5.47), Dgi, does
not saturate at high laser intensities. A dressed atom interpretation of this
result will be given in section 7.3. We have seen above, in section 3.4,
that the depth of the optical potential well associated with dipole forces
increases linearly with (2. The fact that the heating due to the fluctuations
of dipole forces increases quadratically with 2, as shown by eq. (5.60),
introduces severe limitations for laser traps. Note however that it is always
possible, as suggested in ref. [20], to alternate in time cooling and trapping
phases.

5.2.4. The Doppler limit in laser cooling
The equilibrium temperature reached in laser cooling results from a com-

petition between laser cooling which damps the atomic velocity with a rate
v = /M, where « is the friction coefficient (see eq. (4.7))

op/dt = —p, (5.61)

and the heating due to momentum diffusion

& 2
(i) = 2D. (5.62)
bt diffusion
From eq. (5.61), it follows that
5p .
(i) L it (5.63)
ot cooling

In steady-state, the two rates (5.62) and (5.63) cancel out so that yp? = D.
The equilibrium temperature is thus

1 D

% Equation (5.60) is not valid near a node, since s(z) — 0 in such a place.
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From eq. (4.8), it follows that, at low intensity, and for § = —I'/2,
a ~ h?k? s, s0 that
hki
f v —23p. 5.65
LalTa (Z0%)

On the other hand, from the results derived in this section (see egs. (5.45),
(5.47) and (5.58)), we have, at low intensity

D~ h2k2 sy, (5.66)
Inserting eqs. (5.65) and (5.66) into eq. (5.64) leads to

15
: ~ —— ~ hI. :
kgTp M h (5.67)

It thus appears that the temperature reached by laser cooling for two-level
atoms is determined by I'. The exact value of the minimum temperature
which can be reached is given by kgTp ~ hl'/2 (see refs. [8, 21, 22]) and
is called the Doppler limit. Tp is on the order of 240 uK for Na and 125
uK for Cs.

5.3. Quantum kinetic equation for the atomic Wigner function

We try now, using the Schrédinger picture, to derive an equation of motion
for the reduced atomic density operator describing the translational degrees
of freedom of the atom. We just give the outline of the derivation, putting
the emphasis on the new results and on the new physical insights. More
details may be found in refs. [17] and [23].

5.5.1. Atomic Wigner function
When both internal and external degrees of freedom are treated quantum-
mechanically, the atomic density matrix is labelled by two types of quantum
numbers. For example, if one uses the position representation for the center
of mass, the atomic density matrix elements are (i, 7'|a|j, v"'), where i,j = €
or g and r’and 7" are eigenvalues of the position operator R. Similarly, if
we use the momentum representation, we get (i, p'|o|j, p").

A very useful representation, which treats in a symmetrical way position
and momentum, is the so called “Wigner representation” [24], which as-

sociates with the atomic density operator o, a function of r and p given
by

il : : : u i u
Wii(r,p) = ] fddu exp(—ip.u/h) <a,’r‘ i le| 4,7 — §>

i 3 ‘ . v 4 v
= jd vexp(+ir.v/h) <z,'p+ 5 lo| 4, p — §> ;
(5.68)
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From eq. (5.68), one can introduce the Wigner function

f(r,p) = Wee(r, p) + Wey(r,p), (5.69)

which is a density of “quasi-probability” to find the atom in » with mo-
mentum p, regardless of its internal state. The atomic Wigner function
is real, normalized and appears as an ordinary probability density for all
completely symmetrical functions of R and P. For example,

%(R-P%—P-R)=/d37'd3pr-pf(r,p). (5.70)

Note however that f(r,p) can take negative values, which shows that it is
not a true probability.

5.3.2. Generalized optical Bloch equations

These equations of motion generalize those discussed in section 2.5 above,
to the case where the external degrees of freedom are treated quantum-
mechanically. They have the same structure as in eq. (2.42), ie., the
sum of Hamiltonian terms coming from the atomic Hamiltonian H, and
the atom-laser interaction Hamiltonian Vay, and damping terms due to
spontaneous emission. The new features are the appearance of the external
quantum numbers.

For example, the equation of motion of Wy, (r,p) is found to be

0
awgg(ra p)=

p g
M oy Ves(ToP)

+ %I/d:’k [g—ue) ek T W (r,p — ﬁ—;) —EF(k) et T W (r,p+ %’5)

41 [ @ 0() Waelr,p + B,
(5.71)

The first term comes from the commutator of o with HZ** = P?/2M, the
second one from the commutator of o with Vyp,, Ez(k) and &£; (k) being,
respectively, the Fourier transforms of the positive and negative frequency
components of the laser field. Finally, the last term describes the feeding
of the ground state from the excited state by spontaneous emission, ¢(k)
being the relative probability of spontaneous emission of a photon in the
direction & and ka being equal to wa /c.
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It clearly appears from eq. (5.71) that the atomic momentum undergoes
discrete changes during the absorption and emission processes. It follows
that the generalized optical Bloch equations are finite difference equations
coupling the four functions W;(r,p) with i, j = e or g. Such equations are
not easy to deal with, other than numerically, and we introduce now some
approximations to simplify them.

5.3.3. Approzimations leading to a Kramers—Fokker—Planck equation
We begin by introducing two small parameters characterizing atomic mo-
tion

— fik;,  recoil momentum (5.72)
'7"Ap ~ momentum spread’ '

s kLAp  Doppler effect
>7 'MTI' ~ natural width’

Condition €; < 1 means also that the atomic coherence length {4 = h/Ap
is small compared to the laser wavelength kEl, which is equivalent to the
localization assumption (2.28) introduced above and defining the semi-
classical limit. Conditions e < 1 means that the atomic velocity has
been already damped enough (by laser cooling), so that one can treat the
Doppler effect perturbatively. Such a condition is also equivalent to the lo-
calization assumption in momentum space, introduced above in eq. (2.21).
Actually, near the Doppler cooling limit, we have, according to eq. (5.67),
Ap?/2M ~ hI, which leads to

&1~ eg ~ /Eg/hT. (5.74)

By expanding the generalized optical Bloch equations in powers of €; and
€2, it is then possible to replace these finite difference equations by coupled
partial differential equations, easier to deal with. Another important point
is that, at order 0 in ¢ and es, the Wigner function (5.69) does not evolve
whereas all other variables vary with a time scale on the order of I"1,
This means that, in the limit of zero photon momentum (k;, = 0), photon—
atom interactions cannot change the position or the velocity of the atom.
This means also, since €;,e2 < 1, that there is a slow variable in the
problem, f(r,p), in terms of which all other variables can be adiabatically
eliminated, leading to a single reduced evolution equation for f(r,p), which
is a quantum kinetic equation describing atomic motion.

Such a general procedure has been followed in several papers [25-28], and
leads to a Kramers—Fokker—Planck equation for f(r,p). The advantage of

(5.73)
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the treatment presented in ref. [17] is that it uses an operatorial method not
limited to two-level atoms, leading, for the diffusion and friction coefficients,
to general expressions with a more transparent structure in terms of two-
time averages of the Heisenberg force operators. It is then possible to
prove the equivalence of the results obtained in the Schrédinger and in -
the Heisenberg pictures and to get new physical insights in the friction
coefficient and in the equilibrium temperature.

5.3.4. Physical discussion
The equation of motion of f(r,p), derived in ref. [17] has the following
form

of __p of of
ot T A =
&f ot )
* X gy (D) + D8]

i

)
+ Y %5 (1) 5@ f)
+ Terms in 9%f/dp;0r;. (5.75)

The term —(p/M)- (0 f/dr), which is of order 0 in ¢; and €5, describes the
free flight of the atom. The next term —(0f/0p) - F(r), which is of order 1
in €1, describes the drift in momentum of the Wigner function due to the
mean radiative force JF, studied in section 3 for an atom at rest in r. The
remaining terms are all of order 2 in €; and e, the last one (in 9% f /p;dr;)
being negligible in most cases. ’

The terms in 9% f/dp;dp; describe momentum diffusion. D)’_ and D
are diffusion tensors given by equations similar to egs. (5.41) and (5.42),
each of the two dF operators being replaced by its i or j component.
This shows that the two diffusion coefficients D, and D,,. introduced in
subsection 5.2.2 are just the traces of the diffusion tensors appearing in eq.
(5.75).

The term in d(p; f)/0p;, with

e [0
i3 () = ﬁ/ rdr ((Fya(r,7), Frs(r,0)]), - (5.76)
0
where Fr, = —VV,y, is the force operator associated with Var, (first term

of eq. (2.16)), and where the average value is taken in the steady state of
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an atom at rest in 7, describes the friction. Combining this term with the
term in 9 f/dp indeed gives

Z% Fi(r) =Y vipi| £(r,p), (5.77)

J

so that —EJ vi;p; appears as a friction force, linear in p, correcting the
force F; obtained in chapter 3 for an atom at rest in . In order to interpret
expression (5.76) of the friction tensor v;;, we first recall a well known result
of linear response theory [29]. If a physical system S is in a stationary
state oeq, and if it is perturbed by V(t) = —A(t)M, where A(t) is a classical
function of £ and M an observable of S, then, the mean value, at time ¢, of
another observable N of § is given, to order 1 in A, by

400
(VO = (N + [ at xaalt =~ ONE), (5.78)

—00

where x s (7) is a linear response function equal to

xna(r) = 3 0(r) (IN(), M(O)])q- (5.79)

In eq. (5.79), 6(7) is the Heaviside function (equal to 1 for 7 > 0 and to 0
for 7 < 0) and N(74 and M(0) are free Heisenberg operators (evaluated in
the absence of V). The fact that the mean value of a commutator appears
in expression (5.76) of the friction tensor then suggests to interpret ~;;
as a linear response function. More precisely, the interaction Hamiltonian
between the laser and a moving atom can be written

p P
_d-Ey (r ol tg)) ~ —d- Ey(r) +j=mzy : ~ 1 (t—t)V,d- Ey(r).

(5.80)

The last term, where we recognize Fr; = V;(d- E), can be considered
as a perturbation due to atomic motion and can be written as

= 5 %{t — to)Fr;(7), (5.81)
J=zy,z

i.e., as a sum of terms analogous to V(t), with A(t) = —(to — t)p; /M and
M = Fy;. It follows then from eq. (5.78) that the mean value of N = Fy;(r)
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at time f; is, to order 1 in p, equal to

(Fri(r,p,to)) = (Fri(r,p = 0,1y))

+ Z /_:o dt’ [x FuiFy; (to — t’)} [—(to 2 tf)% !
J (5.82)

where we have put t = #5. Using eq. (5.79), one can then show that the
last term of eq. (5.82) can be written — 3, v;;p; and coincides with the
friction force found in eq. (5.77). The friction force thus appears as the
linear response of the force to the perturbation due to atomic motion.

To summarize the results of this section, we see that there is a close
analogy between atomic motion in laser light and Brownian motion in a
potential well. Starting from the generalized optical Bloch equations, it is
possible to derive for the atomic Wigner function a kinetic equation quite
analogous to the Kramers—Fokker—Planck equation (5.30) and to get simple
physical interpretations for the diffusion and friction tensors in terms of
correlation functions and linear susceptibilities. Finally, the equilibrium
temperature can be written, according to eq. (5.64) and to the results of
this subsection, as

D Jo” dr (8F(7)8F(0) + 8F(0)6F (1))
My~ (ifh) [;°7dr (8F(1)8F(0) — SF(0)8F (7))’

kpT ~ (5.83)
If the mean values of the anticommutator and commutator appearing, re-
spectively, in the numerator and denominator of eq. (5.83) are of the same
order, we predict that

h
kpT ~ —, (5.84)
(1)
where (1) is on the order of the correlation time of the Langevin force op-
erator 0F. We have seen in subsection 5.2.2 that the correlation function of
OF is proportional to the correlation function of the atomic dipole moment
d., so that {7} is on the order of an internal atomic time Ti,. It follows
that

kT =, (5.85)

For a two-level atom, Tj,; ~ I'!, and we find again in eq. (5.85) the
Doppler limit (5.67). Equation (5.85) suggests that much lower tempera-
tures can be reached if internal times much longer than I"~! exist. Exam-
ples of such situations will be given in the second part of this course.
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6. Basic physical processes in the perturbative limit
6.1. Introduction

At low saturation (s < 1), i.e., at low intensity or large detuning, photon-
atom interactions can be analyzed perturbatively in terms of elementary
absorption and emission processes. For an atom in a plane wave, such
an analysis, combined with the basic conservation laws, provides a simple
interpretation of the main features of radiative forces: mean value, velocity
dependence, fluctuations (see sections 3.3, 4.1 and subsection 5.2.3).

The situation becomes more complicated when the laser wave is a super-
position of several plane waves. Because of the phase relations which exist
between these waves, their contributions cannot be added independently.
There are interference effects which make, for example, atomic motion in a
laser standing wave more difficult to analyze than in a plane running wave.
An example of such difficulties is given by the very intriguing behavior of
an atom put in a node of a standing wave. In such a place, there is no light
and no photon absorption, so that one would expect the atomic momentum
diffusion coefficient D to vanish. However, such a naive prediction is not
confirmed by the calculation of D, which predicts that D is as large at the
nodes as at the antinodes! (See subsection 5.2.3.)

The motivation of this chapter is to try to get new physical insights in
these problems in terms of quantum interferences between different scat-
tering amplitudes. Instead of treating the laser field classically, as in the
previous sections, we consider here single photon states, which are linear
combinations of states with different momenta, and we study how such
states are scattered by well localized atomic wave packets. Although such
an approach is limited to the low saturation limit, it presents some advan-
tages in comparison with the usual approaches, where one “traces” over the
field variables to get reduced equations of motion for the atom. Here, we
keep the state vector of the whole system A+F (atom + field). so that it
is much easier to see if the atom-field correlations play an important role.
One can also follow the evolution of the incident photon and see if it disap-
pears (absorption process replacing the incident photon by a fluorescence
photon appearing in an initially empty mode), or if it is transferred from
one initially excited mode to another initially excited mode (redistribution
process).

The idea of interfering scattering amplitudes is first introduced in the
simplest possible case of an atom in a laser plane wave (section 6.2). Study-
ing the evolution of the initial state allows us to show that the photon
absorption results from an interference between the incident field and the
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field scattered by the atom in the forward direction. We then consider (sec-
tion 6.3) an atomic wave packet localized in a node of a standing wave, the
corresponding one-photon state being a linear superposition of two states
with opposite momenta +hky, and —hky,. We show that the atomic momen-
tum diffusion which persists in the nodes is due to more subtle interference
effects involving forward and backward scattering amplitudes and lead-
ing to a photon redistribution between the modes +k;, and —ky,, which
is correlated with the atomic momentum. Another important feature of
such a “correlated redistribution” is that it is dissipative, varying with the
laser detuning as a Lorentz absorption curve. Using the same formalism
of interfering scattering amplitudes, we show in section 6.4 that the usual
redistribution responsible for the dipole forces appearing out of a node in
a standing wave is quite different from the one discussed in section 6.3, in-
sofar as it is reactive and not correlated with atomic momentum. Finally,
we consider in section 6.5 the case of an atom moving in a standing wave
and we determine when it is possible to neglect the interferences between
forward and backward scattering amplitudes, a situation which then allows
the radiation pressures of the two waves to be added independently.

0.2, Simple case of an atom in a laser plane wave
At time ¢ = 0, the global system A+F (atom + field) is in the state

|@(0)) = [¢a) ® [¥F) = |9, p; krew), (6.1)

where [1ha} = |g, p) is the atomic state describing A in g with a momentum
p, and |¢p) = |kper) is the field state describing a single photon with mo-
mentum Akp, and polarization €. The time evolution of A+F is governed
by the Hamiltonian

H = Hp + Hp + Varp (6.2)

where Hy and Hy are the atomic and field Hamiltonians given in egs. (2.2)
and (2.3). We treat here the incident field quantum mechanically, so that
the two interaction terms Vyy, and Vay of eq. (2.1) are replaced by a single
atom-field interaction term Vap = —d - E(R), where E(R) is the total
(incident 4+ vacuum) field operator given by an expression analogous to

(2.6)
: Z [_hw ik'R
VAF —: —ld J - m € ake e +hC< (63)
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Fig. 9. Diagrammatic representation of the processes contributing to the amplitude
(6.5).

After a time T, the state vector of A+F becomes, in the interaction
representation with respect to Ha + Hy,

|Z(T)) = e(T)|g,p; krew) + [TL(T)), (6.4)

where |?, (t)) describes the projection of |#(¢)) on states orthogonal to the
initial state (6.1). Such a projection involves states containing fluorescence
photons krep with kr # ki, or €p # €, or atomic excited states. We are
interested here in the amplitude

c(T) =(g,p;kreL | U(T) | g,p; krew), (6.5)

where U(T) is the evolution operator, and which describes how the initial
state (6.1) disappears.

Since Vap describes only single photon absorption or emission processes,
there are only two amplitudes contributing to eq. (6.5) to order 2 in Vap,
which are represented by the two diagrams a and b of fig. 9. They represent,
respectively, processes where nothing happens (diagram a of order 0 in
Var), and where the incident photon is absorbed and re-emitted (diagram
b of order 2).

Using the well known results of scattering theory (see for example ref.
[2], Complement Aj), we get for the zeroth and second order terms in the
expansion of ¢(T') in powers of Vap

AT =1, (6.6)
| {e,p+ hky;0| Var | g,p; krer) |?

Eg by, — [Bepting, 0 —B(T/2)] °
(6.7)

NT) = =271 6T (Egy — Ein)

In eq. (6.7), 87 (Eg, — Eiy) is a delta function expressing the conservation
of energy. Such a function is actually a diffraction function with a width
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§E ~ h/T associated with the finite duration T" of the interaction

S S " sin ET/2h
§TUE —iBr/h _ o—iE7/2h
(B) = 5 h] dr e ( s (6.8)

Eg, and E;, are the unperturbed energies of the initial and final states
appearing in the amplitude (6.5). Since they coincide here, we have Fg,, —
E;,, = 0, and we get for the limit £ — 0 of eq. (6.8)

T

§0(0) = 5—. (6.9)

The numerator of eq. (6.7) is the square of the matrix element of Vip
between the initial and intermediate states of diagram b of fig. 9 and is
equal, using eq. (6.3), to

ﬁuJL
2e0 L3’

| (e,p+ hkr;0 | Var | g.p;kren) = d* &2 = d2 (6.10)

where d is the matrix element of €, - d between e and g. In eq. (6.10),
83[‘ can be considered as the square of the electric field corresponding to
a single photon kpep. The denominator D of eq. (6.7) is the difference
between the unperturbed energies of the initial and intermediate states of
diagram b of fig. 9.

2 2

P sl (p + hky)

;08 0 VRSN SR - B (e i D
Gl e ("' ' 2) oM

Vi hkpp hik?
=hn(6+i=) - LT
*( +‘2) M oM

(6.11)

We have added -ihI'/2 to the unperturbed energy of the excited atomic
state e, I being the natural width of e. Such a procedure is well known in
resonance scattering theory and amounts to renormalizing the propagator
of the excited state by taking into account its coupling with the vacuum
field to all orders (see for example Complement Byy of ref. [2] and figs. 15
and 16 of this complement — we suppose here that the Lamb-shifts of ¢ and
g have been reincluced in E. and E;). The last two terms of the second
line of eq. (6.11) represent the Doppler and recoil shifts. We assume here
that these shifts are small compared to the natural width of e

& I (6.12)

bop| B
M 2M
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so that
r
D ~ 5(6—1—15). (6.13)

Using eqgs. (6.9), (6.10) and (6.13) for rewriting eq. (6.7), we get for the
amplitude (6.5), up to order 2 in Vap

o oy i 2 o
C(l)—].—l m— —?T—lé T.. (6.14)
where
d8 . /n : .
= “"L/,) =I'- Lt =r2. (6.15a)
6%+ (I?/4) 62 + (I'?/4) 2
B3, R { s
5= **‘L{_g 5 Ql/i gl (6.15b)
62 + e 62 + s 2
We have introduced the Rabi frequency 2, = —2d&,, /h associated with

the single photon state |kper,) and the corresponding saturation parameter
sg given by eq. (3.6).

We now discuss the physical content of eq. (6.14). If T is not too long,
(6.14) can be rewritten as *

c(T) ~ e~ (IT/21+i6")t (6.16)
Taking the square of the modulus of eq. (6.16) then gives
@) = e 1, (6.17)

which shows that I'' can be considered as the rate at which the initial state
disappears, or the absorption rate or, more precisely, the total scattering
rate of the incident photon. It clearly appears from eq. (6.14) that I is
associated with an interference between the incident field and the imagi-
nary part of the forward scattering amplitude. The dependence of I on
the detuning 8, which is the one of a Lorentz absorption curve, corresponds
to what is expected for a dissipative process. In eq. (6.16), hd" appears as

* This result can actually be obtained rigorously by a resummation of the perturbation
series. See for example ref. [2], chapter IIL
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an energy shift of the initial state, due to the atom-field coupling. Actu-
ally, such a shift is nothing but the light shift of the atomic ground state
produced by the incident photon [50, 51]. According to eq. (6.14), &’ is as-
sociated with an interference between the incident field and the real part of
the forward scattering amplitude. Its dependence on ¢ (Lorentz dispersion
curve) corresponds to what is expected for a reactive process.

6.3. Atom in a node of a standing wave

6.3.1. Initial state of the atom + field system
We consider now a field mode, linearly polarized along Oz, with a spatial
dependence given by sin kpz. The laser standing wave, written in eq. (5.53),
which has a node in z = 0, corresponds to a quasi-classical excitation of
such a field mode. We suppose here that this mode contains initially a single
elementary excitation and we look first for the mathematical expression of
this one-photon state in terms of states describing photons with well defined
momenta. In order to keep the notation as simple as possible, we denote
by +k the running wave modes with wave vectors +ke, and polarization
€.

Let agy and a, be the annihilation and creation operators for a photon
in the modes =£. From these operators, we introduce the operators

b = %(a;\. —a_g), (6.18a)
Cp = %(ak +a_), (6.18b)

and their adjoints. It is then easy to check that by and b; are annihilation
and creation operators, since they satisfy

by |0) = 0, (6.19a)
[bk. b:—;] == r5_:‘-;(f. (6191’})

Similar relations hold for ¢, and c;:, which in addition commute with by,
and b:‘ If, in the expansion (2.6) of the electric field operator in running
wave modes, we regroup the terms proportional to ai; and ul &» WE eas-
ily find that b; and b; are multiplied by sinkz, whereas ¢, and ¢, are
multiplied by cos kz. This shows that by and b, (respectively ¢, and c:_')
are annihilation and creation operators for an elementary excitation of the
standing wave mode sin kz (respectively cos kz). The quantum state which
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describes a single elementary excitation of the standing wave sin kpx can
thus be written

1

| ) = b}, 0= [af, —at,, ]110) =

1

\/EH +kr)— | —kz)]

(6.20)

It is clearly a linear superposition (and not a statistical mixture!) of single
photon states | £k} with well defined momenta +hkr,. Note finally that the
saturation parameter s(xz) associated with the single photon state (6.20) is

s(z) = 250 5i0% kLT = Smax sin” ki, (6.21)

where s9 = Smax/2 is the saturation parameter used in eq. (6.15) and
corresponding to a single photon in a running plane wave mode. Equations
(6.21) and (5.56) differ by a factor 2 because the mean number of photons
in each of the two counterpropagating plane wave modes appearing in eq.
(6.21) is 1/2 and not 1.

For the initial atomic state |14 ), we take an atom in the ground state g,
with its center of mass described by a wave packet very well localized near
the node z = 0 of the standing wave sin kyz.

l¥a) = cplg, p)- (6.22)

As in the field state (6.20), we have used a simpler notation, p instead of
pe, for the atomic momentum states along Oz. In eq. (6.22), ¢, is a real,
even function of p, centered about p = 0, so that, in position space, the
wave packet is centered about z = 0, with zero global velocity. The width
of the curve giving ¢, versus p is denoted by Ap and is on the order of
h/Az, where Az is the width of the wave packet in position space. The
localization assumption is equivalent to

Az < AL = Ap > hky,. (6.23)

6.3.2. Amplitude to remain in one of the initially populated states
At t = 0, the global A+F system is in the initial state

%) = |¥a) ® |¢F)

1
= \_@ZCPHQ?P%"“&L)_|91P%—fﬂL)]: (624)
P
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9,p J’ka g,p j*‘m

wkp q,p e, pahk e,p+hk
+kL/ 9,p g,p+2hikg N\&‘g—kL
(a) (b) (c)

Fig. 10. Diagrammatic representation of the processes contributing to A;’, up to order
2 in VAF'

where only the field modes +k&y, and —Fky, are populated. After a time inter-
val T, the system has evolved, the excitation of the modes +k&, and —ky, has
changed, and modes, which were initially empty, have now a certain ampli-
tude to be excited, which describes the appearance of fluorescence photons.
In this subsection, we are interested in the evolution of the initially popu-
lated modes. More precisely, we want to calculate the amplitudes

AL = {gipykkt | T(T) | V) (6.25)

to find, at time ¢ = T, the global system A+F in one of the states
or |g,p; —kL).

Consider first the amplitude A}. Using the same diagrammatic repre-
sentation as in section 6.2, one finds that, to order 2 in Vg, A;, is a sum
of three terms corresponding, respectively, to the three diagrams a, b, ¢ of
fig. 10.

Diagram a is of zeroth order, whereas diagrams b and ¢ are of second
order and describe respectively forward and backward scattering processes.
Because of the conservation of the total linear momentum, which explicitly
appears at each vertex in fig. 10, one easily checks that there are no
other possible contributions to A}. Diagrams a and b are multiplied by the
amplitude (g, p; kr|tin) = ¢,/Vv2 for the total system to be initially in the
state |g, p; k1), whereas diagram ¢ is multiplied by (g, p+ 2hky: —Fkp |t =
—Cp+gﬁ_kL/\/§, which is the amplitude for A4+F to be initially in |g,p +
2hky; —kp). The three diagrams of fig. 10, which end in the same final
state, start from different initial states |g,p;kr) and |g,p + 2hky; —kp).
They can interfere only because the initial state |15, ), given in eq. (6.24),
is a linear superposition of |g, p; ky) and |g,p + 2%iky; —k).

For diagrams a and b the initial and final states are the same, so that
Eqn — Eiy = 0 and we can use eq. (6.9). For diagram ¢, we have

P (p+2hk)?
2M 2M

9,p; k)

Egn — By =
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_ 2hkip  20°k{ _ 2hkLAp
M M~ M

(6.26)

since p ~ Ap > hkj, according to eq. (6.23). The 6(T}(Eﬁn — E;,,) function
multiplying the contribution of diagram ¢ has a width A/T. If

hkp A h
. hELAap &

Fen — Eip =~ % < f (627)

one can thus replace Fg, — Ein by 0 in the §'7) function and get the same
result, T'/27h, as in the case of diagram b. The physical meaning of eq.
(6.27) is quite clear. Such a condition can be also written

Ap 1

—T — ~ X1 2
ar L € sl (6.28)

and means that 7" must not be too long, so that the spatial spreading of
the wave packet during T, ApT /M, remains small compared to the laser
wavelength Ap. Otherwise, it would no longer be possible to consider that
the atom remains well localized in the node z = 0.

The calculation of the amplitudes associated with the three diagrams of
fig. 10 is quite similar to the one presented in subsection 6.2. The matrix
elements of Vap are similar, as well as the energy denominators. We are
interested in this section in the momentum diffusion coeflicient, which,
according to the results of subsection 5.2.3, is proportional to I"'. So, in
order to simplify the equations, we will suppose

§5=10 — & =0. (6.29)

This leads for A} to the following result

A+ 1 1 JESHE i 1 I*E
= ——igg— i eh e PR
P ﬁ P \/§ P un \/-2- p+2hky D) (6 gg)
! o i =
ﬁ Cp — T(Cp — Cp+2hky)

where the first, second and third terms of the first line are, respectively,
associated with diagrams a, b, ¢ of fig. 10

In the limit Ap — oo, ¢, — cpyank, — 0 and .A; no longer depends on 7.
Such a result means that, for an atom perfectly localized in a node (Ax ~
h/Ap — 0), the interference between the contributions of diagrams b and
c is perfectly destructive, which suppresses completely photon absorption.
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-k 9.p
g,p e,p-fik,
+k g,p- 2Rk
(a) (b) (c)

Fig. 11. Diagrammatic representation of the processes contributing to Ay, up to order
2in Vap.

Actually, Ap cannot be taken infinite, since |14} would have then an infinite
norm (see also condition (6.27)). Expanding ¢, — ¢pionk, in powers of

hkrp Az

=—— ~— .31
T (6.31)

allows one to transform eq. (6.30} into

1
A =—¢, 1+FT(m, +r pd 2 % +oo)] (6.32)
g \/§ Cp Cp
The amplitude A for remaining in the state |g.p; —kp) can be analyzed
along the same lines. Figure 11 gives the interfering scattering amplitudes
analogous to those of fig. 10.
Similarly, the equation c01'resl)t)nding to eqs. (6.30) and (6.32) is

- Ll R Ly i
— C. C. -—f’) 2ﬁk1—
gl \/— yi \/§ rd 2 \/ “F
1 e i
e |1 =P | ik Ji—m:zi'fv-- . 6.33
\/icp[ (? LC;D | L’Sp ( )

Combining eqs. (6.32) and (6.33), we finally get for the state vector of
A+F at time T, to order 2 in Vg and ¢

(T)) = )" cplg,p)
r

1 v s
®{+E (1+FTML + DAk} ’)Ir’»‘ﬂ

Cp ;0
1 ( ¢ . 2 'zc'

— — (1 =-I"Thk, 2+ I'"TH*KE 2 ) | — kL)
V2 Cp Cp

+ states involving modes other than =+ kg, (6.34)
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The three first lines of eq. (6.34) give the projection of |(T)) onto the
subspace & subtended by the initially populated states {|g, p; &k} }.

6.3.3. Physical discussion
It clearly appears in eq. (6.34), that after a time 7" each atomic state |g, p)
becomes correlated with a photon state |[¢og(p, T')) which depends on p and
T and which is given by the expression inside the brackets of eq. (6.34).
Since |¢r(p, T)) depends on p through ¢, /¢, and ¢ /c,, the projection of
|t:(T)) onto & (given by the three first lines of eq. (6.34)) cannot be
written as a product of an atomic state and a photon state. Quantum
correlations have appeared between the atom and the field as a result of
their interaction.

The square of the norm of |¢¥p(p,T)) is, to order 2 in Vayp and e, given
by

n C”
(e T) | Yp(@,T)) =1+4+20'T ﬁgkic—p. (6.35)

r

In eq. (6.35), h’k{c)/cp is on the order of (hky/Ap)? = 2, so that photon
absorption appears only in second order in £. Such a result has a clear
physical meaning. Because of its finite spatial width Az, the atomic wave
packet explores the neighborhood of the node over a distance Az, where
the intensity is no longer zero, but proportional to sin® kp Az ~ ki Az? ~
h2k2 [ Ap? = g2.

If we restrict ourselves to order 1 in £, |¢p(p,t)) can be written

1 c. 1 c
TINW=—= | 1+T"ThkrL ) kL) — —= (1 = T"Thk.-L )| — kL
ir(n D) = 5 (14 Tk 2 o) - = L 2) |- )
(6.36)

and keeps a constant norm equal to 1 when T increases. The fact that
no photon absorption occurs at order 1 in £, does not mean however that
nothing happens for the incident photon. We see from eq. (6.36) that
the probability Py (respectively P_) to have the photon in the mode +/kg,
(respectively —ki,) changes in time from P, (0) to Py (T).

!
Pi(0)=1 — Py(T)=14 F’Tﬁ.A:Lz—p_ (6.37)
p

The probability of occupation of one of the modes +kr, or —ky, increases
whereas the probability of occupation of the other mode decreases by the
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2
CP

A Opy

0 P

Fig. 12. Atomic momentum distribution. The arrows indicate how such a momentum
distribution is modified by the correlated redistribution.

same amount. Such a phenomenon corresponds to a “redistribution” of
the incident photon between the two initially populated modes £ky, and
produces a change dpp of the mean field momentum given by

!
CP

cf
Spp = 2hkr, (F’T hkr ) = 2T h2kE -2, (6.38)
Cp

Cp
Because of the conservation of the total momentum, there is a correspond-
ing change dpa of the mean atomic momentum given by

!
g i ﬁ,?kiz_*’. (6.39)
2

A very important feature of the photon redistribution described by eq.
(6.37) is that it depends on the atomic momentum p. We show now how
such a correlated redistribution can explain the large momentum diffusion
occurring in a node. Figure 12 gives the initial momentum distribution c'ﬁ
versus p. These variations are similar to those of ¢, since ¢, is assumed
to be real and positive. Consider a positive value of p, where r:;) Jep is
negative. Equation (6.39) shows that, for such a value of p, the correlated
redistribution produces a positive variation dps of p, represented by the
arrow oriented to the right of fig. 12. Similarly, we find from eq. (6.39)
that, for p < 0, there is a negative variation dpa of p (arrow oriented to
the left of fig. 12). Since dpa is an odd function of p, we conclude from
such an analysis that the atomic momentum distribution is broadened by
the correlated photon redistribution, without any global shift.

The previous argument can be made more quantitative. For an atom
with momentum pa = p, the variation dps of pay produces a variation of
pgA given by

Cf
8(ph) = 2pabpa =2pbpa = —4 F’Thzkfpf,—p» (6.40)

r
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To average eq. (6.40) over py = p, we multiply eq. (6.40) by the probability
cf,dp to have pa between p and p+ dp and we integrate over p, which gives

i +oo 00
bp> = f 6-pic§ dp=—-4r'T hzkrz_ j p(:pc;dp. (6.41)

—00 —00

An integration by parts and the fact that cf, is normalized finally gives
5p2 = 2DT, (6.42)

where the momentum diffusion D is, according to egs. (6.15) and (6.21),
given by

D = R2k2 I = R2k2 P%O — 22 I‘S'T“; (6.43)
which quantitatively coincides with the value in a node of the Gordon-
Ashkin result [8] given in eq. (5.58).

To conclude this section, we can summarize the results which have been
established, concerning the behavior of an atom in a node of a standing
wave,

(i) There is a photon redistribution which appears between the 2 modes
+k1, and —kr,, which is more important than photon absorption since it is
of order 1 in ¢ = Az /Ay, (instead of 2).

(ii) This redistribution, which is proportional to I'" and not to &', is
related to the dissipative response of the atom and not to the reactive one.

(ili) Globally, this redistribution changes p% but not pa. It produces a
momentum diffusion, with zero mean force.

(iv) This redistribution is correlated with the atomic momentum. It is
this correlation which explains why the rate of increase of p3 does not
vanish if Az ~ h/Ap — 0. In eq. (6.40) giving dp3 = 2padpa, the fact
that pa can increase proportionally to Ap when Ap increases compensates
for the decrease of dpa which varies, according to eq. (6.39), as ¢, /¢, ~
1/Ap. This compensation leads to a diffusion coefficient D which does not
depend on Ap.

Note finally that the discussion in this subsection clearly shows the im-
portance of the atom—field correlations which explicitly appear in expres-
sion (6.34) of the state vector of the total system A+ F. This does not mean
however that the usual treatments based on master equations describing
only the reduced evolution of A neglect these correlations. They are taken
into account in the derivation of the master equations. The fact that they
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appear explicitly, and not implicitly, in eq. (6.34) explains why the physical
effects responsible for the non-vanishing of D in a node can be more easily
identified in the treatment presented here.

6.4. Atom at rest in any point of a standing wave

In section 3.4, we have mentioned that the dipole force which is experienced
by an atom put in a spatially inhomogeneous light wave is a reactive force
due to a redistribution of photons between the various plane waves making
up the light wave. Since the formalism presented in this chapter seems
well suited for investigating redistribution processes, it seems interesting
to try to apply it to an atom put anywhere in a standing wave, and in
particular out of a node. We will then be able to elucidate the differences
which exist between the redistribution responsible for dipole forces and the
correlated redistribution analyzed in the previous section. New insight will
be also gained on the various processes which contribute to the momentum
diffusion coeflicient out of a node and on the origin of non-Poissonian effects
in resonance fluorescence.

6.4.1. Initial atomic state b

We consider now an atomic wave packet 9(z), identical to the wave packet
() of subsection 6.3.1, except that it is translated by an amount zy, so
that it describes an atom well localized around g

W(x) = Pz — x0). (6.44)

Taking the Fourier transform of eq. (6.44) leads to

)= Gla.p) = ¢, e~ /" g, p), (6.45)
P

P

which replaces eq. (6.22). The coefficients ¢, of the expansion of [} in
plane waves are no longer real.

The initial photon state (6.20) remains unchanged and describes an ele-
mentary excitation of the standing wave mode sin k2.

6.4.2. New expression for the state vector of A+F at time T
Since we are interested here in dipole forces, which vanish for § = 0, we no

longer suppose that é = 0, so that eq. (6.29) is replaced by

620, —s 5’:53—2‘37&0. (6.46)
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All calculations leading to egs. (6.30), (6.32) and (6.33) remain un-
changed, provided that one makes the substitutions

¢p —> Cp=cp,e P/
r Il (6.47)
= i,
5 %
It follows that the expression giving the state vector of A+F at time T has
the same structure as in eq. (6.34)

() = S 5l0.p) ® e (e, T))
P
+ states involving modes other than =+ ki, (6.48)

where the photon state |¢p(p,T')) is given by an expression which gen-
eralizes eq. (6.36). The substitution (6.47) changes the real part of the
coefficients multiplying | + ki) and | — kr), which means that photon ab-
sorption and photon redistribution are not the same at = 0 and = = xy.
Imaginary parts also appear in these coefficients, which describe energy
shifts. We will not study these imaginary parts here and we will focus on
the modifications of absorption and redistribution. Keeping only the real
parts of the coefficients of |+ kr,) and | —kp) in [¢p(p,T')), we get, to order
21in Vap and 1in €

| ¢F(P|T)) o

1 ! 5o ! (:;, -
+— |1 —I"Tsin” kpaxg + 2hkp,6'T— sin 2k xg
C

V2 p
c l
+ &' T sin 2kpxo + hkLé’T(_—P cos 2k xo || + ki)
P pl
! {1 [T sin? ky.zo + 2iky,8'T 2 sin 2k
e — SN K& LR, — S1Il 2R,
V2 Cp
c ]
— 8'T'sin 2k, xo — hkp8'T-L cos 2kr,xg || — ki)
Cp J
+ imaginary terms. (6.49)

In eq. (6.49), the terms independent of ¢}, /c, lead to factorized atom
photon states in the expression (6.48) of |1/(1")) since they do not depend
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on p (the atomic state (6.45) can be factored out). By contrast, the terms
proportional to c;) /cp depend on p and lead to entangled atom-—photon
states which contain non-separable quantum correlations.

From eq. (6.49), one deduces that the probabilities P, (T) (respectively
P_(T)) to have, at time ¢ = T, the photon in the mode +ky, (respectively
—ky,) are given by

cr
Pi(T) =} — I'"T'sin® kpao + 2hkp6'T 2 sin 2kpzo

Cp
!

c
+ §'T'sin 2kpxo + Rk I'T-2 cos 2k aq. (6.50)
Cp
Adding P(T') and P_(T) gives the probability of survival P(T") of the
incident photon in any one of the two initially populated modes %ky,

¢
P(T) =1—2I"Tsin® kpzo + 4 hkp6'T-L sin 2kp xo. (6.51)
Cp
Finally multiplying P, (T") by +hky and P_(T) by —hky, and adding the
two results gives the change dpp of the mean momentum of the field after a
time 7', which is also equal to —dpa where dpy is the change of the atomic
momentim
C!
dpr = 2hkp,8'T sin 2ky zo + 2 rﬁkﬁr’TC—p cos 2k, To = —pa.

g
(6.52)

6.4.3. Absorption of the incident photon
The disappearance of the incident photon is described by eq. (6.51). The
last term of eq. (6.51), which describes an absorption correlated with the
atomic momentum p, gives a zero contribution when multiplied by c;‘; dp
and integrated over p. It is anyway of order 1 in £ and vanishes in the limit
Az~ hfAp — 0.

So, we are left with the first term of eq. (6.51) which leads to an absorp-
tion rate I (xg) in xq given by

7 fio i) S(irf—') ‘
IMzg)=2I"sin" kpzy = FT' (6.53)

We have used I = I'sg/2 (see eq. 6.15.a) and expression (6.21) of s(z).
The result (6.53) is in agreement with the usual absorption rate that one
gets for an atom put in a place zg where the saturation parameter is s(zg).
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6.4.4. Uncorrelated redistribution and dipole forces

The terms independent of c},/¢,, in eq. (6.52) come from the terms inde-
pendent of ¢,/c, which have opposite signs in Py (T) and P_(T). These
terms describe a redistribution between the modes +k;, and —kp, which is
reactive (proportional to ¢') and which is not correlated with the atomic
momentum p. They give rise to a mean force F

F= ‘5%‘* = —2hky,8' sin 2kzo, (6.54)

which can be also written

d

f:_d—xo

hé'(zo), (6.55)

where

hé'(x) = 2h6 sin? kpzo = hé @

is the light shift of the ground state in zg. Such a force is nothing but the
usual dipole force which derives from a potential which, at low intensity,
coincides with the light-shifted energy of the ground state.

The term of eq. (6.52) which is proportional to ¢}, /¢, describes a redis-
tribution which is dissipative (proportional to I'") and which is correlated
with p. Such a redistribution is the same as the one studied in the previ-
ous section 6.3, except that dpp is multiplied by cos 2kpzy which is equal
to +1 at a node but which can take negative values elsewhere. It follows
that such a correlated redistribution can produce a narrowing of the atomic
momentum redistribution instead of a broadening, as in section 6.3. The
corresponding “diffusion coefficient” can be written

Deorrel. red. = i2k2 I cos 2kyzo. (6.57)

6.4.5. Total momentum diffusion coefficient
The change dp3 of p3 is produced not only by the correlated redistribution,
leading to eq. (6.57), but also by the absorption process.

According to expression (6.50) of Py(T'), the probability of having one
photon absorbed in the mode +ky, during T (without redistribution in the
mode —kg,) is equal to I"T'sin? kpzo. In such an absorption process, the
atomic momentum changes from p to p + hky, and the variation of p? is
equal to hi2 kZ +2phiky,. Similarly if the photon is absorbed in the mode —ki,,
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with the same probability I"T sin? kpzo (see eq. (6.50)), the variation of
p? is equal to ﬁ%ﬁ — 2phky. Tt follows that the mean change of p? due to
absorption processes is given by

8p2 = I'T'sin® kpzo[ h2kE + 2phky, + h2kE — 2phiky]
= 2T K?kZI" sin? kpzo, (6.58)

which can be written as 2D,,s1 where
Dabs = h2k? I' sin? kpxo (6.59)

is the diffusion coefficient associated with absorption.
Adding egs. (6.57) and (6.59) gives the total diffusion coefficient Dj,q
associated with the laser field *

Dias = h2k2 I' cos? kpxo = h2k? Fg"z% cos? kpxo, (6.60)

where we have used I = [I'sg/2. Such a result coincides with Gordon-
Ashkin’s result [8] given in eq. (5.58). It is easy to check that, in a stand-
ing wave, eq. (6.59) could be obtained by considering the mean number
N, = N_ of photons absorbed in each of the counterpropagating waves
forming the standing wave, and by assuming that N, — N_ is a random
variable following Poisson statistics. The result derived in this section thus
shows that the correlated redistribution, which is responsible for the strange
behavior of an atom put in a node of a standing wave, is also responsible
for the corrections to Poisson statistics in the fluctuations of N, — N_.

6.5. Atom moving in a standing wave

We suppose now that the atomic wave packet has a global velocity vy =
po/M, so that, in momentum space, the momentum distribution is centered
about pg instead of 0, as in section 6.3. We investigate in this last section
a few physical effects which result from this non-zero value of pg.

A first modification which must be introduced in the equations of the
previous sections concerns the energy denominator D given in eq. (6.11)

* The uncorrelated redistribution analyzed in subsection 6.4.4 does not contribute to

D),5, because the corresponding change 8p2A is proportional to T2 and not to T and
because the average over p of 2p dpy is zero in the absence of correlation between p and
5;{) A -
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and which corresponds to the diagrams b of figs. 9, 10 and 11. The Doppler
shift —hkpp/M varies in a range hiky, Ap/M around —hkypo/M. We can still
neglect hkp Ap/M (and h*k2/2M) in comparison with il but the mean
Doppler shift —kypo/M = —kpvg is not necessarily small compared to the
natural width I" and we must keep it in eq. (6.13) which becomes

D=h (6 i kL’t}o + lg) . (661)

Similar considerations show that the energy denominator associated with
the diagrams c of figs. 10 and 11 is equal to eq. (6.61) with —kpvg replaced
by +kpvg. These modifications of the energy denominators result in a v-
dependence of the parameters I and &' given by equations (6.15), which
physically describes how the absorption rate I'” and the ground-state light
shift 716’ are modified by the Doppler effect.

The non-zero value of vy plays also an important role in the §(7)(Eg, —
E;,) functions describing the conservation of energy for the diagrams c of
figs. 10 and 11 (recall that, for the diagrams b, the initial and final states
are the same, so that we can use eq. (6.9)). Instead of eq. (6.26), we have
now

P> (p+2hky)?

Eﬁn T Ein =,

oM oM
2hkLp  2h%k}
—— s e LRV . 2
= i 2 hikyvo (6.62)

The delta functions which appear in the contributions of diagrams c are
now evaluated, not at Eg, — E;, = 0, but at a value (6.62) of Eg, — Ei,
which can be larger than the width //T of the delta function, if vy is large
enough. More precisely, if

hkpvo > h/T (6.63)

the contribution of diagrams ¢ becomes negligible compared to the contri-
bution of diagrams b and diagrams ¢ can be ignored. Condition (6.63) can
be also written as

’UDT > ]-/kL - j\L (664)

and means that, during the interaction time 7', the atom travels over sev-
eral laser wavelengths Ap. It then experiences a radiative force spatially
averaged over Ap.
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The previous result indicates that the radiative force, spatially averaged
over several Ay, is no longer sensitive to interference effects involving both
forward and backward scattering amplitudes. Only forward scattering am-
plitudes can interfere with the incident field. One can understand in this
way why, at low intensity, it is possible to add independently the effect
of the two waves if one is interested only in the spatially averaged force.
Since the two Doppler shifts are opposite for the two waves, the absorption
rates will be different and one gets the usual well known physical picture
for Doppler cooling as resulting from a Doppler induced imbalance between
two radiation pressures.

7. Physical mechanisms in the high intensity limit
7.1. Introduction

In the previous sections, we have mentioned a few results concerning atomic
motion in an intense laser standing wave, which do not seem to have an
obvious physical interpretation. For example, the spatially averaged veloc-
ity dependent force has, for a given value of the detuning § = wy, —wy and
in the low velocity limit (kpvg < I'), a sign which depends on the laser
intensity. At low intensity (sg < 1), this force is a damping force for § < 0,
a result which can be interpreted as a Doppler induced imbalance between
the radiation pressures exerted by the two counterpropagating plane waves
forming the standing wave (see section 6.5). But, when the intensity is in-
creased, this friction force is transformed into an “antidamping” one, and
such a change of sign cannot be inferpreted with a diagrammatic approach,
since perturbative expansions of the transition amplitudes, analogous to the
ones used in the preceding chapter 6, no longer converge. Another example
of an intriguing result concerns the momentum diffusion coefficient of an
atom at rest in a laser standing wave, which does not saturate when the
laser intensity is increased (see eq. (5.60)), contrarily to what happens for
an atom in a laser plane wave. The purpose of this chapter is to present
a different theoretical treatment of atomic motion in an intense laser light
which provides simple physical pictures for such unexpected features.
Such a treatment is based on the “dressed-atom” approach * which has
been first introduced for describing atoms interacting with strong radiofre-
quency fields [30, 31], and which has been then extended to the optical

* For a general review of the dressed-atom approach and its various applications, see
ref. [2], chapter VI and Complements Ay -7 and By .
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domain in order to interpret resonance fluorescence [32-34] and photon
correlations [34-38] in intense resonant or quasi-resonant laser beams. The
principle of this approach, which is briefly sketched in section 7.2, is to con-
sider, in a first step, the global system “atom + laser photons” interacting
with each other as an isolated system having true energy levels (dressed
states). Such an approximation is justified in the high intensity limit, since
the atom-laser field coupling Vay, is much larger than the atom-vacuum
field coupling Vay (see fig. 1). Then, in a second step, the effect of Vay is
taken into account and described as a radiative relaxation mechanism which
induces, for example, population transfers between dressed states with well
defined rates. Resonance fluorescence thus appears, in this approach, as a
radiative cascade of the dressed-atom.

As shown in ref. [39], the dressed-atom approach can be extended to a
moving atom. If the mode function associated with the laser field varies
in space, the Rabi frequency, and consequently the dressed-state energies,
become position dependent, so that it is possible to define, for each dressed
state, a position dependent potential energy and a corresponding force. As
in the Stern—Gerlach effect, one gets a two-valued force that depends on the
internal state of the dressed atom. Spontaneous radiative transitions, which
occur at random times between the dressed states, change in a random way
the sign of the instantaneous force experienced by the atom [8,39]. We show
in section 7.3 how such a picture can provide a physical interpretation of
the sign, mean value and fluctuations of dipole forces. We will restrict
ourselves to qualitative considerations, since quantitative results may be
found in ref. [39].

Applying these general ideas to an atom moving in an intense laser stand-
ing wave, we finally introduce in section 7.4 a new type of laser cooling
mechanism, the “Sisyphus” cooling. Such a denomination comes from the
fact that the atom, moving in the spatially undulating dressed-state poten-
tial curves runs up the hills more than down, as does Sisyphus in the Greek
mythology. Here also, a detailed treatment of Sisyphus cooling is presented
in ref. [39], and we will focus here on the physical ideas. Note finally that
we will come back to the Sisyphus mechanism in chapter 9 in a different
context. Instead of having, as here, a two-level atom in an intense laser
beam, we will consider there an atom with several ground-state sublevels,
moving in a weak intensity laser configuration.

7.2. The dressed-atom approach

The laser field is treated as a quasi-classical excitation of a single mode with
frequency wr, of the quantum radiation field. Such a mode, which is not in
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general a plane wave mode since we want to investigate atomic motion in
spatially inhomogeneous laser waves, can for example be considered as a
mode of a fictitious cavity in which the atom is put. The local field “seen”
by the atom inside the cavity must be the same as in the actual experience
(same mean value, same spatial dependence. .. ) and the cavity volume V
must be large enough to avoid any modification of the spontaneous emission
by cavity effects. The Hamiltonian Hy, of the laser mode L is

Hy = hwy, (afaL + 1), (7.1)

where af and aj, are the creation and annihilation operators of a laser
photon. The eigenstates |N) of H satisfy

HuIN) = (N + 1) hwy |N) (7.2)

with N = 0,1,2... and describe a state with N photons in the mode L.
The state of L is supposed to be a coherent state (see ref. [40] and ref. [41],
Complement Gy}, so that the mean value (N} of N and the dispersion AN
of the values of N about (N) are related by

AN = \/{N). (7.3)

Only the energy density (N)hwr/V has a physical meaning. So we can
take (N} and V very large, keeping (N)/V constant. In such a limit, we
have

(NY>AN > 1, I'T, (7.4)

where I'T' gives the order of magnitude of the number of fluorescence pho-
tons emitted during the time 7'

In this section, we suppose that the atom is at rest at a given point
r and we first introduce the dressed states in r. In the absence of cou-
pling, the energy levels of the combined system “atom + laser photons”
are labelled by two quantum numbers, e or g for the atom, N for the num-
ber of laser photons. Such “unperturbed” states are represented on the
left side in fig. 13. When the laser frequency wy, is close to the atomic
one wy, these states are bunched into two-dimensional manifolds. ..y =
{lg; N+1),|e, Ny} Envoar = {|g, N}, |e, N—=1)} ..., the distance between the
two levels of a manifold being hé = h{wy, — wa ) and the distance between
two adjacent manifolds being fiwy,. The atom-laser coupling Var, connects
the two states of a given manifold. For example, the atom in the ground
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Fig. 13. Left part: unperturbed states of the combined “atom-laser photons” system,
which are, in the absence of coupling, bunched into well-separated two-dimensional
manifolds. Right part: dressed states resulting from the atom-laser coupling.

state g and in the presence of N + 1 laser photons can absorb one laser
photon and jump into the excited state e. This means that Vi, has a non-
zero matrix element between the two states |g, N 4+ 1) and |e, N) of Ey.
Actually, one can show that, when N varies within AN around (N)

h :
(B,N | V‘\L |Q,N + 1) = 5‘ .Ql(?‘) C"‘b[r), (75)

where ¢(r) and (24 (r) are the phase and the Rabi frequency corresponding
to the quasi-classical state of the laser mode. This coupling gives rise to
two perturbed states, |1(N)} and |2(N)) (for £x), represented on the right
side of fig. 13. These dressed states are both linear combinations of the
unperturbed states |e, N) and |g, N + 1) and are separated by a splitting
h{2, where (2 is given by

2(r) = /82 + Q2(r). (7.6)

Consider now the effect of spontaneous emission. Radiative transitions
occur between the dressed states in fig. 13. The emission frequencies
correspond to allowed transitions, i.e., to transitions between states con-
nected by a non-zero matrix element of the atomic dipole operator d.. In
the uncoupled basis, d., which does not change the number of laser pho-
tons, connects only |e, N} and |g, N'}. Since both dressed states |1(N)) and
[2(N)) of Ey are contaminated by |e, N}, and since both dressed states
|[1(N —1)) and |2(N — 1)) of Ey_4 are contaminated by |g, N}, there are 4
allowed transitions between £y and Ey_; : transition |1(V)) — [2(NV — 1))
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corresponding to a frequency wy, + {2, transition |2(N)) — |[1(N —1)) corre-
sponding to a frequency wy, — 2, and transitions |¢(N)) — |i(N — 1)) (with
i = 1,2) corresponding both to a frequency wy,. The dressed atom approach
thus provides a straightforward interpretation of the “fluorescence triplet”
[42] emitted by a two-level atom irradiated by an intense resonant laser
beam. Similarly, various features of photon correlations observed on the
fluorescence light can be easily understood by considering the sequence
of fluorescence photons as being emitted in a “radiative cascade” by the
dressed atom [34-38]. The master equation describing such a radiative
cascade takes a very simple form in the dressed state basis in the limit

Q(r) > T, (7.7)
which is equivalent, according to eq. (7.6), to
|6 > T or > (7.8)

When condition (7.7) is fulfilled, one can neglect the coupling between the
dressed state populations and the coherences between them (off-diagonal
elements of the dressed-atom density matrix). Such a “secular approxi-
mation” then leads to equations of motion, which couple only populations
to populations and coherences to coherences, and which can be simply in-
terpreted in terms of spontaneous transition rates between dressed states.
The dressed-atom approach is thus particularly well adapted to the limit
(7.7), which implies well resolved lines in the fluorescence spectrum, or
equivalently, according to eq. (7.8), to large detunings or high intensities.

7.3. Dressed-atom interpretation of dipole forces

We apply now the dressed-atom approach to the interpretation of dipole
forces, which are associated with the intensity gradients of the laser beam.
In an inhomogeneous laser beam, the laser intensity is position depen-
dent. It follows that 2%(r), and consequently £2(r) according to eq. (7.6),
vary in space. In fig. 14, we have represented the variations of the energies
of the dressed states across a Gaussian laser beam. Out of the laser beam,
the dressed levels coincide with the bare ones, and their splitting is just hé.
Inside the laser beam, each dressed level [1(N)) or [2(N)) is a linear super-
position of |g, N + 1} and |e, N} and the splitting between the two dressed
states of a given manifold becomes h{2(r), which is larger than h|é|.
Within each manifold, the energy diagram of fig. 14 is similar to that
of a spin 1/2 magnetic moment in an inhomogeneous static magnetic field.
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Fig. 14. Variations across a Gaussian laser beam of the dressed-atom energy levels.
Out of the laser beam, the energy levels connect with the uncoupled states of fig. 13,
separated by h|§|. In the laser beam, the splitting between the dressed states is h{2(r) >
h|é].

It follows that, in the absence of spontaneous emission, we can define a
two-valued dressed state dependent force, equal to minus the gradient of
the dressed state energy

F = =V Eyn(r) = —(h/2)V2(r),
2 = =V Eyw(r) = +(h/2)Vr) = - fi. (7.9)

Il

As in the ordinary Stern and Gerlach effect, we have a force that depends
on the internal state of the dressed atom, but the basic interaction occurs
now between an optical dipole moment and an inhomogeneous laser electric
field (optical Stern and Gerlach effect).

The effect of spontaneous emission is to produce, at random times, tran-
sitions between dressed states of type 1 and dressed states of type 2, or
vice versa. This changes in a random way the sign of the instantaneous
two-valued dressed state dependent force. Such a picture of an instanta-
neous force switching back and forth between two opposite values provides
a simple understanding of the mean value and of the fluctuations of dipole
forces.

Consider first the mean force. It can be written as

Fdip:"”l fl+H2 f'Z: (710)

where I1; is the proportion of time spent in a dressed state of type i (i =
1,2). For § > 0 (case of fig. 14), the unperturbed state |g, N + 1) is above
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le, N}, since wy, > wa, and the dressed state [L(N)} is less contaminated by
le, N} than |2(V)) and is therefore more stable with respect to spontaneous
emission. It follows that II; > Il», and that the atom spends more time
in dressed states of type 1 than in dressed states of type 2. We conclude
that, for 6 > 0, the sign of the mean force is that corresponding to the.
level [L(N)): the atom is expelled from the high intensity regions. For
& < 0, the conclusions are reversed. The dressed state |2(N')) connects to
lg, N + 1) out of the laser beam, is more populated than |1(N)} and it
imposes its sign to the mean dipole force which attracts the atom towards
the high intensity regions. Finally, for § = 0, the two dressed states contain
the same admixture of |e, N), are equally populated (II; = II;), so that
the mean force vanishes. We understand in this way why the variations of
the mean dipole force (for an atom initially at rest) versus the detuning
§ = wyp, — wa are of a dispersive type. The argument given above is not
only qualitative but also quantitative. If one calculates IT; and IT; from
the master equation giving the spontaneous transition rates between the
various dressed states, and if one puts their values in eq. (7.10), one gets
the exact value of the mean dipole force, (to lowest order in I'/£2) [39].

We now try to get an order of magnitude of the momentum diffusion
coefficient due to the fluctuations of the instantaneous force F' switching
back and forth between f; and f; = —f;. To simplify the discussion, we
consider the resonant case where é = 0[8,39]. In such a case, both dressed
states are equally populated so that F = (F') = 0. The variations with 7
of the correlation function C(7) of 8F = F — (F') = F, which is equal to
(F(t)- F(t — 7)), are represented in fig. 15. For 7 = 0, C(0) = (F?) takes
the value

C(0) = (1) = (7)) = (*/4)V QL. (7.11)

Then, C(7) decreases with a characteristic time, which is the correlation
time Teorr 0f F'(£), and which is on the order of the mean time between two
successive changes of dressed states due to a spontaneous transition. Such
a time is on the order of 2/I". It follows that the integral from 0 to +o0
of C(7) which, according to eq. (5.36), gives an order of magnitude of the
momentum diffusion coefficient Dy;p, is on the order of

h? 2
Ddip Ol C(O) Teorr ™ % V'Q% F (712)

Such an estimation is in agreement with the result given in eq. (5.60) for a
standing wave, since in a standing wave V(2 ~ kp(2;. More quantitative
calculations of C(7) and Dyip, based on such a dressed atom picture, and
not limited to the resonant case 6 = 0, may be found in ref. [39].
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7.4. Atomic motion in an intense laser standing wave — Sisyphus cooling

Atomic motion in a strong standing wave has been studied by several au-
thors [8,14,15,39,43-45]. We present in this subsection a physical picture,
based on the dressed atom approach, and which provides some physical
insight in this problem.

In a plane standing wave, along Oz, the Rabi frequency £2;(x) is a peri-
odic function of =

2y(x) = 20 sinkpz. (7.13)

It follows that the two dressed states of a given manifold oscillate periodi-
cally in space since their splitting is according to eqs. (7.6) and (7.13).

RQ(w) = /6 + 407 sin k. (7.14)

Figure 16 represents these dressed states for positive detuning (dashed
lines). At a node of the standing wave (z = 0,A/2, A ...), £1(z) vanishes
and the two dressed states [L(N)) and [2(N)), respectively, coincide with
the unperturbed states |g, N+1) and |e, N}, separated by hé (dotted lines).
Out of a node, 24(x) is different from zero, the dressed states are linear
combinations of |g, N + 1) and |e, N) and their splitting is maximum at
the antinodes (z = A/4,3\/4 ...} where 24(z) reaches its maximum value.
Consider now the effect of spontaneous emission. As we have seen in section
7.2, an atom in level |[1(N)}) or |2(N)) can emit spontaneous a photon and
decay to the levels [1{N — 1)) or |2(N — 1)). The key point is that, in a
standing wave, the various rates for such spontaneous processes vary in
space because of the z-dependence of the wave functions. For example, if
§ is positive and if the atom is in the level |1(V)), its decay rate is zero
at a node where |1(N)) = |g, N + 1) and maximum at an antinode where
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the contamination of |1(N)) by |e, N) is maximum. On the contrary, for
an atom in level |2(NV)), the decay rate is maximum at the nodes where
|2(N)) coincides with |e, N}.

The previous considerations allow us now to understand why an atom is
slowed down in an intense standing wave, when § is positive, contrarily to
what happens for usual Doppler cooling (weak standing wave). We can for
example follow the “trajectory” of a moving atom starting at a node of the
standing wave, in level |1(N + 1)) (full lines of fig. 16). Starting from this
valley, the atom climbs uphill until it approaches the top (antinode) where
its decay rate is maximum. It may jump either into level |1(N)) (which
does not change anything from a mechanical point of view if one neglects
the recoil due to the spontaneously emitted photon) or into level |2(N)), in
which case the atom is again in a valley. It has now to climb up again until
it reaches a new top (node) where |2(NN)) is the most unstable, and so on
... It is clear that the atomic velocity is decreased in such a process, since
the atom sees on the average more “uphill” parts than “downhill” ones.
Such a scheme can be actually considered as a microscopic realization of
the “Sisyphus myth”: every time the atom has climbed a hill, it may be
put back at the bottom of a valley by spontaneous emission and it has to
climb up again.

Such an approach has been used to derive quantitative results for the
velocity dependence of the force acting upon the atom [39]. At very low
velocities (kpvg < I'), we have a linear dependence with a slope which
can be much higher than for usual radiation pressure molasses (by a factor
on the order of 2, /I"). The force reaches its maximum value for velocities
such that kpvg ~ I', or in other words, for situations in which, as in fig.
16, the atom travels over a distance on the order of a wavelength between
two spontaneous emissions. The important point is that the magnitude
of this friction force is directly related to the modulation depth of the
dressed energy levels, i.e., to the Rabi frequency 2;. As a consequence, this
force increases indefinitely with the laser intensity. After this maximum,
when kpvg becomes large compared to I, the force decreases as vy I and
finally, at very large velocities, resonances appear which are due to non-
adiabatic Landau—Zener transitions between the two dressed states of each
manifold [45].

To conclude this analysis, it may be useful to discuss the energy-
momentum balance in the cooling processes associated with this Sisyphus
effect. Between two spontaneous emission processes, the total energy (ki-
netic + potential) of the atom is conserved. When the atom climbs uphill,
its kinetic energy is transformed into potential energy by stimulated emis-
sion processes which redistribute photons between the two counterpropa-
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Fig. 16. Laser cooling in a strong standing wave with a blue detuning (6 > 0). The
dashed lines represent the spatial variations of the dressed atom energy levels which
coincide with the unperturbed levels (dotted lines) at the node. The full lines represent
the “trajectory” of a slowly moving atom. Because of the spatial variation of the dressed
wave functions, spontaneous emission occurs preferentially at an antinode (node) for a
dressed state of type 1 (2). Between two spontaneous emissions (vertical wavy lines), the
atom sees on the average more uphill parts than downhill ones and is therefore slowed
down.

gating waves at a rate (2;. Atomic momentum is therefore transferred to
laser photons. The total atomic energy is then dissipated by spontaneous
emission processes which carry away part of the atomic potential energy.

We finally mention that these large velocity dependent forces appearing
in an intense laser standing wave with a blue detuning have been used
to cool the transverse velocity spread Av of a Cs atomic beam [47]. If
EAv ~ I, the cooling efficiency is very high and one can use interaction
lengths much shorter than those required for usual Doppler cooling. Fur-
thermore, if the kinetic energy of the atoms along the standing wave is
smaller than the height of the hills of fig. 16, the atoms can be trapped near
the nodes or the antinodes of the standing wave, depending whether the
detuning ¢ is positive or negative. Such a “channeling” of atoms, which was
first predicted in ref. [46], has been observed experimentally on Cs atoms
[48]. It represents the first experimental demonstration of the possibility
of confining neutral atoms in optical wavelength size regions.
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I Multi-level atoms

8. Optical pumping, light shifts and mean radiative forces
8.1. Introduction

This part 1T of the course is devoted to atoms having several sublevels in the
ground state. More precisely, we consider an atomic transition connecting
two levels g and e with angular momenta, respectively, equal to J,; and J,
and we suppose .J;, # 0. As mentioned in the general introduction {chapter
1}, such a situation gives rise to very efficient new cooling mechanisms
which we now want to analyze.

Two physical effects, which have been known for a long time, play a basic
role in the new cooling mechanisms. The first one is optical pumping which
consists of a transfer of atoms from one sublevel g, of g to another one g,
by absorption-spontaneous emission cycles. The second one is an energy
shift of the ground-state sublevels, which in general varies from one sublevel
to the other and which is proportional to the light intensity. Such shifts
are called light shifts or ac-Stark shifts. Up to now, these effects have been
considered only in connection with the dynamics of the atomic internal
degrees of freedom. Very recently, it has been realized that these effects
play also a very important role in the dynamics of the atomic translational
degrees of freedom. So we have thought it would be useful to recall in
this chapter a few properties of optical pumping and light shifts which are
needed for understanding the new cooling mechanisms, discussed in the
following chapters.

We begin in section 8.2 by generalizing to multilevel atoms the equations
of motion of the atomic density matrix ¢ and the expression of the mean
force introduced in chapter 2 for two-level atoms. We then show in section
8.3 that these equations can be considerably simplified in the low saturation
and low velocity limit (s < 1, kpvg < I'), which is precisely the limit where
the new cooling mechanisms are the most efficient. The existence of two
different time scales, the radiative lifetime 75 of e and the optical pumping
time 7p in g, with 7p > 7R, allows one to adiabatically eliminate all fast
variables and to get equations of motion involving only the ground-state
density matrix. Such equations of motion contain two types of terms, terms
corresponding to a Hamiltonian evolution and describing the light shifts in
g, and terms describing a relaxation in g associated with optical pumping.
The physical content of these two types of terms is analyzed, respectively,
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in sections 8.4 and 8.5. Finally, we discuss in section 8.6 the new expression
of the mean force in the limit s < 1, kpvp < I, and we identify two types of
terms related, respectively, to the light shifts of the ground-state sublevels
and to the absorption rate from these sublevels.

8.2. Basic equations for multilevel atoms

8.2.1. Approzimations

As in section 2.5, we use a semi-classical description where the position

operator R of the center of mass is replaced by the c-number r = rqy + vgt.
Let P, (respectively P.) be the projector onto the subspace subtended

by the various Zeeman sublevels of g (respectively e)

+Jg
Py = Z |Jg 12} (Jg 1l
p=—Jy
e (8.1)
Pli= Z | Je mY{Jem].
m=—J.
The atomic density operator ¢ can be written as
0 =0g5+FOge + Ceg + Oce, (8.2)
where
ot — Pao by (8.3)

with a,b = e or g. Note that o, is now an operator and not a c-number.
The two operators 04, and .. are represented by square matrices. Their
diagonal elements give the populations of the various Zeeman sublevels of
g and e, whereas the off-diagonal elements describe “Zeeman coherences”
which exist between them in e or g. Finally, 4. and 0., = o;e are repre-
sented by rectangular matrices consisting of off-diagonal elements between
one sublevel of e and one sublevel of g, which are called “optical coher-
ences”.

The new expression of the atom-laser interaction Hamiltonian Viap,
which generalizes eq. (2.10), is given by

VJ\L — —d,+° E-E—(‘]") e_ith —d - EI__,(T) €+iw1_t: (8‘4)
where

d* = P.dP, d~ = P,dP. (8.5)
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and where Ej"(r) (respectively E[ (r)) are the positive (respectively neg-
ative) frequency components of the laser electric field.

Ey(r,t) = By (r) e 1 B (r) ¢tnt, (.6)
As in eq. (2.10), the rotating wave approximation has been used.
It will be useful for the following to introduce the internal atomic oper-
ators G*(r) defined by:
hGE(r) = d*- Ef(r), (8.7)

and to define dimensionless dipole operators d* in the following way. Let
€ HE ( i€y ) (8.8)
= €, +ie,), € = €, 8.8

= \/§ 3 i’

be a spherical basis of polarization vectors, corresponding respectively to
the o and w polarizations. The Wigner-Eckart theorem (ref. [49], Chap.
XIIT ) applied to the vectorial operator d* gives

(Jem | €g-d® | Jgu) =D (Jem | Jy1p q), (8.9)
where (Jom|Jylpug) is a Clebsch-Gordan coefficient and where D is a re-
duced matrix element which can always be taken real with an appropriate

choice of the relative phases of e and g, and which is independent of the
magnetic quantum numbers, m, g and g. We will put

dt=pdt=(d)", (8.10)

so that the matrix elements of €, - d* are just Clebsch-Gordan coefficients.
We also introduce the polarization vector e(r) in r

Ef (r) = 1e(r) EL(r), (8.11)

the amplitude & (r) being real. The (generally complex) polarization vec-
tor €(r) is normalized

e'(r)-e(r) =1 (8.12)
From D and & (r), we finally define the Rabi frequency in r

R (r) = —DEL(r), (8.13)
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which corresponds to the Rabi frequency of a transition with Clebsch—
Gordan coefficient equal to 1, excited by a laser field with amplitude &g (r).

8.2.2. Operator form of optical Bloch equations
The basic equations of motion, which generalize eq. (2.42) can be now
written in operator form

= e . int C_1
Tab = hP [H +VAL30] Pb+ (dtgab)sps (814)

where Vyp, is given in eq. (8.4) and where
H = hoox P (8.15)

The last term of eq. (8.14) describes the damping due to spontaneous
emission. For the excited state density matrix o.. and for the optical
coherences 0., and oy it has the same form as in egs. (2.43.a), (2.43.c)
and (2.43.d). Only the equation (2.43.b) describing the feeding of o,, from
Oce by spontaneous emission has to be modified. One can show (see ref.
[5], subsection 4.3.4) that, for an atom having a degenerate ground state,
eq. (2.43.b) has to be replaced by

(%agg)_ =F Y ([Erad)onlepd) (8.16)

q=—1,0,+1

where the dimensionless operators d* and the basic polarization vectors €,
have been defined above in eqs. (8.10) and (8.8). Note that the transfer
by spontaneous emission satisfies the following selection rule
! !
(Jeirn|cf|Je?73>_’;<“}g#|0|:}g#> (8.17)

with p—p =m-m,
which is actually a consequence of the rotational invariance of the atom
vacuum field interaction Hamiltonian Vay. According to eq. (8.16), the
transfer rate associated with eq. (8.17) is just the product of I" by the two
Clebsh-Gordan coefficients connecting m to p and m’ to p'.

Calculating the commutator of eq. (8.14), and using egs. (8.15), (8.4),
(2.43.a, ¢, d) and (8.16), we finally get '

Gee = —10ce +1[GH (1) Gy — Ty G (1) ], (8.18a)

Geg = — (g - ié) Oeg +1[GT () 0gg — 0eeGH (7)), (8.18Db)

Ogg = (%%g) +i[G7(r)Geg — TgeGT ()], (8.18¢)
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where we have used
5cgr = O¢g gt (819)

instead of 0., in order to eliminate any explicit time dependence in the
coefficients of the equations. Note that, if the atom is moving, there is an
implicit time dependence through r = rg + vgt.

8.2.3. Expression of the mean force
According to egs. (2.30) and (8.4), the mean force can be written

F(r,t)=- (VVAL("‘ t))
=+ Z FYVES(r) et the. (8.20)

i=z,y,2

Using eqs. (8.5) and (8.19), the mean value of d] which appears in eq.
(8.20) can be re-expressed as

(df) = Te{P.d; P,0} = Tr{dsoge} = Tr{diG,.} e™rt (8.21)
which, inserted into eq. (8.20), yields

F(r,t)= Y Tr{diGge} VEF(r) +c.c. (8.22)

i=x,Yy,2

Equation (8.22) clearly shows that the mean radiative force only depends
on: the optical coherences 7., and 7.

8.3. Limit of low saturation and low velocity

8.3.1. New possible approzimations

Except for the semi-classical and rotating wave approximations, equations
(8.18) are exact. We consider now the low saturation limit (s < 1), which
is the relevant limit for the new cooling mechanisms. In such a limit, the
characteristic times for the evolution of the ground state become much
longer than those of the excited state. It follows that oy, is a slow variable
compared to 7., and o... After a short transient regime, lasting for a time
on the order of T = I'"1, g,, “slaves” the other variables by imposing its
slow rate of variation on 0.4, 04, and o.., so that one can write

[Gedl € Fows,, o] € U6s] (8.23)
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It is then possible to use the inequalities (8.23) to neglect the left-hand side
of equations (8.18.a) and (8.18.b) in comparison with the damping terms
—I'o. and —(I'/2)0.4, which appear in the right-hand side. This yields
algebraic equations allowing .. and ¢., to be re-expressed in terms of
044 Such a procedure is called “adiabatic elimination of the fast variables”
and leads for these fast variables to expressions describing how they adjust
themselves at each time to the value taken at this time by the slowly varying
variable.

Such an argument is in fact valid only for an atom at rest, the rate of
variation of o being only due to the absorption and emission processes. For
a moving atom, one must not forget that the time derivatives é,, appearing
on the left-hand side of eq. (8.18) are actually total time derivatives d/dt =
0/0t+ v - V, so that one must also consider the order of magnitude of the
terms vg - Vogp =~ kpvgoas. Actually, with the new cooling mechanisms,
the typical r.m.s. steady-state velocities reach very low values, for which

kg
I

n= < 1. (8.24)
This is why we will restrict ourselves in the remaining part of this course
to calculations done in zeroth order in 7. Such an approximation, which
allows us to neglect .. and o, in eq. (8.18), even for a moving atom,
eliminates any possibility of taking into account Doppler cooling which
appears in the first order in 7, but we are interested now in new cooling
mechanisms which are much more efficient than Doppler cooling, and the
equations so obtained will be much simpler. Note finally that we do not
neglect in eq. (8.18.c) 00,,/0t and vy - Vo, because oy, is a slow variable
and the Doppler shift kpvg can no longer be neglected in comparison with
the characteristic evolution frequencies of og4,.

8.3.2. Adiabatic elimination of the excited state
We first eliminate optical coherences. Neglecting 7., in eq. (8.18.b) leads
to

~ ]' R
Oeg = —m G+ (T) Tggs (82@&)
- 1 b g
Oge = —m—) Tggq G ('l") (8201))

We have actually neglected the contribution of o.. to eq. (8.25). The reason
is that o.. is at least of order 2 in the Rabi frequency (2; (see eq. (8.28)
below). Since o, is multiplied in eq. (8.18.a) by G, which is of order 1 in
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£21, the contribution of .. to eq. (8.25) is at least of order 3. We restrict
ourselves here to calculations up to order 2 in 2;, more precisely to order 1
in the saturation parameter s given in eq. (3.6). This is why o.. does not
appear in eq. (8.25).

Having re-expressed o, and &, in terms of o4y, we can now obtain a
new expression for the mean force F. Inserting eq. (8.25) into eq. (8.22)
yields

F(T) o #}"/2) _Z TY{G—(T) d:— Jgg} VEI[?(?') GG
= ﬁ?ﬂﬂ) (G=(r) (VGT(r)) +cec. (8.26)

We have used eq. (8.7) and the simpler notation
(X =Te{Xog.1. (8.27)

We turn now to equation (8.18.a) giving ... Neglecting ¢.. and using
eq. (8.25) for eliminating ., and 7,4, we get
= _i ; G+(1‘°) 0_(1") + he
Oee = T 6—1{1_‘/2) Tgg 7 AR
1
(T
82 + (I'?/4)
_Qflél rEs % =
= () (e (r)-d ) dis (e (r)-d ) : (8.28)

i) Ogg G (7)

8.3.3. Equation of motion of the ground-state density matriz
It remains to transform the last equation (8.18.¢) describing the evolution
of o44. Using egs. (8.16), (8.25) and (8.28), we get

. —i _ il o .
Tgq :@ G (T}G+(T)O'gg+m0ggo (T‘)G_F(‘?’_}
/B - iy
T TIPS € -d” Gt (r)o,, G (r) - dF,
R D R (1) 749 G~ (r) €
(8.29)

which is a closed equation of motion for o4, since it relates d,, only to
044 The first line of eq. (8.29) describes the effect of the laser excitation,
whereas the second line describes the effect of spontaneous emission.
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We separate now the real and the imaginary parts of 1/(8 £1I'/2). This
allows one to transform the first line of eq. (8.29), which will be noted
(Ggg)ias » @8 & sum of two terms, the first one involving a commutator and
the second one an anticommutator

)

(Ggg)ias = — 1 82+ (I2/4) [GT(r) GT(r), gy
;Z /(; (4 e e (8.30)
T e T ) {6 (P}G () Ogete

In eq. (8.30), {X,Y}; means XY + Y X. Note that the operator
G~ (r)G*(r) is Hermitian and semi-positive since G~ = (G*)T,

(G=(r)G*(r)' =G (r) G*(r), (831)

so that its eigenvalues are real and non-negative. Equations having the
same structure as eqs. (8.30) and (8.29) have been derived for the first
time in refs. [50] and [51] dealing with the quantum theory of the optical
pumping cycle. The pumping light was not monochromatic, as it is the case
here, but broad band incoherent light, so that equations (8.29) and (8.30)
had to be averaged over the spectral distribution I({wy,) of the incoming
light.

Equations (8.29) and (8.30) can still be transformed, using eqgs. (8.7),
(8.10), (8.11) and (8.13). Introducing in G~ G' the Hermitian, semi-
positive and dimensionless operator

Alr) = (E*(r).&—) (e(r)-&+) = At(r) (8.32)

and the parameters I'"” and ¢ analogous to those defined in eq. (6.15),

g IME]E o n(E)
oo DRm)/A_s(r)
é(r)_662+(rz/4)_6 5 (8.33b)
where the saturation parameter s(r) is given by
__fB(r)/2
s(r) = 21 (I7/4)’ (8.34)
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we get for g4, the following equation of motion

0p =~ 18 (F)[A(r), 055~ 37 {A(r), o0}

+r'@) Y (e-d) (e (r)-&+) o (e*(r)-&—) (eg-d").

g=-1,0,+1

(8.35)

8.4. Light shifts of the ground-state sublevels

8.4.1. Hamiltonian part of the equations of motion
The terms involving a commutator in eqgs. (8.30) and (8.35) can be written
as [Heg (1), 044] /ih where

ho

Het = 55+ (I2/4)

G~ (r)Gt(r) = hé&' (r) Ar). (8.36)

The corresponding rate of variation is the same as the one which would be
induced by the effective Hamiltonian He.g (7).

We will call |go (7)) the eigenstates of A(r) and A\, (7) the corresponding
eigenvalues, which are real and non-negative since A(r) is Hermitian and
semi-positive

A1) 19a(r)) = Xa(r) l9a(r)), o
Aa(r) real and =0.

If the term associated with eq. (8.36) was alone in the equation of motion
of 0,44, one would find that the Zeeman degeneracy in g is removed (if the
Ao are all different) and that the states |go (7)) get a well defined energy
shift 8 E,,, called light shift and equal to

8Eq = h 6 A. (8.38)

8.4.2. Properties of light shifts "
The light shifts 8E, are, as §', proportional to (2], i.e., to the laser intensity
Iy,. Since the A, are positive (see eq. (8.37)), all the 8F, have the same
sign, which is the sign of é, according to eq. (8.33.b).

The variations with the detuning & of the light shifts §E, are those of
a Lorentz dispersion curve, corresponding to a reactive effect. Recalling
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the analysis of section 6.2, and in particular diagram b of fig. 9, one can
also consider that the light shifts are associated with a virtual absorption
and re-emission of the incident photon (contamination of |g,p; kper) by
le,p + hkp;0)). Light shifts can be considered as the equivalent, for the
absorption process, of the Lamb-shift (which is associated with the sponta-
neous virtual emission and reabsorption of a photon). Another equivalent
picture for light shifts is to consider them as the polarization energy of the
induced atomic dipole moment in the driving laser field, which explains the
denomination “ac-Stark shifts” which is sometimes used.

The first observations of light shifts [52,53,51] predate the use of lasers
in atomic physics. They were induced by the light coming from an ordi-
nary discharge lamp (this is why they were called “Lamp-shifts” by Alfred
Kastler, in a word play indicating their origin and their analogy with the
Lamb-shift). The fact that the light shifts depend on the polarization of
the light beam and vary from one ground-state sublevel to the other was
essential for their observation. Because of the length of relaxation times in
atomic ground states, magnetic resonance curves in atomic ground states
are very narrow, and even if the light shifts of two ground-state sublevels
differ only by a few Hz, such an effect can be easily detected as a shift of
the magnetic resonance curve [52].

To conclude this subsection, we point out a few symmetry properties
of the effective Hamiltonian (8.36). The two operators d* appearing in
expression (8.32) of A are vector operators. It follows that the expansion of
H.g in irreducible tensor operators Tq{k) of rank % can contain only terms
with & = 0,1,2. The corresponding terms of H.g describe, respectively,
a global shift of the ground state (kK = 0) and a removal of degeneracy
equivalent to the one which would be produced by a fictitious magnetic
(k = 1) or electric (k = 2) static field, the direction of these fictitious fields
being determined by the polarization vector €(r). The interested reader
may find more details in refs. [54] and [55].

8.5. Relazation associated with optical pumping

8.5.1. Departure rates

The second term of eq. (8.35) describes how the atomic ground state is
emptied by the absorption process. The contribution of this term to the
rate of variation of the diagonal element of o in the eigenstate |g,) of A
can be written

((9a 16 9a))abs = =T (9a | o | ga), (8.39)
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where
o =d s (8.40)

can be interpreted as a rate of departure from the state |g,). Note that I}
is non-negative as A, [see eq.(8.37)], is proportional to the laser intensity .
I, ~ §22 (as I'"), and varies with the detuning & as a Lorentz absorption
curve (dissipative effect).

The fact that the Al s are not all equal means that the departure rates
vary from one sublevel to the other. If one A, vanishes, there is no possi-
bility for an atom in the corresponding sublevel |g,) to leave such a state
by photon absorption. The sublevel |g,) then appears as a trap state.

8.5.2. Feeding of the ground state by spontaneous emission

The atoms which have left the ground state by photon absorption fall back
in the ground state by spontaneous emission. Such an effect is described
by the last term of eq. (8.35) which is, as the second one, proportional to
I'" (dissipative effect).

One can easily check that the trace of the second term of (8.35) is opposite
to the trace of the third one.* This means that there are as many atoms
leaving g per unit time as atoms falling back in g.

As a consequence of these absorption-spontaneous emission cycles, popu-
lation differences can build up between the various Zeeman sublevels. This
is the well known principle of optical pumping [6]. Such a process can be
actually considered as a transfer of angular momentum from the incident
polarized photons to the atoms. For example, if the incident light beam
is propagating along Oz and has a right circular polarization o*, corre-
sponding to photons having an angular momentum +% along Oz, one can
easily show that optical pumping concentrates the atomic population in the
Zeeman sublevel with the highest value of the magnetic quantum number
along Oz. An example of such a situation will be given in chapter 9.

Optical pumping appears thus as a relaxation process, described by the
last two terms of eq. (8.35), and leading the internal atomic state to a
new equilibrium state, which generally is quite different from the thermo-
dynamic equilibrium. The characteristic time constants of optical pumping
are on the order of

1

:F‘

Tp

(8.41)

* The trace of the first term of eq. (8.35), which is a commutator, vanishes. This means
that light shifts (which are a reactive effect) cannot change the total population of the
ground state.
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The pumping time 7p is inversely proportional to the laser intensity Iy, and
can become very long if Iy, — 0.

8.5.3. Zeeman coherence effects

It may happen that atoms are submitted to two perturbations with different
symmetries. For example, a ¢t polarized beam propagating along the Oz-
axis, tends to create in the ground state a magnetization along Oz. If
one applies a static magnetic field B along the Oz-axis, this magnetization
starts to precess around Oz with a Larmor frequency {25 proportional to B.
Such a precession will wash out the anisotropy along Oz introduced by the
pumping beam if, during the characteristic damping time 7, of the ground-
state (pumping time 7p, or more generally relaxation time including the
effect of collisions, the finite duration of the interaction ...), the rotation
angle {27, is not small compared to 1. It follows that, when B is scanned
around zero, the anisotropy introduced by the pumping beam in the ground
state undergoes resonant variations which can be detected by changes in the
light absorbed or emitted by the atoms. This is the well known Hanle effect
which has been first observed in atomic excited states [56]. The interest of
Hanle resonances in atomic ground states is that they are very narrow, since
Ty can be very long. These resonances may thus be used to detect very small
magnetic fields, smaller than 107% Gauss [57,58]. Note that, since Hanle
resonances correspond to resonant variations of the photon absorption rate
when B is scanned, the momentum transferred to the atomic trajectories
varies also in a resonant way. Hanle resonances have been recently detected
in this way, by monitoring the deflection of an atomic beam [59].

In equation (8.35), the Hanle resonances appear as resonant variations
of the Zeeman coherences (off-diagonal elements of ¢ in the basis of eigen-
states of JJ,). They represent an example, among others, of situations where
optical pumping cannot be described only in terms of populations (see for
example ref. [51]).

8.5.4. Case of a moving atom

All previous considerations suppose implicitly that the atom is at rest, so
that it “sees ” a pumping light with a constant intensity and a constant
polarization. If the atom is moving, and if the laser configuration is such
that the local polarization varies in space, the moving atom will “see”, in
its rest frame a time varying polarization. Since it reacts to these variations
of optical pumping with a characteristic time on the order of 7p, its internal
state in r will lag behind the steady state of an atom which would be at
rest at the same point. We will discuss later on the role played by such a
time lag in the new cooling mechanisms.
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8.6. General properties of the mean force

We come back now to the approximate expression (8.26) of the mean force,
deduced from the general expression (8.22) after adiabatic elimination of
the optical coherences. In this last subsection, we discuss the physical
content of eq. (8.26), and we point out the connection which exists, in the
low saturation and low velocity limit, between the mean force and the light
shifts and absorption rates discussed in sections 8.4 and 8.5. Other similar
treatments can be found in refs. [60] and [61].

8.6.1. Reactive component and dissipative component

In eq. (8.26), we split 1/(6 —il'/2) in its real and imaginary part. We will
call reactive and dissipative respectively the components of the mean force
proportional to these real and imaginary parts

)

Freact(r) = —ﬁm

(G (var @) + (V6 () 6 @),
(8.42a)
12

-Fdissip('f') = lﬁmj

(V6= (m) G* (1) = (G~ (1) (VGH))].
(8.42b)

The denomination reactive and dissipative comes from the é-dependence
of the real and imaginary parts of 1/(6 — iI'/2). Note however that the
0-dependence of Freact and Fissip is not entirely determined by the two
terms which multiply the term in brackets of eqs. (8.42.a) and (8.42.h).
The average values which appear inside the brackets depend on the ground-
state density matrix o,, which is obtained by solving eq. (8.29). Such a
solution is itself a function of § and I', so that the final expressions of Freact
and Fissip will have a more complicated dependence on 6 and I'. Note also
that, even if |§| > I', we must not conclude that Feac is much larger than
F dissip, since the term in bracket of eq. (8.42.b) can be much larger than
the term in bracket of eq. (8.42.a).

One can still give a useful equivalent expression for Freact and Faissip by
using an expansion of the laser electric field Ey, in plane waves. If we use
for the positive frequency component E[": the expansion

Ef(r)=) Ei(r), (8.43)

where the r-dependence of E;' is given by

ik,
Bl (r) ~ T, (8.44)
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then, we can write

H

where, according to egs. (8.7) and (8.43)
hGE =d* Ef(r) (8.46)

Inserting eq. (8.45) into eq. (8.42) finally gives

: 6 » S
-Frea.ct o _162—_}_{}2% ;;hkﬂ [(Gv G:) == (Gﬂ- G:—j—)]‘
(8.47a)
2
Fdissip = ?2/4) ZZR!@ [C G+ G G+)]
(8.47h)

8.6.2. Interpretation of the reactive component

Comparing the expression (8.42.a) of Freact and the expression (8.36) of
the effective Hamiltonian H.g describing the light shifts of the ground state
sublevels shows that Fieaer can be written

-Frea.ct = _(VHeff>: (848)

which clearly demonstrates the close connection which exists between the
reactive component of the mean force and light shifts.

An equivalent expression of Heg in terms of its eigenvalues ., and eigen-
states |gq) is

He = ZE ) ga (7)) {ga (). (8.49)

Taking the gradient of eq. (8.49) (and omitting r to simplify the notation)
gives

V Hest :Z( ) |9a)<‘}'a|

+ZE [(V190)) (g0l + 190 (V {gal)] (8.50)
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which, inserted in eq. (8.48), leads to

Fl‘ea(‘.t == Z(VEQ)HU(

(8.51)
=Y Ea[(9al0(V19a)) + (V{9al)ala)],

where

Iy = (9o | 0| 9o} (8.52)

is the population of the ground-state sublevel |g,}.

The first term of eq. (8.51) has a straightforward interpretation, anal-
ogous to the dressed atom interpretation of the mean dipole force given
in section 7.3 for a two-level atom (see eq. (7.10)). This term is just the
average value of the forces —V I/, associated with the spatial gradients of
the light shifted ground-state sublevels, weighted by the probabilities of
occupation I, of these sublevels.

In order to interpret the second line of (8.51), we suppose that the atom
is displaced from r to r + dr, and we calculate the work done against the
reactive force

—Freact + dr = ZHO' - dE,

+ Ba[(9a 10| dga) + (dga |01 90)],  (853)

where dFE, and |dg,), given by

dE, = dr - VE,, (8.54a)
ldga) = dr - V|ga), (8.54D)

represent the variations of E, and |g,) between r and » 4+ dr. The second
line of eq. (8.53), which originates from the second line of eq. (8.51), is
associated with the spatial variations of the wave functions of the sublevels
|ga)- It can be written, to first order in dr

> B dimgem=d, (8.55)

where

dﬂgouad == (g“(’l’ + dT) | T | gu('r' —I—d’.‘")) - (ga('f') | [} | ga(?‘))
(8.56)
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is the non-adiabatic variation of the population of the state |g,) due to the
spatial variations of the wave functions. It follows that the second line of
eq. (8.51) represents the contribution of non-adiabatic transitions between
the various ground-state sublevels, induced by atomic motion and due to
the spatial variations of the wave functions of the light shifted ground-state
sublevels.

Finally, we discuss the physical content of eq. (8.47.a), deduced from
the plane wave expansion of the laser field. Since the force exerted by the
laser beam comes from a disappearance of photons k, from the various
plane waves p forming the laser wave, each of these photons carrying a
momentum hk,, one can interpret the coefficient of hk, in eq. (8.47.a) as
the mean number of photons absorbed per unit time in the plane wave pu.
The fact that this coeflicient depends on v means that the field E, of the
plane wave pu interacts with the atomic dipole induced by the wave v. It
follows that

d i?\r;e;ut . ) S L
dt = —lm [(Gv G#) = (GP Gy)] (857)

can be interpreted as the mean number of photons g absorbed per unit time
out of the wave p interacting with the reactive component of the dipole
moment induced by the wave . We take here the reactive component of
the dipole moment because of the é-dependence of eq. (8.57). From eq.
(8.57), it follows that

dNrea.ct

ME 58
it 0, (8.58a)

dNreact dNreact

SRR e B .58l
g dt (8.58b)

Such a result is easy to understand. Reactive effects involving a single wave
cannot lead to photon absorption. This is the meaning of eq. (8.58.a).
But, according to eq. (8.58.b), photons can disappear from one wave, p
for example, and reappear in the other wave v of the pair pr. This is a
redistribution process. During such a process, the total energy of the field
does not change, because the waves i, v have the same frequency. But since
k, # k., there is a change of momentum of the field. The corresponding
change of the atomic momentum is at the origin of Fc.ct, which can be
written according to eq. (8.57)

leact

d
react Z R(k u . (859)

pairs pw
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8.6.3. Interpretation of the dissipative component
Using the same type of argument as in the previous subsection, one shows
from eq. (8.47.b) that

diydese b
dt 82+ (I%/4)

[(GZ G +(G.G))] (8.60)

is the number of photons absorbed per unit time out of the wave p inter-
acting with the dissipative component of the dipole moment induced by
the wave v.

The equations corresponding to eq. (8.58) are now

deissip T

L4 o —

S — = ey (Ga Gl # 0 (8.61a)
dNSLSSiP dNSL_SSip

e (8.61b)

The contribution of the wave p alone to Fyigssip is different from zero and
equal to

/i _ et
1 (72/0) hky (G, G} (8.62)
Such a term represents the radiation pressure exerted by the wave pu in-
dependently of the other waves. Note however that eq. (8.62) depends
implicitly on the other waves v since the average values appearing in eq.
(8.62) are taken in o4y, which itself is determined by the total laser field
E1, i.e., by the whole set of plane waves forming Er,.

There are also cross terms p # v in the expression (8.47.b) of Fyissip,
the contribution of the pair (i, r) being equal to

ry2

m hiky,+ k) [(G,Gh) +(G,G)]. (8.63)
Such terms describe interference effects between the waves g and v. The
radiation pressure exerted by the wave p is modified by the presence of the
wave v and vice versa. Equation (8.61.b) means that, if the absorption of
the wave p is modified by the presence of the wave v, the absorption of
the wave v is modified by the same amount by the presence of the wave
. Here we have not a redistribution process as in the previous subsection,
but a similar increase (or decrease) of the absorption of both waves due to
interference effects.
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8.6.4. Particular case of one-dimensional molasses
Suppose that the laser configuration is formed by two counterpropagating
plane waves 1 and 2, with

ki=k,  ky=—k. (8.64)
As shown in subsection 8.6.2, F aacy is a pure redistribution force, which
does not contain single wave terms. Equation (8.59) becomes now, taking
eq. (8.64) into account
i &
eact T 82 4 (I'2/4)
Since ky +ko = 0, the cross term (8.63) of Fajssip vanishes. The radiation
pressure of each wave is increased by the presence of the other wave, but
these extra forces have the same modulus but opposite directions, so that

they cancel out. We are left with a sum of single wave terms which can be
written

F, 2hki[(GTGY) — (G7GT) ] (8.65)

=
82 + (12 /4)
It follows that, for one-dimensional molasses, Fisip is just equal to the
difference between the radiation pressures exerted separately by the two
waves.

We will conclude with a remark concerning the polarizations €; and es
of the two counterpropagating waves. If we take k; = —k, along Oz, these
polarization vectors are perpendicular to Oz, because of the transversality
of the field, and can therefore be considered as linear superpositions of the
right and left circular polarizations o and ¢~ . It follows that all the matrix
elements of G G, with g, v = 1 or 2, in the ground-state manifold, satisfy
the selection rule Am = 0,42, where m is the magnetic quantum number
along Oz (G; and G} change m by +1 or —1). Consequently, if the angular
momentum J, of the ground state is equal to J, = 1/2, one concludes
that all the G;Gj are diagonal in the basis of eigenstates of J., and also
G~GT. In such a case, the eigenstates of the effective Hamiltonian Hg
which, according to eq. (8.36), is proportional to G~ G™, are independent
of z.

J:dissip e hk [(Gl_ GI:) bt <GQ_GS) ] (866)

9. Low intensity Sisyphus cooling
9.1. Introduction

During the last few years, spectacular developments have allowed the per-
formance of laser cooling to be improved by orders of magnitude. The
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starting point of these developments was the demonstration, by the N.I.S.T.
group at Gaithersburg, that the Doppler limit could be overcome [62]. For
a discussion of this experiment and of the subsequent ones from various
groups, we refer the reader to Phillips’ course in this volume. The pur-
pose of this chapter and the following one is to present a few new cooling
mechanisms which, we think, are responsible for the very low temperatures
which have been measured.

This chapter is devoted to the analysis of a low intensity version of the
Sisyphus cooling mechanism presented in chapter 7 for a two-level atom
moving in an intense laser standing wave. As in chapter 7, we have an
atom moving in a bipotential, and jumping preferentially from the tops of
the hills of one potential curve to the bottoms of the valleys of the other
potential curve, so that, on the average, the atom is running up the hills
more than down, as did Sisyphus in the Greek mythology. But, now, the
bipotential is no longer associated with the two dressed states originating
from the excited state e and the ground state g (more precisely from |e, N')
and |g, N 4+ 1)). It is associated with two ground-state Zeeman sublevels
which undergo spatially modulated light shifts and between which optical
pumping transitions occur with a rate which is also spatially modulated.
We show that in this case a very efficient Sisyphus cooling can appear at
very low intensity, when the saturation parameter s is very small.

We begin in section 9.2 by introducing a one-dimensional model consist-
ing of a laser configuration exhibiting strong polarization gradients and of
a simple atomic transition leading to a mean radiative force which is only
due to the spatial gradients of light shifts. Using the results of chapter
8, we determine in section 9.3 the light shifts of the atomic ground state
sublevels as well as the optical pumping transition rates between these
sublevels. We then consider in section 9.4 a moving atom and we show
how the spatial modulation of light shifts and optical pumping rates in the
laser polarization gradient can conspire to produce a Sisyphus cooling. A
more quantitative analysis is presented in section 9.5 in the traditional case
where the internal times T;,; are much shorter than the external times Ty .
We evaluate the friction coefficient and give an order of magnitude of the
equilibrium temperature. Finally, some indications are given in section 9.6
on the less usual case where the external times become of the order of or
shorter than the internal times. Such a case is actually important because
it corresponds to the situation where the low intensity Sisyphus cooling
reaches its limits.

We will follow here the presentation of refs. [63] and [64]. More details
may be found in these references, and in ref. [65] which gives the results
of a numerical integration of optical Bloch equations. A general review of
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the field is presented in ref. [85].
9.2. Presentation of the model

9.2.1. Laser configuration

We consider two counterpropagating waves along Oz, with orthogonal po-
larizations €, and €,, and the same amplitude & (fig. 17a). With an
appropriate choice of the relative phases of the two waves, the laser electric
field in z can be written

Ey(z,t) = Ef (2) et tcec. (9.1)
with

Ef(2) = L(e, €% —ig, e7*2) &, (9.2)
As in eq. (8.11), one can then write

Ef(z) = 1&0vV2 €(2) = 1L €(2), (9.3)

where &, is a real amplitude which is independent of z and equal to £v/2
and where the normalized polarization vector €(z) is given by

€(z) =coskz e_ —isinkz e,. (9.4)

According to eq. (9.4), the laser polarization is an elliptical one which is
particularly simple in certain places: ¢~ in z = 0, linear along (e, —¢€,)/v/2
in z = A/8, ot in z = \/4, linear along (€, + €,)/V2 in z = 3\/8, ¢~ in
z = A/2 and so on (see fig. 17a).

The laser configuration of fig. 17a exhibits therefore a strong gradient
of ellipticity along Oz, on a length scale equal to a fraction of the wave-
length. Since the internal atomic state depends on the polarization of the
pumping light, such a configuration leads, as will be shown below, to large
non-adiabatic effects, since a moving atom has to respond to the variations
of the laser polarization due to its motion with an internal response time
(the optical pumping time) which becomes very long at low intensity. By
contrast, if the two counterpropagating laser waves had the same polariza-
tion one would have just a gradient of intensity, without any polarization
gradient. In the low intensity regime considered here, this would produce
only a slight change of the total population in the ground state g (which
remains close to 1), without any change of the anisotropy in g (character-
ized by the population differences between the ground-state sublevels and
the Zeeman coherences between them).
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Fig. 17. (a) Lin L Lin laser configuration, exhibiting a strong polarization gradient
along Oz. (b) Clebsch-Gordan coefficients for a Jg = 1/2 + Je = 3/2 transition.

9.2.2. Atomic transition. Simplifications for the mean force

As for usual laser cooling experiments, we consider a transition J, — J. =
Jy + 1. We take the simplest possible value of .J; leading to a degenerate
ground state, i.e., J; = 1/2. Figure 17b gives the various Clebsch-Gordan
coefficients corresponding to a transition J, = 1/2 — J. = 3/2.

Since there are only two Zeeman sublevels in the ground state, the ma-
trix representing G~ G in the ground-state manifold is diagonal (see end
of subsection 8.6.4). It follows that the effective Hamiltonian He.g describ-
ing the light shifts of the ground-state sublevels is diagonal in the basis
{|g4_,1/2)} of eigenstates of J., so that the eigenstates of H.g, which coin-
cide with |g+y/2), are independent of z. One can thus, in the expression
(8.51) of Freact, neglect the second line which is associated with the gradi-
ents of the wave functions, and write

Freact = _II+1/2VE+1/2 = H—I/ZVE—U% {95)

where II,/; and E.,/, are the populations and the energies of |9+1/2)-
Since we consider here one-dimensional molasses, we can use the ex-
pression (8.66) of Fgjssip, which involves the radiation pressures exerted
separately by the two counterpropagating waves. Here also, the matrices
representing the two operators G; Gi and G5 G appearing in eq. (8.66)
are diagonal in the basis {j G41 ;2)} of eigenstates of J. (see end of subsection
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8.6.4). Since both counterpropagating waves have a linear polarization, one
can then easily show that (G G{) and (G, G5 ) are equal and proportional
to Il _yy5 + Il 1/ = 1, ie., independent of the internal atomic state. It
follows that

Faissip = 0. (9.6)

The choice of the simple atomic transition of fig. 17b leads therefore
to a mean force which is due only to the spatial variations of the light-
shifted energies of the ground-state sublevels. This is why the new cooling
mechanism analyzed in this chapter can be considered as a pure Sisyphus
effect.

9.3. Dynamaics of the internal degrees of freedom

9.3.1. Light shifts of the ground-state sublevels
The light shifts E.,/2(z) of [g41/2) can be written

E;1(z) =hé'Azx(2), (9.7)

where A, (z) and A__(z) are the diagonal elements of the operator A(z)
defined in eq. (8.32), which are the only non-zero matrix elements of this
operator, and where &' is given by eq. (8.33.b). Note that, since the laser
amplitude in z, & = £+/2, is independent of z (see eq. (9.3)), the Rabi
frequency (2, appearing in eq. (8.33.b) is also independent of z, so that
the only z-dependence in eq. (9.7) comes from the matrix elements of A,
and not from §’. Note that §’ can be written

i =882 By, (9.8)

where s is the saturation parameter associated with &, and sy = $/2 the
saturation parameter associated with &, i.e., with each of the two coun-
terpropagating waves.

Inserting eq. (9.4) into eq. (8.32), and using for the matrix elements
of €, - d+ the Clebsh-Gordan coefficients of fig. 17b (see egs. (8.9) and
(8.10)), we get

Ay (2) =sin’ kz + % cos? kz = 1 — 2 cos® kz, (9.9a)

A__(z) =cos?kz + 1sin’ kz =1 — 2sin®kz. (9.9b)

Figure 18 represents the spatial variations of E.;/;(z). We have supposed
& < 0, so that the light shifts are negative. At z = 0,\/2, ... where the
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Fig. 18. Light shifts E:El,v‘z(z) of |9:E1/2> versus z. The size of the solid circles is
proportional to the steady state populations of |g.q 1/2) for an atom at rest in z. We
have supposed & < 0.

polarization is ¢, the sublevel |g_;,5) is shifted downwards (with respect
to the zero of energy, corresponding to the absence of the laser) three
times more than the sublevel |g q/;), because the o~ transition starting
from |g_y/9) is three times more intense that the o~ transition starting
from [g44/2). The situation is opposite in z = A/4, where the polarization
is o, and where the sublevel [g,;/) is shifted three times more than
|[g—1/2)- Finally, in 2 = A/8, 3)A/8, ... where the polarization is linear, both
sublevels undergo the same light shift.
Using eqs. (9.9) and (9.7), we can also write

Ey13(2) = —% + U cos® kz, (9.10a)

E_is9(z) = —% + Upsin® kz, (9.10b)
where

Up = —3h&' = —2hbso (9.11)

is the depth of the potential wells associated with the spatial oscillations
of ELy5(2) and E_j/5(2). Equations (9.10) allow also the expression (9.5)
of the reactive force, which coincides with the total mean force because of
eq. (9.6), to be transformed into

Freact(2) = F(2) = €.k UgM(z) sin 2kz, (9.12)
where

M(2) = I 11/5(2) — H_1/2(2) (9.13)
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is the difference between the populations of the two sublevels.

9.3.2. Optical pumping rates
We first consider the departure rates from |g.iq/2), F;uz(z), associated

with the anticommutator of eq. (8.35), and given by (see also egs. (8.39)
and (8.40))

Iiije(2) =T"Api(z) =TI (1- %cosz kz), (9.14a)

Iy p(z) =T'"A-_(2) = I" (1 - %sin’kz), (9.14b)
where

IM=Tsf2=Fny (9.15)

The last term of eq. (8.35), which describes how atoms return to the
ground state after having absorbed one photon can be easily calculated,
using the expression (9.4) of €(z) and the Clebsh-Gordan coefficients of
fig. 17b. Such a term couples populations only to populations, because the
value 1/2 of J, excludes any off-diagonal element (g,|044|gm') of 744 With
m—m' =42

Adding the contributions of the last two terms of eq. (8.35), and using
(9.14), we finally get, for the populations I1.4/5 of [g+1/2), the following
rate equations describing the effect of optical pumping

d .
&H+U2(z) =—I¢(2) H+1/2(75) + I p(2) le/z(z),

(9.16a)
d 2l
qd-1/2(2) = Ty (2) _1/2(2) + Iy (2) I 11/2(2),

(9.16b)

where

Dy [2) = &1 coe’kz; (9.17a)
I . (2)=%I"sin’kz (9.17a)

are, respectively, the optical pumping rates from [g.1/2) to [g_1/2) and
from |g_1/2) to |g41/2).

Subtracting eq. (9.16.b) from eq. (9.16.a) and using eqgs. (9.13) and
(9.17), we also get for M(z) the following equation

%M(z) — —:;[M(z) + cos 2kz], (9.18)
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where 7p, given by

s
S Y i P

(9.19)
is the optical pumping time characterizing the time constant with which
the population difference reaches its equilibrium value.

It is clear from (9.17) that, as the light shifts Ey,/5(z) given in eq.
(9.10), the optical pumping rates from one sublevel to the other are spa-
tially modulated. The same function of z, cos? kz, appears in eqgs. (9.10.a)
and (9.17.a). There is therefore a perfect correlation between the spatial
dependence of the light shift of |g4,/2) and the spatial dependence of the
optical pumping rate from |g,1/2) to [g_1/2). More precisely, E;/5(z) and
I'y . (z) reach their maximal values for the same values of z, those for
which cos? kz = 1. A similar result holds for E_;,5(z) and I'__, 4 (z). This
means that the transition rate from [g, /o) (respectively [g_1/2)) to [g_1/2)
(respectively |g;1/2)) is maximum at the places where the energy of [g41/2)
(respectively |g_12)) is the highest. We will see in the next subsection that,
for a moving atom, the most probable processes are those where the atom
leaves one of the two oscillating potential curves of fig. 18 at the top of one
hill and is transferred to the bottom of one valley of the other potential
curve. This is the key point of the cooling mechanism discussed in this
chapter.

9.8.3. Steady-state populations for an atom at rest

If we suppose that the atom is at rest in z, all coefficients of eq. (9.18)
are time independent. This equation has therefore a steady-state solution
given by

M (2) = [T, j(2) — T2, 5(2) = — cos 2k=. (9.20)

Combining this equation with the normalization condition IT%, /2{2) +
IT%, 5(2) = 1, we get

$1/2(2) = sin® kz, (9.21a)
Hs-tug(z} = cos kz, (9.21b)

The size of the solid circles of fig. 18 is proportional to these steady-state
populations. For a given value of z, the most populated sublevel is the
lowest one. At the top of the hills, the population is equal to zero whereas
it is equal to 1 at the bottom of the valleys.
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Fig. 19. Sisyphus effect for a moving atom. Because of the strong correlation between the
spatial dependencies of light shifts and optical pumping rates, the atom loses potential
energy when it jumps from one sublevel to the other. The upper part of the figure gives
the corresponding variations of the total energy. The random path sketched here has
been obta.dincd for § = —5I", 21 = 2.3I", and for the cesium recoil shift Aik2/MT =
el ==

9.4. Cooling mechanism for a moving atomn

9.4.1. Sisyphus effect
Consider an atom moving with velocity v along Oz in the bipotential
E41/2(z) of fig. 18. We suppose that initially v is large enough

FMv* > U, (9.22a)
kv > I, (9.22b)

so that, on the one hand, the atom is not trapped in one of the potential
wells and, on the other hand, travels over several wavelengths before being
optically pumped from one sublevel to the other. Note however that v is
small enough so that we can still neglect kv in comparison with I" (negligible
Doppler cooling)

kv < T. (9.23)

Condition (9.23), which can be written vI"~! <« A, means also that the
atom travels over a distance very small compared to A during the duration
I'~! of a fluorescence cycle. In other words, each optical pumping cycle can
be considered as occurring instantaneously in a given point of the Oz-axis.

Suppose that initially the atom is in the sublevel |g_;,5) (fig. 19). As
long as it remains in this sublevel, its total (kinetic 4+ potential) energy,
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represented in the upper part of fig. 19, remains constant. We neglect
for the moment the recoil due to the absorbed and re-emitted photons in
the fluorescence cycles g_;/2 — e41/2 (or e_zs2) — g_1/2 where the atom
returns in g_, /. Because of the spatial dependence of the optical pump-
ing rates, discussed at the end of subsection 9.3.2, the transfer by optical
pumping from g_; /5 to g41/2 will occur preferentially near the maxima of
E_y/3(2), and the atom will jump suddenly from a point near the top of
one hill of E_;/5(z) to a point near the bottom of one valley of E_,/5(2).
The corresponding change dU of its potential energy will therefore be neg-
ative and on the order (in absolute value) of Uy. If we neglect here also the
recoil of the absorbed and re-emitted photons, the total energy of the atom
will decrease suddenly by an amount dU (first discontinuity in the curve
represented in the upper part of fig. 19).

From there, the same sequence can be repeated. On the average, the
atom is running up the hills more than down and its total energy decreases
by a series of discontinuous steps until its kinetic energy becomes on the
order of or smaller than Uy (see for example the last jump of fig. 19). Such
a qualitative analysis, which is confirmed by the results of more quanti-
tative treatments, therefore shows that the kinetic energies which can be
achieved by low intensity Sisyphus cooling are on the order of the depth Uy
of the potential wells associated with the spatially modulated light shifts:
Muv? /2 ~ Uy. For large detunings (|6| > I'), which is the interesting case
where the light shifts of the ground-state sublevels are larger than their
widths, Uy is on the order of hf27/|§|, so that

ne:

kT

(9.24)

9.4.2. Threshold intensity — Cooling limit

According to equation (9.24), the temperature can be decreased by decreas-
ing the laser intensity I;, ~ 2%, or by increasing the detuning 8. Obviously,
one cannot decrease I, indefinitely. There must be therefore a threshold
intensity below which equation (9.24) is no longer valid.

Actually, in deriving eq. (9.24), we have neglected the recoil due to the
absorbed and re-emitted photons in each fluorescence cycle. We have thus
implicitly assumed that the mean loss of potential energy at each optical
pumping cycle, on the order of Uy, is much larger than mean increase of
kinetic energy due to the recoil, on the order of Fr = ﬁ,2k2/2M. If Iy, is
decreased, Uy also decreases, and when Uy becomes on the order of a few
ER, the cooling due to the Sisyphus effect is no longer sufficient to overcome
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the heating due to the recoil. There is therefore a threshold intensity given
by

(Uo}thr > a few ER. (9.25)

The previous analysis also shows that low intensity Sisyphus cooling
cannot lead to minimum energies lower than a few Eg. The characteristic
energy is now the recoil energy Egr, and not Al as was the case for Doppler
cooling.

9.4.5. Comparison of internal and external times
In the cooling scheme discussed in this chapter, internal variables evolve
with a characteristic time T}, equal to the optical pumping time 7p

9
21_‘80 '

Tint =70 = (9.26)
To characterize the evolution of external variables, we suppose that the
atom has been cooled during a time long enough so that it is quasi-trapped
in the potential wells of fig. 19, and we introduce the oscillation frequency
{255 in these wells. Near the bottom of one potential well, for example
near z = 0, we have, according to eq. (9.10.b)

E_io(z) ~ —% LR 2 for |2l & L/k, (9.27)

so that (2,5 is given by

-Qosc =l % = \/4h|6|50 (928)

M 3M

The external time T, is on the order of the oscillation period:

1
] ;
ext -Qnsc

(9.29)
An important parameter for characterizing atomic motion is therefore

2THK2|8]  Thus
Msol?  Ton

Qosc ™=

(9.30)

If 2,.c7p < 1, the atom makes several transitions between |g_; /3) and
[941/2) in a single oscillation period. In such a “jumping regime”, inter-
nal variables are much faster than external variables. This is the usual
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regime considered up to now in the semi-classical treatment of laser cool-
ing. One can adiabatically eliminate the internal variables and describe
atomic motion in terms of a velocity dependent force and a momentum
diffusion coefficient. Such a treatment, which is given in detail in ref. [63],
will be sketched in section 9.5.

If 25sc7p > 1, we are in the opposite situation where the atom makes
several oscillations in a potential well before being optically pumped into
the other sublevel. Such an “oscillating regime”, where external variables
are faster than internal variables, is quite unusual in laser cooling of free
atoms. It is important here since, if one decreases (21, at fixed 8, in order to
decrease the temperature estimated in eq. (9.24), one sees from eq. (9.30)
that one can go from the jumping regime to the oscillating regime. A few
remarks on this regime will be given in section 9.6. More details may be
found in refs. [64] and [66)].

Before ending this subsection, we would like to mention other cooling
mechanisms, closely related to the one discussed in this chapter, but which
do not use polarization gradients [67,68]. Suppose for example that the
laser configuration consists of two counterpropagating waves along Oz, with
the same circular polarization o™, We have in this case a pure ¢ standing
wave. If we still consider a J;, = 1/2 « J. = 3/2 transition, the light
shifts Ey/2(2) of |g41/2) oscillate in space (with E,q/p =3E_; /), the
splitting between the two sublevels being equal to zero at the nodes of the
standing wave and maximum at the antinodes. Because of optical pumping,
all atoms are pumped into [g4/2) and the steady state population of this
state for an atom at rest in z remains equal to 1 and independent of z, since,
in the limit s < 1, the population of the excited state is negligible. Suppose
now that one adds a small static magnetic field By, perpendicular to Oz. If
By is small enough, its effect will be important only near the nodes where
it mixes the sublevels |g4;/2), which become degenerate in such places.
Consider then a moving atom, initially pumped in the sublevel |gq/2).
When such an atom passes through a node, Landau—Zener transitions can
transfer it to the other sublevel |g_;,,), which is less light shifted than
|94+1/2). The atom will remain in this sublevel for a time on the order of
7p before being optically pumped back to |g;1/2). One can then easily see
that such a scheme provides a new example of situations where the atom
is Tunning up the hills of oscillating potential curves more than down.

9.5. The jumping regime (2,5.7p < 1)

We suppose in this subsection that (2,sc7p < 1, so that
Tint < Text- (931)
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It follows that during the time required by the internal variables to reach
a steady-state, or more precisely a forced regime, the atomic velocity does
not change appreciably. We can thus set

z =t (9.32)

in the equations of motion (9.16) of the internal variables and consider v
as a constant when solving these equations.

9.5.1. Internal state for an atom with velocity v
Inserting eq. (9.32) into the equation of motion (9.18) of the population
difference M leads to

d 1 1
aM(t) + ;M(t] — cos 2kvt, (9.33)

which is a linear differential equation with constant coefficients (since 7p is,
according to eq. (9.19), independent of z and thus of ¢) and with a source
term modulated at angular frequency 2kv. The forced regime solution of
eq. (9.33) can be written
Tp ! 2ikut
M(t) = — Re ———— “™" 9.34
®) 2ikv + TFTI ( )

that is also, recalling eq. (9.32)

1 v/ve s
M(Z) = —m cos 2kz — WSIHQLZ, (9-35)
where v, is a critical velocity defined by
1 3 i
0 2 (9.36)

:214:1'1: :47r1'p ok

In order to get some physical insight in eq. (9.35), it will be useful to
study the limit of this expression for v < v.. To order 1 in v/v., eq. (9.35)
can be written using eq. (9.36) and the definition (9.20) of the population
difference for an atom at rest in z

M(z) = — cos 2kz — 2kvTp sin2kz
= M*(z) — UTP%ZMSt(Z) (9.37)
M (2 — vTp).

12
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Such a result clearly shows that (after a transient regime) the internal state
of an atom passing in z with a small velocity v lags behind the internal state
of an atom which is at rest in z. Because of the finite response time 7p of
internal variables, M(z) does not adjust instantaneously to the variations
of the laser polarization “seen” by the moving atom. There is a non-
locality in the response of the atom which is characterized by the distance
vuTp travelled by the atom during the internal time 7p.

9.5.2. Velocity dependent mean force. Friction coefficient

Inserting eq. (9.35) into the expression (9.12) of the mean force, and taking
a spatial average, we get for the z-component of the spatially averaged force
acting upon an atom moving with velocity v

s okily v/ v, A it
F.(v) = 3 1+l 130w (9.38)

where ag is equal, according to egs. (9.36), (9.11) and (9.19), to

6
as = k*Uytp = —3hkff. (9.39)

For v <« v, F.(v) can be written
F2(v) = —agv, (9.40)

which shows that ag is the friction coefficient associated with low intensity
Sisyphus cooling. It is interesting to compare as with the friction coefficient
ap given in eq. (4.8) for a two-level atom moving in a laser plane wave.
We have added the subscript D to a, given in eq. (4.8), to indicate that the
friction mechanism is, in this case, due to the Doppler effect. A remarkable
property of ag, given in eq. (9.39), is that it is independent of the laser
intensity /1, whereas equation (4.8) shows that ap is proportional to s,
and thus to I, if s < 1. At first sight, such a result seems quite surprising,
since decreasing I, decreases the depth Uy of the potential wells of fig. 18,
and consequently the corresponding gradient forces. But equation (9.39)
shows that ag is proportional to the product of Uy by 7p, so that, when
I1, decreases, the decrease of Uy, which varies as Iy, is compensated for by
the increase of 7p, which varies as 1/I,. In other words, at low intensity,
the weakness of light shifts is compensated for by the length of the optical
pumping times. Note also that, according to eq. (9.39), the value of ag is,
for |6] > I, larger than the optimal value of ap which, according to eq.
(4.9), is on the order of hk?/4.
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When v increases, F.(v) reaches a maximum when v = v, and then
decreases as 1/v when v > v.. The critical velocity v, which is a velocity
such that the atom, moving with this velocity, travels over a distance on
the order of A during the optical pumping time 7p, can thus be considered
as defining the velocity range, sometimes called “velocity capture range”,
over which low intensity Sisyphus friction is most efficient. According to
eq. (9.36), v. is proportional to 1/7p, i.e., to the laser intensity Ij,. Such
a result is to be contrasted with what happens for Doppler cooling, where
the velocity capture range, given by the width of the curve of fig. 4 of
chapter 4, is, for the optimal value § = —I'/2 of the detuning, such that
kve =~ I', and is therefore independent of Iy,.

To summarize the results derived in this section, one can say that, for low
intensity Sisyphus cooling, the friction coefficient ag remains constant, and
very large, when Iy, decreases, whereas the velocity capture range decreases.
On the contrary, for Doppler cooling, the friction coefficient ap decreases
when [, decreases, whereas the velocity capture range remains constant.

9.5.3. Equilibrium temperature

In order to evaluate the equilibrium temperature Ty associated with low
intensity Sisyphus cooling, we must first find the order of magnitude of the
momentum diffusion coefficient D for an atom at rest in z.

As in the case of a two-level atom, we have a contribution D,,. to D
coming from the fluctuations of the momentum carried away by the spon-
taneously emitted photons, and a contribution D, coming from the fluc-
tuations in the difference between the number of photons absorbed in each
of the two counterpropagating waves. Considerations similar to those devel-
oped in subsection 5.2.3, show that these two contributions are, for sy < 1,
which is the case considered in this chapter, on the order of

D D~ p P T = Rk Tlay, (9.41a)

We have also a contribution Dg;, to D coming from the fluctuations of the
instantaneous dipole force oscillating back and forth between —V E_; /5 and
—~VE_yi/p = +V E_ /, when the atom undergoes, at random times, optical
pumping transitions between the two ground-state Zeeman sublevels at a
rate 1/7p. A calculation, quite similar to the one presented in subsection
4B of ref. [39], gives for this contribution the following result

52
Daip = 2h2k?— sy sin*(2kz), 9.41b
. r

whose spatial average is equal to

2
Ddip ﬁ k’?é—Sg (9410)
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Note that, according to eq. (9.41.b), Dgi, vanishes in certain places. But,
since the departure rates from |g.1 /o) never vanish ( see Equations (9.14)),
D,.. and D, never vanish.
If |6] > I', Dgjp is larger than Dy, and D, by a factor on the order of
82/ > 1, so that
s P s .
D = Daip = {h*F* = s0. (9.42)
The equilibrium temperature Ts results from a competition between the
cooling, described by the friction coefficient ag, and the heating due to
momentum diffusion. We have then, for |§| > I,

D

kpT = —
Qg

1 3
~ —=hdsy = =Up. 9.4
e =t (9.43)
This confirms the result predicted above in a qualitative way (see eq.
(9.24)), according to which the equilibrium energy is on the order of the
depth Uy of the potential wells of fig. 18. Using the definition (3.6) of sq,
we have, for |§] > I,

(9.44)

where (2; is the Rabi frequency associated with each of the two counter-
propagating waves. Experiments [69] done on cesium have given results
showing that 7' depends linearly on 22/|6| over a large range of values of
the parameters. This agreement with eq. (9.44) is somewhat unexpected
since the theory presented here is valid only in one dimension and for a
Jg = 1/2 « J. = 3/2 transition, whereas the experiments are done in
three dimensions on a J,; = 4 « J. = § transition.

One can finally ask under what condition the whole velocity distribution
falls in the linear part of F.(v). Such a condition can be written

hk2 |63
Vpms € % = (> —ﬂ"% (9,45)

and turns out to be equivalent to (2,s.7p < 1, which is the condition of
validity of the jumping regime considered in this section.

9.6. The limits of low intensity Sisyphus cooling

The treatment presented in the previous section relies on a semi-classical
approximation (atomic spatial coherence length £4 much smaller than the
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laser wavelength A — see the discussion of subsection 2.3.2) and on the
assumption that Ti, <€ Toxt. Its predictions for the equilibrium tempera-
ture (9.44) are certainly wrong when 2, becomes too small. In order to
determine the lowest temperatures which can be reached by low intensity
Sisyphus cooling, we need therefore a more precise theory.

9.6.1. Results of a full quantum treatment

Reference [64] presents a full quantum treatment of low intensity Sisyphus
cooling, where both internal and external degrees of freedom are quantized.
We will not give here the details of such calculations. We just present a
few important results.

Consider first the predictions concerning the variations with Uy of the
mean kinetic energy (P?/2M), for a fixed value of the detuning 6. For
Uy > Eg, the quantum result agrees with the semi-classical one, and one
gets a straight line. When Up is decreased, (P?/2M) decreases, passes
through a minimum and then diverges (see fig. 3b of ref. [64]. This con-
firms the qualitative predictions of subsection 9.4.2 for the existence of
a threshold for Uy. Two important results must be noted concerning the
minimum (P?/2M) . of (P?/2M) . First, for the values of § and Uy cor-
responding to this minimum, the dispersion Ap of the possible values of p,

characterized by Ap ~ (P2)U2, remains always larger than k. Actually,

the smallest possible value of (Pr“)lﬁ: which is achieved for Uy = 95ER
and |6| > T, is equal to 5.5hk. This means that the semi-classical approx-
imation is not too bad, since the coherence length 5 ~ h/Ap remains
always smaller than A = 2w /k. Second, for the values of Uy correspond-
ing to (P?/2M >m;", oseTp is 10 longer small compared to 1. Actually the
smallest possible value of (P?/2M) . is reached in the limit 2o5.7p — 0.
These results show that the optimum of Sisyphus cooling cannot be prop-
erly described by the treatment of section 9.5, not because of the semi-
classical approximation, which is not bad, but because of the assumption
Tint < Text, which has to be reversed.

Reference [64] presents a few approximations which can be done on the
quantum equations of motion and which are still semi-classical in the sense
that, as in section 5.3, the atomic Wigner functions are expanded in powers
of hk/Ap, up to order 2. The difference with the treatment of section 5.3
is that internal variables are no longer adiabatically eliminated. Some
other approximations are then introduced. We will focus here on the limit
20scTp > 1, where the so-called “secular approximation” allows one to
describe laser cooling of neutral atoms with physical pictures quite similar
to the ones used to describe laser cooling of trapped ions [21].
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9.6.2. The oscillating regime (2,50 > 1)

In this regime, the atom oscillates several times in one of the potential
wells of fig. 18 before being optically pumped into the other sublevel. One
can therefore, in a first step, neglect the dissipative part of the atom
field coupling, which is responsible for the real absorption and emission of
photons by the atom, and consider only the reactive part of this coupling
which is the origin of light shifts. This amounts to considering an atom
moving in a bipotential Ey,/5(z), without any dissipative process. As
shown in ref. [66], the diagonalization of the corresponding Hamiltonian
gives a series of energy levels, which are actually energy bands because of
the periodicity of Ey;/2(z). The lowest bands are very narrow because of
the smallness of the tunnel effect between two adjacent potential wells. For
example, for 6 = =207, £ = 1.5I" and the cesium recoil shift, one finds
Uy =~ 100ER, which gives 6 bound bands [66], the width of the lowest band
being smaller than 10~ %ER and the distance between two successive bands
being on the order of if2,s. with 2, /27 ~ 40 kHz.

The second step of such an approach consists in introducing the effect of
optical pumping, which induces transitions between different energy bands
or inside a given band. Condition 2,s.7p > 1 then allows one to neglect
any “non-secular” coupling between the populations of the energy levels
and the off-diagonal elements of the density matrix between different en-
ergy levels separated by an energy on the order of hf2.... Reference [66]
shows how such a “secular approximation” (supplemented by symmetry
considerations) leads to a set of rate equations involving only the popula-
tions of the energy levels. Such equations have a clear physical meaning
in terms of optical pumping rates and they are much easier to solve nu-
merically than the full quantum equations written in the basis |g.41,2.p),
where p is the atomic momentum along Oz. For example, one finds that,
for the values of the parameters given above, more than 50% of the atoms
are trapped in the two lowest bound bands, and the value obtained in this
way for (P?/2M) is in very good agreement with the result obtained in
ref. [64].

Such an approach provides a description of laser cooling in terms of spon-
taneous anti Stokes Raman transitions between bound states, quite analo-
gous to the one given for laser cooling of trapped ions [21]. It thus suggests
new phenomena which could be observed on neufral atoms trapped in op-
tical molasses. For example, one could hope to observe discrete sidebands
in the fluorescence spectrum of the trapped atoms, with a frequency shift
from wy, on the order of £(2,,.. Such sidebands could be easily resolved
since their distance from wr,, 2,4, is much larger than their width, on the
order of 1/7p. Their observation would represent direct evidence for the
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Fig. 20. ot—o~ laser configuration. The resulting laser electric field has a linear
polarization which rotates in space, forming a helix with a pitch A.

quantization of atomic motion in optical molasses. Such effects have been
recently observed experimentally [86] [87].

10. The ot—¢~ laser configuration — Semiclassical theory
10.1. Introduction

The purpose of this chapter is to present another example of a new laser
cooling mechanism allowing one to beat the Doppler limit. As in the pre-
vious chapter, this mechanism is based on the existence of several ground
state Zeeman sublevels, and on polarization gradients. The polarization
gradient is however of a different nature and gives rise to physical processes
which are quite different from the Sisyphus effect discussed in chapter 9.
Another important motivation for studying the 0™ —¢~ configuration is that
it will allow us to introduce, in the specific case of a J;, =1 & J. =1 tran-
sition, the idea of “coherent population trapping”. This phenomenon is the
basis of another cooling scheme, which will be analyzed in chapter 11, and
which can lead to temperatures below the single photon recoil limit.

As in chapter 9, we consider two counterpropagating laser waves along
Oz, with the same amplitude & and the same frequency wr,. But instead of
having orthogonal linear polarizations, the two waves have now orthogonal
circular polarizations, ¥ for the wave propagating along Oz, o~ for the
counterpropagating wave (see fig. 20).

With an appropriate choice of the relative phases of the two waves, the
laser electric field in z can be written

Ey(z,t) = Ef (2) e Lt tc.c. (10.1)
with
E}(2) = 1 (€4 €% +e_ e7%2) &. (10.2)
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Using e+ = F (€, +i€y) /V2, we get

B (2)= —%Eo e(z) = —%EL €(z), (10.3)

where &, = £v/2 is a real amplitude which is independent of z, and where
the normalized linear polarization vector €(z),
i ; .
€lz) = — |e elk? L e gikz
)= le ) (10.4)

= € s8inkz + €, coskz,

is deduced from €, by a rotation ¢ = —kz around Oz. It follows that the
resulting laser electric field has, for all values of z, the same amplitude &,
and a linear polarization €(z) which rotates when z varies, forming a helix
with a pitch A (fig. 20).

Since the laser electric fields at two different points z; and z» are deduced
from each other by a pure rotation, the light shifts of the ground-state sub-
levels have the same magnitude in z; and zp, whereas the corresponding
wave functions are deduced from each other by a rotation. It follows that,
contrary to the situation studied in chapter 9, the light-shifted energies
do not exhibit any spatial gradient, whereas the wave functions of the
ground-state Zeeman sublevels having a well defined light shift are posi-
tion dependent. This shows that the light-shifted energies of the ground-
state sublevels do not oscillate in space, which excludes any possibility of
a Sisyphus effect for the 070~ configuration. In such a configuration, the
reactive component of the mean force, given in eq. (8.51), is entirely due to
the spatial gradient of the wave functions. We have thus a situation which
is, in some sense, complementary to the one analyzed in chapter 9.

The fact that the polarization €(z) of the laser electric field is linear has
an important consequence. The light shifts, which have the same symmetry
as de-Stark shifts produced by a static electric field parallel to €(z), are the
same for two Zeeman sublevels having opposite magnetic quantum numbers
along €(z). It follows that, if we take J, = 1/2, as in chapter 9, the Zeeman
degeneracy of the ground state is not removed by light shifts, so that we
have in this case neither energy gradients, nor gradients of wave functions.
Since the radiation pressures of the two counterpropagating waves remain
always equal for J, = 1/2 (if we neglect Doppler cooling), we conclude
that no new laser cooling mechanism can occur for J, = 1/2. This is why
we consider in this chapter two atomic transitions J;, = 1 « J. = 2 and
Jg =1 & J. = 1 having the simplest possible value of .J; leading to new
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Fig. 21. Clebsch-Gordan coefficients for a transition Jg = 1 « Je = 2 (a) and Jg =
l=Je=1(b).

cooling mechanisms in the ot-o~ configuration (fig. 21). The first one
is a standard transition J; < J. = J,; + 1. The second one is considered
here, in order to introduce in a simple way the idea of coherent population
trapping.

We begin (section 10.2) by giving the general expression of the mean
force, which is now the sum of a contribution due to the spatial gradi-
ents of the wave functions of the light-shifted Zeeman sublevels and of a
contribution due to the difference between the radiation pressures exerted
by the two counterpropagating waves. We then study in section 10.3 the
light shifts and the steady-state populations of an atom at rest in z. For
a moving atom, we show in section 10.4 that it is possible to introduce a
moving rotating frame in which the evolution of the atom can be analyzed
with a time independent Hamiltonian. Such a transformation then allows
us in section 10.5 to interpret in a simple way the new cooling mechanism
which appears for a J; = 1 < J. = 2 transition. The important physical
effect is essentially an ultra sensitive motion induced population difference
which appears among the ground-state sublevels and which gives rise to
an imbalance between the radiation pressures exerted by the two coun-
terpropagating waves. Finally, we analyze in section 10.6 the case of a
Jg = 1 + J. = 1 transition which gives rise to the phenomenon of coherent
population trapping.

The oo~ configuration has been considered from the beginning in the
first explanations [70,71] proposed for the new laser cooling mechanisms.
We will follow here the more quantitative presentation of ref. [63]. Some
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numerical results are also presented in ref. [65]. The combination of the
ot—o laser configuration with applied static magnetic fields has been also
considered in ref. [72].

10.2. General expression of the mean force
As in chapter 9, we introduce

fi=fal2 = fap, (10.5a)
I' = I'sf2 = Isp, (10.5b)

where sy is the saturation parameter associated with the amplitude &
of each of the two counterpropagating waves and s = 2s; the saturation
parameter associated with & = En'

10.2.1. Effective Hamiltonian associated with light shifts
According to eq. (8.36), such an Hamiltonian can be written

HEH = hé! Z |g1’n>(g:n,| (gm, | A(Z) |g:n>! (10‘6)

m,m’

where A(z) is given in eq. (8.32). Using the expansion (10.4) of €(z) in
€+ and e_ and the Clebsch-Gordan coefficients of fig. 21, one can easily
calculate the matrix elements of /A(z). Inserting them into eq. (10.6), one
gets for a J;, = 1 < J. = 2 transition

hé' h
He (10 2) =+ | g0)g0 | +75- [| 920091 | + ] 9-1)(g-1 1]
hé' ikz —2ikz
+ 35 [191)g-1 |e“ + 1 9-1)gn | €72 ]
(10.7.a)
and for a J, =1 « J. = 1 transition
hé' hé'
He (1 1) =+ == | godlgo |+ [1 9291 | + 1 9-1)(9-1 |
hé' ikz —2ikz
=1 [| g1)(9-1 | €% + | g-1)(gn | e ]
(10.7.b)

It is clear in eq. (10.7) that the only non-zero off-diagonal elements of
He.g in the basis {|gm)}} of eigenstates of J, are those connecting |g1) to
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|g—1) or vice versa. This is a manifestation of the selection rule Am = 42
mentioned at the end of subsection 8.6.4. Note also that the only terms of
egs. (10.7) which depend on z are those where both |g1) and |g_;) appear.
This is due to the fact that these terms involve both counterpropagating
waves (redistribution processes) which have a relative phase which varies
as exp(+2ikz) when z varies.

10.2.2. Reactive force
Using the expression (8.48) of this force, we get, fora J, =1 & J, = 2
transition

-?:react(l £ 2) = _(VHeﬂ'(l =t 2))

i ' 2ikz —%ikz
—-éﬁkc'i 62[09—191 e i € :

(10.8a)
and for J; =1 < J, = 1 transition
Freact(1 = 1) = — (VHeg(l = 1))
= +% hkd' e, [0'9.__191 i R
(10.8b)

It will be useful, for subsequent calculations, to introduce a new notation

- - —2ikz __
0919--1 == 0919—1 € e ‘gg_lg; (10'9)

for the off-diagonal elements of the density matrix. The physical inter-
pretation of the transformation relating o, ,_, to 74,4, , will be given in
section 10.4. Let C; and C; be the real and imaginary parts of o4, , ,

AR (oI E o8 (10.10)

Using eqgs. (10.9) and (10.10), one can rewrite eq. (10.8) as

Frea.ct(]- e, 2) ke % & Cie,, (10113)
Freact(1 = 1) =+ Rk § Cie,. (10.11b)

It is clear from eq. (10.11) that the reactive component of the mean force
is proportional to the imaginary part of the Zeeman coherence between g,
and g_;. This reflects the fact that the reactive force is a redistribution
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force (see subsection 8.6.2) and that the two counterpropagating waves
have orthogonal circular polarizations o™ and o~ .

10.2.3. Dissipative force

Such a force, which is given by eq. (8.66), is the difference between the
radiation pressures exerted by the two waves. Using the definition (8.46) of
G‘ff and the saturation parameter sy associated with each wave, one easily
finds that the radiation pressure exerted by the wave 1 ( with wave vector
ke. and polarization ot ) is equal to the product of (hkI'sy/2) and the
sum of the populations I7,,, of the various Zeeman sublevels g, weighted by
the square of the Clebsch—Gordan coefficient of the o™ transition starting
from gp,. A similar result holds for the radiation pressure exerted by wave
2, provided that one replaces €. by —e. and ¢™ by o~. This yields for a
Jg =1 & J. = 2 transition

!

I
}-‘dissip(l A 2) =+ hk T €

o, H., I, I
"8 gy MRS L R o R 1)
[ et % 6. 2 ;
=+%hkf’ez [Hl -11_1},
(10.12a)
and for a J; = 1 < J. =1 transition
Ff
fdissip(l X 1) =+ hk ? €
Ho H_l Ho Hl}

a1 e S 10.12b
[ 2 1 2 2 2 ( )

iy i Ak e, [ - ).

It clearly appears in egs. (10.12) that the dissipative component of the
mean force is proportional to the population difference ITy — IT_; between
the two Zeeman sublevels. Note also the change of sign between (10.12.a)
and (10.12.b). It is due to the fact that the most intense o¥ transition
starts from gy for a J, =1 < J. = 2 transition, whereas it starts from g_;
for a J; =1 < J. =1 transition (see fig. 21).

10.5. Internal state of an atom at rest

10.3.1. Light shifts
The effective Hamiltonians given in eqs. (10.7) are easy to diagonalize.
First, the state |gg) which is not coupled to any other state is obviously
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an eigenstate of Heg. Then, the 2x2 matrix representing H.g in the man-
ifold {|g+1)} has equal diagonal elements. It follows that the symmetric

and antisymmetric linear combinations of |g;) €** and |g_;) e~** are also
eigenstates of Heg. If we put
| 1 ikz —ikz
[95(2)) = 75 [ lox) € +lg-) e, (10.13a)
1 ikz —ikz f
[Ya) = 75 loa) € ~lga) e ], (10.13b)

we get for a J; =1 « J. = 2 transition

Heg (1 < 2)|go) = (R 6'/2)|g0),
He (1 < 2)[9hs(2)) = (2h6/3)[s(2)), (10.14a)
Hegt (1 & 2)|tpa(2)) = (R 8'/2)Ipa(2)),

and for a J; =1 < J, = 1 transition

Heg (1 < 1)|g0) = (R 6'/2)|g0),
Heg (1 = 1)|9hs(2)) = 0|¢s(2)), (10.14b)
Heg (1 & 1)|ypa(2)) = (R6'/2)|9a(2)).

As predicted above (see section 10.1), we find that the light shifts are
independent of z, whereas the eigenstates of H.g depend on z. Figure 22
represents for both transitions the light shifts of the ground-state Zeeman
sublevels. As in chapter 9, we have supposed 6 < 0, so that light shifts are
negative. Note that |go) and |4 (z)) have the same light shift so that they
remain degenerate.

The results obtained in eq. (10.14) and represented in fig. 22 could have
been found more quickly by noting that the laser polarization in z is linear
and parallel to the unit vector €(z) given in eq. (10.4). It is then clear that
the eigenstates of the component €(z) - J of the angular momentum J have
a well defined light shift, which is equal to the product of hé’ by the square
of the Clebsch-Gordan coefficients of the 7 transitions of fig. 21. This gives
immediately the eigenvalues written in eq. (10.14) and their degeneracy.
One can also check that |¢s(z)), given in eq. (10.13.a), coincides with the
eigenstate of €(z) - J with eigenvalue 0, whereas |go) and |14 (2)) given in
eq. (10.13.b) are two orthogonal linear combinations of the two eigenstates
of €(z) - J with eigenvalues +h and —h. It turns out however that the
two states |1g(2)) and |1ba(z)), which we have introduced for diagonalizing
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Fig. 22. Light shifts of the ground-state Zeeman sublevels for a Jg = 1 « Jo = 2
transition (a) and for a Jg = 1 «+ Je = 1 transition (b). The size of the solid circles is
proportional to the steady-state population of the corresponding sublevels for an atom at
rest in z. We have supposed 8 < (0. The vertical arrows represent the motional coupling
between |1g) and |y}, characterized by an angular frequency kv.

H.g, will play an important role in the following sections and that they are
more convenient to use than the eigenstates of €(z)- J. First, we will see in
section 10.4 that atomic motion couples only |1g) to 104} and vice versa.
Second, the states |ta(z)) for a J, = 1 « J. = 2 transition, [ig(z)) for
aJ, =1 J. =1 transition, are linear combinations of |g_;) and |g;},
which are not coupled to the excited state |eg) by the laser-atom interaction
Hamiltonian Vj, (for an atom at rest in z). One can easily check that

(eo | VarL(l « 2) | ¥a(2)) =0, (10.15a)
(eo | VaL(1 « 1) | ¥s(2)) = 0. (10.15b)

The physical interpretation of this result is that the absorption amplitudes
for the absorption of a ot photon from |g_;) and for the absorption of
a o~ photon from |g+;) can interfere destructively if the atom is in an
appropriate linear superposition of |g_;) and |g4+1). The difference of sign
between the two non-coupled states (10.15.a) and (10.15.b) is due to the
fact that the Clebsch-Gordan coefficients of the ¢ and o~ transitions
arriving in eg are equal for a J;, = 1 « J. = 2 transition whereas they
are opposite for a J;, = 1 « J, = 1 transition (see fig. 21). We will see
later on that the non-coupled state (10.15.b) plays an essential role in the
phenomenon of coherent population trapping.

10.3.2. Optical pumping and steady-state populations
The departure rates from |go), |1)s(z)), |a(2)) are well defined (see eq.
(8.39)), and equal to the product of I and the eigenvalues of A, which are
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the coefficients of hé' in eq. (10.14). We get in this way

I}

I
Li1e2) = Tl - 2) =

?}
10.16:
i or (10.16a)
S = 3 !
for a J;, =1 « J, = 2 transition and
1] ! = i
L(1el)=Ty(lel) = 2 (10.16b)

I{(1=1) =0,

for a J, =1 < J. =1 transition. The vanishing of I{(1 < 1) reflects the
fact that |1s(z)) is a non-coupled state for a J, = 1 « J. = 1 transition.
For a J, = 1 < J, = 2 transition, the state [1)s(z)) is not coupled to eq,
but it remains coupled to |e42) and |e_;), which explains why I'}(1 < 2)
does not vanish as I'(1 < 1).

In order to find the steady-state density matrix for an atom at rest in
z, which results from the competition between the departure rates and the
return rates respectively associated with the second and third terms of the
right-hand side of eq. (8.35), we use the basis of eigenstates of €(z) - J,
where the laser polarization can be considered as a m polarization and
where the steady-state density matrix is diagonal. Consider first a .J, =
1 « J, = 2 transition. A simple detailed balance argument, expressing
that the number of transitions from go to g_; by absorption of a 7 photon
and spontaneous emission of a ¢t photon must balance the number of
transitions from g_; to go by absorption of a m photon and spontaneous
emission of a ¢~ photon, then shows that the populations of the eigenstates
of €(z)-J with eigenvalues —Hh, 0, +h are, respectively, equal to 4/17, 9/17,
4/17. It follows that, in the basis {|go), [1)s),|¥a)}, the density matrix is
also diagonal, the corresponding populations being equal to

4
IHo(l = 2) = Ha(l = 2) = —,
4 1 (10.17a)
IHg(l & 2) = —.
s( it

These steady-state populations, which are independent of z, are represented
by the solid circles in fig. 22a.

Consider now a J; = 1 < J. = 1 transition. Since the departure rate
from |tbs) vanishes, all the atomic population will be optically pumped in
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|tbs) where the atom remains trapped. It follows that

Ho(l = 1) = Ha(1 = 1) = 0, T
IO5(1 1) = 1.

Such a result can be also obtained by using the basis of eigenstates of
€(z)+J. In such a basis, the atom is optically pumped into go by absorption
of a m photon and spontaneous emission of a o or ¢~ photon, and it
remains frapped in gg because of the vanishing of the Clebsch—Gordan
coefficient of the 7 transition starting from gy (see fig. 21b).

10.4. Internal state for a moving atom
We consider now an atom moving with velocity v along Oz, so that
z=ut (10.18)
and we suppose also that
Tint < Text, (10.19)

so that we can neglect the variation of v during the time T;,, required by
internal variables to reach a steady-state.

10.4.1. Transformation to the moving rotating frame

Replacing z by vt in the expression (10.4) of €(z), shows that, in its rest

frame, moving with velocity v along Oz, the atom “sees” a laser field with

a polarization rotating around Oz with an angular frequency —kv. This

suggests the introduction, in the atomic rest frame, of a rotating frame such

that, in this moving rotating frame, the laser field keeps a fixed direction.
Such a transformation is achieved by applying a unitary transformation

T(t) = exp(—ikvtJ,/h) (10.20)

One can easily check (see Appendix A of ref. [63]) that, in the new repre-
sentation, the laser-atom interaction Hamiltonian describes the coupling of
the atomic dipole moment with a laser electric field keeping a fixed linear
polarization parallel to €.

In the new representation. the atomic density matrix is equal to

o =exp(—ikwvt]./h) o exp(+ikvtJ./h), (10.21)
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which shows that the change of variables introduced above in eq. (10.9)
corresponds to a transformation to the rotating frame. Note that the pop-
ulations IT_4, Iy, I, of the three Zeeman sublevels |g_1), |go), |g11) are
not modified by the transformation (10.20).

10.4.2. New Hamiltonian — new equations of motion
Since T'(t) depends on ¢, the dynamics in the new representation is governed
by the Hamiltonian

H=T@E)HT ) +ih [%} T, (10.22)

where H is the Hamiltonian of the old representation. We have already
mentioned that T(t)HT " (t) describes the dynamics of the atom coupled
to a laser field with a fixed linear polarization parallel to €,. This dynamics
is therefore described by equation (8.35) where €(r) is replaced by €, and
o by @.

Using eq. (10.20), one can show that the last term of eq. (10.22) is equal
to

ih [d‘i“)} T = Vaou = ui (10.23)
(

Such a term, which is time independent, has the same form as an interaction
Hamiltonian with a static (fictitious) magnetic field By, parallel to Oz,
and having an amplitude such that the corresponding Larmor frequency is
equal to kv. Actually, such a fictitious field is nothing but an inertial field
appearing in the new frame because of its rotation (Larmor’s theorem).
Finally, the dynamics of a moving atom is the same as the dynamics
of an atom at rest in z = 0 submitted in addition to the effect of a static
magnetic field B parallel to Oz. From egs. (8.35) and (10.23), one deduces
that the equation of motion of 44 in the new representation can be written

i Y = r o
Ggg =—18 [A(z=10),09] — = {A(Z =0),gg }+

i Z (f;'a )(6y d* )Ogq (€ -d7) (€~ d+)
g=—1,0,+1
—ikv[J /R, Tgq].
(10.24)

In eq. (10.24), A(z) is the coefficient of 7" in eq. (10.7). Using eqs.
(10.7), (10.10), and the Clebsch-Gordan coefficients of fig. 21, one can
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deduce from eq. (10.24) a closed set of 5 equations for I1_y, Iy, 11y, C;,
C; which can be written

. bl 9r i B &
I =——1I — 11 = —Cj,
L= Lt el g G = g
. I“J’ gr.‘ 51‘" Fr J’
I, = +72H1 SF S 7 —1II 7 —II - C + Cl,
o (m & Ii_l) , (10.252)
: g P T 5
Cr—+ H]_"— SHO+£H_ ZCT—I—?F:'UO“
: 5" ) . e
Ci= +E (.H] —H_)—-2kvC, — —_&—Ci,

for a J; =1+ J. = 2 transition, and

1Ek s I &

B e R R el
1 g r g o = 3 ik Cn
. I¥ I I 6’
H_,=+4—1II —1I
1=+glhi+ I - H 1,5 20
i ! 7 F’
e (Hl i3 H_l) = -5, (10.25b)
: I e
Or:§ C +2kvC,
: Rt Tl
Ciz—— (H‘l _1}—2k'ﬂcl——ECi,

for a J;, =1 < J, = 1 transition. The Zeeman coherences Am = +1
are not coupled to Iy, 1Ty, C;, Ci because of the selection rule Am =
0,42 followed by A and because the |g,,) are eigenstates of J,. Since all
coefficients of equations (10.25) are time independent, these equations have
a steady-state solution.

The third equation (10.25.b) shows that, for a J, =1 < J, = 1 transi-
tion, Iy is damped with a rate I'" /4. This is due to the fact that an atom
initially in go is optically pumped into g+;. From g4y, it can be re-excited
to eg but it can then never fall back in gy because of the vanishing of the
Clebsch—Gordan coefficient of the transition ep < go (see fig. 21b).

10.4.3. New expression of the mean force
Suppose that the atom has reached a steady-state so that all left-hand sides
of equations (10.25) can be put equal to zero.
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Consider first a J; = 1 < J. = 2 transition. If one subtracts the second
equation (10.25.a) from the first one, one gets

4¢
F}'
Equation (10.26), combined with egs. (10.11.a) and (10.12.a) implies that

for Jg =1+ Je =2 H] = H_l i Ci‘ (1026)

-Fdissip(l — 2) = 5-7:react(1 = 2) (1{]27)

The dissipative force is proportional to the reactive force, and 5 times more
important, so that the total mean force is equal to

F(1 o 2) = EFaissip(1 & 2) = Lk Me, (I — I1_,). (10.28)

Fora.J, =1 < J. = 2 transition, the main effect is therefore the imbalance
between the radiation pressures exerted by the two counterpropagating
waves. It may appear surprising that the reactive force is smaller than
the dissipative force, even if |§] > I' (which implies |6'| > I''). This is
due to the fact that the redistribution processes, which are the origin of
the reactive force, are limited to a finite number of steps in the case of a
ot—o~ configuration. Starting from g_;, the atom can absorb a ¢ photon
in the ke, wave, jump into eg, then make a stimulated emission of a o~
photon in the —ke, wave, which brings it into g4, then absorb again a o™
photon in the ke, wave and jump into e;. But, from es, it can no longer
make a stimulated emission of a ¢~ photon and the redistribution stops.
This would not be the case if, as in chapter 9, the polarizations of the two
counterpropagating waves both contain an admixture of o™ and o~.

Consider now a J, =1 < J. = 1 transition. Since Il vanishes in steady
state, the first two equations (10.25.b) are identical in steady-state and
lead to

44

for Jg= 1HJ5=1 H]_"’H_l :-f—FCi, (1029)

which, combined with eqs. (10.11.b) and (10.12.b) gives
-Fdissip(]- o 1) = _frea.ct(]- 2 1) (1030)

This shows that the reactive and dissipative forces are equal and opposite.
For a J, = 1 « J. = 1 transition, the mean total radiative force always
vanishes, even for a moving atom

‘F(l TR 1) - -Frea.ct(]- b 1) e Fdissip(]- 5= 1) =0; (1031)
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There is therefore in this case no friction force. We will show, however, in
the next chapter that a new cooling mechanism, not based on friction, but
on momentum diffusion and wvelocity selective coherent population trap-
ping, can appear for such a transition.

10.5. Friction force for a J, = 1 < J, = 2 transition

10.5.1. Friction coefficient
In order to calculate the total mean force (10.28) experienced by the atom,
we must solve equations (10.25.a) and find the steady-state value of IT; —
I s

Consider first the limit of very small velocities. For an atom with v = 0
at z = 0, we know the steady-state density matrix which is given in eq.
(10.17.a) and from which we can deduce the steady state values of ITy, Iy,
I, C, G

for v=20 I =1 ,=13/34,

T = 4/17,

0 =4/ (10.32)
C, = 5/34,
C, =0.

We can then use equations (10.25.a) with v # 0 to find the linear term in v
of ITy — IT_, for an atom which is still at z = 0 in its moving rotating rest
frame. Using eq. (10.26), we can transform the last equation (10.25.a) and
express in steady-state IT) — II_, as a function of C}. Since C, is already
multiplied by kv in this equation, we can replace C} by its zero order value
given in eq. (10.32). We get in this way

240 kvd
m -1, =gz m, (10.33)
and consequently, when eq. (10.33) is inserted into eq. (10.28)
kv
W €l — F(le2)=—av, (10.34)
where the friction coefficient « is given by
— a2 lg g IEHT I S Ies I (10.35)

a7 YF AR asrE . 17 Amae e

We have used eq. (10.5).
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It is possible to give a more physical derivation of eq. (10.35) in the limit
|6] > I, where II; — IT_, and « are, according to eqs. (10.33) and (10.35),
given by

60 k

B> s 6—” (10.36a)
r

a ~ —% hk? 5 (10.36b)

We come back to fig. 22a giving the light shifts and steady-state popula-
tions of |go}, |¥s) and |14 ) for an atom at rest and we try to understand the
perturbation due to atomic motion, which is described by the Hamiltonian
Viot given in eq. (10.23). Since J.|gg) = 0, Vio¢ cannot couple |go) to any
other state. Furthermore, one can easily check, using eq. (10.13.a) (with-
out the exponentials exp(+ikz) since the atom is at z = 0 in its moving
rotating rest frame), that Vi, has no diagonal elements in |¢g) and [i4).
The only non-zero matrix element of V., is between |1)s) and |¢4) and is
equal to

(¥s | Viot | ¥a) = hkv. (10.37)

It is represented by the vertical arrow of fig. 22a. In the limit kv < |&'|,
which is the condition of validity of eq. (10.36), leading to |11, — IT_4| < 1,
the motional coupling hkv between g and 104 is small compared to the
splitting Es — Ea which, according to eq. (10.14.a), is equal to

ﬁ&’
6

The effect of Vio can thus be treated by perturbation theory. To lowest
order in kv /¢, i.e., to order 1, the main effect of V4 is to change the wave
functions. The wave function 1, is contaminated by 15 and vice versa. If
[1g) and |1p4) are the perturbed states associated with [is) and [¥4), we
have, to first order in kv/§’.

Es—Ex=2né - Lhé = (10.38)

W) = ¥s) + o r— 10a) = Is) + 5 o)

= %[(1+66ﬂ) | gsa)+ (1- 6;‘”) l9-1)], (10.39a)
TOaT = ) + o ) = ) — 25 o)

- (- 6’“")Ig+1> (1+6’“’)Ig ME (10.390)
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Whereas [1)s) and [1)s) contain both the same proportion of |g1) and |g_1).
this is no longer true for |1s) and [¢a). For example, since 6’ < 0, the
weight of |g_1) in |¢s) is larger than the weight of |g;). The conclusions are
reversed for [i4 ). Since the levels |thg) and |14 ) have unequal populations,
one understands how the motional coupling hkv between |t¢s) and |ipa)
can give rise to a motion induced difference between II; and II_;. As in
ref. [63], such an argument can be formulated in quantitative terms * and
leads exactly to eq. (10.36). We want to emphasize here that the motion
induced population difference IT; — IT_4 varies as kv/§’, and not as kv /I,
as is the case for Doppler cooling. Since |§'| < I" at low intensity, the new
cooling mechanism discussed here is therefore much more sensitive to the
velocity than Doppler cooling.

It is clear in eq. (10.35) that, as in chapter 9, the friction coefficient is
independent of the laser intensity Ir,. This results from a compensation in
eq. (10.28) between the Ip-dependence of the absorption rate I/, which
decreases as I1, when I, decreases, and the Iy-dependence of IT; — IT_q,
which increases as 1/I;, (see eqs. (10.33) and (10.36.a)). In particular,
one sees on fig. 22a that, when [I;, decreases, the distance between g
and ¢4 decreases, which explains why the contamination of wave functions
induced by the motional coupling fikv between 1)g and 15 increases when
I1, decreases. Note also that, according to eq. (10.36.b), a is on the order of
—(30/17)hk2T"/6 for |6| 3> I'. Such a value is smaller than the corresponding
value in eq. (9.39) of as found in chapter 9 by a factor of the order of I'? /§2,
which is small for |6] > I. We will see however in subsection 10.5.3, that
the momentum diffusion coefficient is reduced by the same factor I'2 /62, so
that the equilibrium temperatures are on the same order for both -~
and Lin | Lin configurations.

10.5.2. Velocity capture range

From now on, we will suppose that |8 > I When kv is no longer small
compared to |§'], all perturbative calculations of the previous subsection,
based on the smallness of kv/é’, are no longer valid. One must then go
back to equations (10.25.a) and determine their exact steady-state solution,
either numerically or analytically. One then finds that the variations with
v of the mean force (10.28) are those of a dispersion curve, the maximum of
the modulus of the force being reached for a critical velocity v, or velocity

* In ref. [63], the calculation is done in the basis of eigenstates of €y + J. The mo-
tional coupling Vi, has then two non-zero off-diagonal elements. Using the basis
{lgo}, lis), |¥a}}, as we do here, simplifies the calculations because only |ig) and
[t 4) are coupled by Vigt.
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capture range, such that
kve ~ 6] (10.40)

Figure 8 of ref. [63], which includes also the effect of Doppler cooling, gives
an example of such a calculation.

As the velocity capture range (9.36) found for low intensity Sisyphus
cooling, the value (10.40) of v, is proportional to the laser intensity Iy..
There is however an important difference between eqgs. (9.36) and (10.40).
For the Lin | Lin configuration, kv, is proportional to the absorption rate
I'", whereas for the ¢T—¢~ configuration, kv. is proportional to the light
shift &'.

The discussion in this subsection can be presented in more physical terms
by considering that the atom is submitted in the ground state to two per-
turbations with different symmetries. We have first the effect of the laser—
atom interaction, which, in the moving rotating frame, has the symmetry
of a static electric field parallel to €, and which is characterized by an
Hamiltonian part, proportional to §’, and a relaxation part, proportional
to I''. We have also the effect of atomic motion which has the symmetry of
a magnetic field parallel to €. and which is proportional to kv. Depending
on the relative values of kv and |8’|, one perturbation is predominant over
the other. Both are of the same order for v = wv.. In this sense, there is a
certain analogy between the narrow structures appearing in the variations
with » of the mean force (10.28), and the narrow Hanle resonances which
can be observed in atomic ground states (see subsection 8.5.3).

10.5.5. Order of magnitude of the equilibrium temperature
We first try to evaluate the momentum diffusion coefficient D for an atom at
rest in z. Using the same notation and the same arguments as in subsection
9.5.3, we get for D,,. and D,ps the same result as in eq. (9.41.a). This
amounts to assuming that D,,. and D,ps have the same order of magnitude
as for a two-level atom (see subsection 5.2.3). We will see in the next
subsection that this is not a good approximation for D,js.

Since there is no spatial gradient of light shifts in the oo~ configu-
ration, there is no dipole force and no contribution Dy;, to D as in eq.
(9.41.b). It follows that

D ~ Dvac i -Dabs e hgk?{d- (1[]41)

Comparing eq. (10.41) to eq. (9.42), we see that D is smaller in the

oT-0~ configuration by a factor on the order of I'2/§2. This reduction of
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D compensates for the reduction of a found above, so that the equilibrium
temperature

h 22
|6]

D
kT ~ — ~ h6] ~ (10.42)

is on the same order for both the o"—o~ and the Lin L Lin configurations.

10.5.4. Anomalous momentum diffusion

A quantum calculation of the momentum diffusion coefficient is done in ref.
[73]. Such a calculation shows that D,,. has the order of magnitude given in
eq. (10.41), but that D,ps can be much larger than D, for certain values
of & and kv. We discuss now the physical meaning of such an anomalous
momentum diffusion. More details may be found in ref. [73]. See also refs.
[63], [65] and [74].

The enhancement of D, is due to correlations between the directions of
two successively absorbed photons. Because of optical pumping, just after
the absorption of a ¢ photon, the atom has a high probability to be in g4
from where it has a higher probability to absorb a ¢+ photon than a ¢~
one, since the ¢ transition starting from g; is 6 times more intense than
the o~ one (see fig. 21a). It follows that the atom absorbs in sequence
several ¢* photons until it absorbs a ¢~ photon which optically pumps
it into g_; from where it absorbs in sequence several ¢~ photons and so
on .... As a consequence, the steps of the random walk in momentum
space (due to absorption) can be several ik instead of hk and this explains
the increase of D,s. Such an effect becomes more and more important for
larger values of J,.

Such an enhancement of D, occurs only if the eigenstates of J. can be
considered as stationary between two successive fluorescence cycles, sepa-
rated by a time on the order of 7p = 1/I". This is achieved, either for a
moving atom with kv > |§'|, or for a slow atom if the detuning is small
(kv < |8'], |8'| < I'). In the first case (kv > |&'|), the perturbation
Viet = kvJ. predominates over the effect of light shifts described by H.g,
so that the eigenstates of .J, are quasi-stationary. In the second case, Vit
is negligible in comparison with Heg (since kv < |§’|), but the precession
induced by H.g between the eigenstates of .J. occurs at a frequency [&'],
which is too small compared to the absorption rate I to produce any
observable effect between two fluorescence cycles.

The previous discussion explains why D,p. varies rapidly with kv for a
given large value of §. It is possible to understand in this way the profiles
of the momentum distributions derived from a numerical integration of the
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full quantum equations of motion [74]. The broad pedestal which appears
in these distributions, which becomes more pronounced for larger values of
Jg, reflects the increase of D,,s when v increases. Note however, that the
width of the narrow peak around p = 0 appearing in these distributions
remains large compared to hk, so that the semi-classical approximation is
not bad. But, for large values of J,, the atom can make in sequence so
many ¢ transitions starting from the sublevel with the highest magnetic
quantum number m = J,, that it remains trapped in this sublevel for a
time Tj,¢ which can become on the order of or even longer than Tey. As
in the case of low intensity Sisyphus cooling (see subsection 9.6.1), we find
here a new example of a situation where usual treatments of laser cooling
become questionable, not because of the semi-classical approximation, but
because the usual assumption Tj,y < Toxt is no longer valid.

10.6. Coherent population trapping for a J, =1 « J. = 1 transition

The fact that the mean total force vanishes fora .J, = 1 « J. = 1 transition
(see eq. (10.31)), even if the atom is moving, does not mean that no inter-
esting effect can occur for such a transition. We show in this section how
atomic motion can induce spectacular changes in the internal dynamics.

10.6.1. Qualitative discussion

We have already mentioned at the end of subsection 10.4.2 that atoms
initially in go are optically pumped into g+, from where they can never
come back to gg. Since there is no motional coupling between gy and g4,
we can thus completely ignore go, and consider that the ground state has
only two relevant sublevels, g, and g_,, or their linear combinations g
and ta given in eq. (10.13), with z = 0.

For v = 0, the total atomic population is optically pumped into |¢s)
(see fig. 22b). When the atom is moving, a motional coupling hkv appears
between the two states |1hs) and |1ha) (vertical arrow of fig. 22b), which
are separated by a distance

or

Es — Ex = —%. (10.43)
In the same way as for a J, = 1 — J. = 2 transition, the wave functions
of |1s) and |¢4) are perturbed and this gives rise to a non-zero value of
IT, — IT_;. But we have now an additional spectacular effect which comes
from the fact that, when v = 0, the absorption rate from [is) vanishes (see
eq. (10.16.b) ). The contamination of [¢s) by |¢a), induced by atomic
motion, transfers to |¢s) a small part of the instability of [14), and the
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absorption rate from the perturbed state [is) corresponding to |1s) no
longer vanishes. In other words, the total fluorescence rate Rp, which
vanishes when v = 0 because all atoms are in the non-absorbing state
|ss), reappears when the atom is moving because a slight absorption can
take place from |¢g). Such an effect is characterized by the perturbation
parameter kv/(Es — Ea) ~ kv/d', so that the variations of R with v
occur in a very small velocity range around v = 0, on the order of v. given
by eq. (10.40).

For the transition J, =1 « J. = 2, the motional coupling hkv between
|1bs) and |104) also changes the absorption rates from these sublevels. In this
case, it is the sublevel |14 ) which is not coupled to |eg) (see eq. (10.15.a))
and which becomes partially coupled when contaminated by |s). The ef-
fect is however less spectacular because, even if v = 0, the state [ia) can
absorb light (see eq. (10.16.a)), since it is always coupled to ez and e_s.
One therefore expects variations of the total fluorescence rate when v is
slightly varied around » = 0, but the fluorescence never stops completely,
as it is the case for a J;, =1 < J, = 1 transition.

Note also that, when the atom is moving with velocity v, it “sees” in its
rest frame the two counterpropagating laser waves with opposite Doppler
shifts kv, so that these two waves have apparent frequencies wy, £+ kv,
differing by a frequency shift A = 2kv which vanishes for v = 0. As long as
one is interested only in the internal atomic dynamics, one would get the
same equations and the same results by considering another problem where
an atom, always at rest, interacts with two laser waves (not necessarily
counterpropagating) having different frequencies, wy, + A/2. When A = 0,
the atom gets trapped into [ts) and the fluorescence stops. When A is
slightly varied from zero, the fluorescence reappears. One can finally show
that similar equations apply also to the situation where gy = gand g, = ¢’
have different energies F and E’, and where the two laser waves have
different frequencies, wy, for the wave exciting the transition g < ep, wf
for the wave exciting the transition ¢’ < eg. The fluorescence stops when
E+hwy, = E'+hwi , i.e., when the two detunings of the two laser excitations
are equal, and reappears when wy is slightly varied, wy, E and E’ being
fixed, or when F — E’ is slightly varied, wy, and wy being fixed. Such a
phenomenon, called “coherent population trapping” was observed for the
first time on sodium atoms irradiated by a bimodal laser and put in a
gradient of a magnetic field [75]. Because of the corresponding spatial
variation of the Zeeman effect, the fluorescence of the sodium cell was
disappearing at certain places along the laser beam, where two Zeeman
sublevels belonging to the two different hyperfine levels were separated by
a frequency splitting equal to the mode spacing.
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10.6.2. Velocity dependence of the total fluorescence rate

We now give a more quantitative description of coherent population trap-
ping. Since the only excited Zeeman sublevel which can be reached from
g1 and g_; is eg (see fig. 21b), the total fluorescence rate Ry is given by

Bp = I'0ege,- (10.44)

According to eq. (8.28), the population o.,., of €y can be expressed in
terms of the ground-state density matrix. Using eqgs. (8.28), (10.4), (10.5)
and the Clebsch-Gordan coefficients of fig. 21b, we get

iy "
Rp = [+, -2C] =  (1-2C). (10.45)

To evaluate C;, we come back to equations (10.25.b). We know already
that, in steady-state, II; — II_; and C; are proportional (see eq. (10.29)).
The last two equations thus couple only C; and C; and they allow one to
calculate the steady-state value of C;

1 465 2
nie 10.46
Gr 2 462+ I"? + 64 k202’ ( )

which, inserted into eq. (10.45) yields

7 ]
§ R _pr 16 kv :
r(v) 467 + T2 + 64 k202

(10.47)

It is clear from eq. (10.47) that Ry vanishes for v = 0, and then increases
when v increases, as an inverted Lorentz curve of amplitude I''/4 and of
half-width at half maximum

V46§? + 1
i —58;——} (10.48)

which decreases as I, when I, decreases. For v << Av, Ry varies as

I 8 k%2l
S el | 202 — ;
v K Av Rg(v) 6 kv YL 7

(10.49)

which no longer depends on the detuning § (we have used eq. (10.5) and
the definition of sy in terms of the Rabi frequency 2;, associated with each
wave).
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Calculations similar to the previous one and based on optical Bloch equa-
tions have been made [76] shortly after the discovery of coherent popula-
tion trapping. Dressed atom interpretations, using coupled and uncoupled
states analogous to the states |1)a) and |is) introduced here, have been
also given (see for example refs. [77] and [78]).

10.6.3. Consequences for atomic motion

We come back to the external dynamics of the atom. Although the mean
friction force vanishes, the fact that the fluorescence rate Ry varies very
rapidly with v around v = 0 has interesting consequences for atomic mo-
tion.

First, one expects that the momentum diffusion coefficient varies also
very rapidly with v around v = 0 and tends to zero when v — 0, since such
a phenomenon is due to the random exchanges of momentum associated
with fluorescence cycles.

In all previous discussions, we have considered an atom with a fixed ve-
locity v and we have ignored any change of v. This is usual in semi-classical
treatments of laser cooling where one calculates the friction and diffusion
coefficients for a fixed value of v. In fact, because of the random changes
of momentum following a fluorescence cycle, the atomic velocity makes a
random walk in velocity space. The important new feature which appears
here, and which is not included in usual treatments, is that such a random
walk can be profoundly perturbed by the strong velocity dependence of
the fluorescence rate. After a fluorescence cycle, depending whether v gets
closer or farther from v = 0, the next fluorescence cycle will occur after a
longer or shorter delay. We will see in the next chapter how such a veloc-
ity dependent random walk can provide a new scheme for obtaining very
narrow velocity distributions, i.e., very cold atoms.

11. Laser cooling below the single photon recoil limit
11.1. Introduction

11.1.1. The single photon recoil limit

All cooling mechanisms described in the previous chapters are based on
a friction force which damps the atomic velocity. Spontaneous emission
processes play also a basic role for dissipating the energy removed from
the external degrees of freedom of the atom. For example, in the Sisyphus
cooling mechanism, either at high (chapter 7) or low (chapter 9) intensity,
spontaneous Raman anti Stokes processes dissipate the potential energy
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gained by the atom (at the expense of its kinetic energy) when it climbs
a potential hill. For Doppler cooling and for polarization gradient cooling
in a ¢t—¢~ configuration it is a blue Doppler shift of the spontaneously
emitted photons which explains the dissipation of energy (see discussion in
subsection 3.B.6 in ref. [63]).

Since, in all these cooling mechanisms fluorescence cycles never stop, it
seems impossible to avoid the random recoil due to spontaneously emitted
photons and the corresponding single photon recoil energy

K2k?
Er =531

= kpTk. (11.1)

The temperature Tr defined by eq. (11.1) is called the single photon recoil
limit and appears as a fundamental limit for any cooling process using
spontaneous emission. The corresponding velocity

_ bk
M

is called the recoil velocity. For sodium cooled on the resonance line, Ty ~
2.4 uK and vg ~ 3 cm/s. For cesium, we have Tg ~ 0.13 uK and vg ~ 3
mm /s, and for helium cooled on the 22S; « 22 P, transition at A = 1.08 um,
Tr ~ 4 pK and vg ~ 9 cm/s.

VR (112)

11.1.2. Velocity selective coherent population trapping

The previous discussion clearly shows that, in order to get temperatures
lower than Ty, spontaneous emission processes must stop for the atoms we
want to cool down to very small temperatures. Such a remark suggests the
use of the phenomenon discussed in section 9.6 for a J; =1 < J. =1 tran-
sition and a ¢7—¢~ laser configuration. We have seen in this case that the
fluorescence rate Ry vanishes for atoms with zero velocity (see eqs. (10.47)
and (10.49)), because atoms are optically pumped in a linear superposition
of the ground-state sublevels which appears as a trapping non-absorbing
state. This trap is perfect for v = 0 and less and less perfect when v
increases. This is why such a phenomenon can be called velocity selec-
tive coherent population trapping. It selects very cold atoms, having very
small velocities and protects them from the “bad” effects of spontaneous
emission.

Actually, if we want to achieve cooling, we must also compress the veloc-
ity distribution around v = 0. It is not sufficient to find a velocity selection
mechanism which consists here of quenching the fluorescence rate for atoms
contained in a small velocity range dv around v = 0. One must also increase
the density of atoms in this velocity range.
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11.1.3. Optical pumping in velocity space

Because of the momentum transferred to the atom by the absorbed photon
and because of the momentum carried away by the fluorescence photon,
there is a random change of atomic momentum after each fluorescence
cycle. It may happen than an atom with v > dv undergoes such a cycle
and ends up with v < év. Momentum diffusion can thus be considered as an
optical pumping process in velocity space which transfers atoms from the
absorbing velocity classes into the non-absorbing velocity range dv around
v = 0, where they remain trapped during the interaction time @ and where
they pile up, forming a narrow peak in the velocity distribution.

The new cooling mechanism we have just described, and which has been
first proposed and demonstrated in refs. [79] and [80], differs radically from
the other ones since it is not based on friction but on a combination of
momentum diffusion and velocity selective coherent population trapping.*
We show in the subsequent section that it is limited only by the interaction
time ©. Another important feature is that it does not depend on the sign
of the detuning.

11.1.4. Failure of semi-classical treatments

The semi-classical treatment presented in chapter 10 considers atoms which
are very well localized in the laser wave. For example, the state |[¢g(z))
which we have introduced in eq. (10.13.a) for an atom “at rest in z” and
which is a non-absorbing state for a J, = 1 « J. = 1 transition (see eq.
(10.15.b)), refers to the internal state of an atom whose center of mass is
described a wave packet so well localized around z that it is not necessary
to describe in fully quantum terms the evolution of such a wave packet. In
eq. (10.13.a), z is considered as a fixed parameter. If the atom is moving
with velocity v, z is replaced by the c-number vt (see eq. (10.18)).

If a cooling mechanism reduces the momentum spread dp of the atom
below Kk, which is the case for laser cooling below the single photon recoil
limit, the spatial coherence length 4 ~ h/bp becomes larger than the laser
wavelength and it is no longer possible to consider the atom as well localized
in the laser wave. A fully quantum treatment of all degrees of freedom is
then required. Such a treatment is presented in the next subsection. We
will see that the non-absorbing state is still given by eq. (10.13.a), but that
15(z) is no longer the internal state of a wave packet localized in z, but a
two-component wave function of z.

* It has been also suggested that optical pumping in translation space might be used
to cool the translational degrees of freedom below the recoil limit by velocity-selective
recycling in a trap [81].
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11.2. One-dimensional quantum treatment

We consider here a o"—¢~ laser configuration and J, = 1 « J. =
transition.

11.2.1. Quantum atomic states uncoupled to the laser light

The atomic states are now labelled by two quantum numbers, one for the
internal state, one for the external state. We have already seen in chapter
10 (see end of subsection 10.4.2) that, for a J, =1 «» J. = 1 transition, the
only relevant internal states are gy and g_; in the ground state, ep in the
excited state. For describing the external state, we will use the momentum
p along Oz, so that a state such as |g;, p) represents the atom in g; with a
momentum p along Oz.

When the external degrees of freedom are quantized, the coordinate z
of the center of mass, which appears in the expression (10.1) of the laser
electric field Ey(z,t), becomes an operator Z. The laser-atom interaction
Hamiltonian (8.4) can then be written, using eq. (10.2), the Rabi frequency
2, associated with & and the Clebsch—Gordan coefficients of fig. 21b

h 2 1 1 o e
Vaw =23 [~ 75 %2 lea)lomn |+ €2 en) (o I| 5% +he

(11.3)

The operators e**Z appearing in eq. (11.3) are translation operators in
momentum space, so that

AL i
V = e T, , p+ hk), 11.4
ALlg-1,p) = /2 leo, p ) ( a)
2423 iy
VaLlg+1,p) = 2\/3 e Lt |eg, p — hk). (11.4b)

The interpretation of eq. (11.4.a) is very clear. Starting from g_1, the atom
can only go to ey by absorption of a photon which must be o (conservation
of angular momentum). This ¢ photon propagates along the positive
direction of Oz (see fig. 20) and thus carries a momentum +Aik which is
transferred to the atom during the absorption process, so that the atomic
momentum changes from p to p + Ak. Similar considerations apply to eq.
(11.4.b).
Equations (11.4) suggest now to introduce the states

[¥ne(p) = p — hk) + |g41, p + RK) ], (11.5)

\/“[lg 1s
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which are not coupled to the laser light since

Varlgne()) = ot % [=eo, p) + leo, p)] = 0. (116)
The two absorption amplitudes, starting from |g_q,p — hk) and from
|g1,p + hk) and ending both in the same final state |eg,p) interfere de-
structively. Equations (11.5) and (11.6) generalize the equations (10.13.b)
and (10.15.b) of the previous chapter, where the external degrees of free-
dom were not quantized. Note that different atomic momenta p — ik and
p+hk appear in the two states, which are linearly superposed in eq. (11.5).
This is due to the fact that the photons which can be absorbed by an atom
in g_; or g; have opposite momenta +hik and —hk. Since the final state
must be the same for the two paths, the two initial states corresponding to
g—1 and g; must have momenta which differ by 2Rk,

It is of course possible to introduce also the states

Ye()) = == [~lg—1, p— k) + |g11, p+ 1K) (11.7)
V2
i.e., the linear combinations of |g_1,p — hk) and |g1,p + hk) which are or-
thogonal to the non-coupled states (11.5). For such states, the two absorp-
tion amplitudes, starting from |g_;,p — fik) and |g1, p + hk) and ending in
leg, p) interfere constructively rather than destructively, so that these states
are coupled to the laser

ny

Varle(p)) = 5

et ey, p). (11.8)

Tt is easy to check that Vap, couples |eg, p} only to |ihc(p))

n

et [yo(p)), (11.9)

Vavrleo, p) =

so that the only non-zero matrix elements of Vay are

el

5 € = (Yo(p) | Vac | eo, p)".

{eo, 2 | Var | ¥c(p)) =
(11.10)

11.2.2. Couplings induced by atomic motion
When the external degrees of freedom are quantized, the atomic Hamilto-

nian Hp contains a contribution H§" which describes the kinetic energy
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of the center of mass motion. The equation which generalizes eq. (2.2) for
a multilevel atom is

2
Hyi =H 4+ BN = s Fwp Pe, (11.11)
2M
where P. is the projector onto the manifold of excited Zeeman sublevels,
since we suppose here that the ground-state Zeeman sublevels have all the
same internal energy, taken equal to 0. In eq. (11.11), P is the atomic
momentum operator along Oz, since we restrict ourselves in this section to
a one-dimensional treatment.
The states |g+1,p £ Iik) are eigenstates of Hy

(p £ hk)?

HAlgil P = ﬁ’;") oM

|g+1,p £ Rk), (11.12)

the corresponding eigenvalues being the kinetic energies associated with
the values p £ hk of the atomic momentum. From eq. (11.12), one deduces

o BEYe 12
HalYne(p)) = % [%L@—hp — hk) +%iyl:p + hk)
2
= (;}W + ER) [¥nec(p)) + |1JC‘ (p)), (11.13a)
Halvow) = (7 + B lbclo) + %wm(p)). (11.13b)

Such a result shows that H, shifts the two states |¢Ync(p)) and |pc(p)) by
the same amount (p?/2M) + ER, where Eg is the recoil energy given in
eq. (11.1), and introduces a “motional coupling” between these two states

hk
(Yc(p) | Ha | ¥ne(p)) = Yp (11.14)
characterized by an angular frequency equal to the Doppler shift kp/M

associated with the velocity p/M.

11.2.3. Decay rates due to spontaneous emission

As long as spontaneous emission is ignored, the three states |eg,p),
lg1,p+ Rk}, |g_1,p — hk) form a three-dimensional subspace, or family,
which we denote F(p), and which remains stable under the effect of the
atom-laser coupling Vay, and the atomic Hamiltonian H,. Without spon-
taneous emission, an atomic state, which belongs initially to F(p), can-
not leave F(p). Since |Yc(p)) and |nc(p)) are linear combinations of
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eq,p
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Fig. 23. Various couplings between the three states |eg,p}, |¥c(p)) and |[Ync(p)) of
the family F(p). The energy separation between |eg,p) and |t (p)) (or [Ync(p)}) is
—(hé + ER) = —hé (after elimination of the time dependence of V4 ). The two states
len, p} and |(p)) are coupled by Vi1, ( matrix element hf2; /2), whereas the two states
[ (p)} and [Pnc(p)} are coupled by Hy (matrix element hkp/M). In the absence of
Va1, and Ha ., the only radiatively unstable state of the family is |eg, p} (natural width
or departure rate I'). Because of the contamination of [ (p)) and |¥nc(p)) by |eg.p),
due to Va, and Hy, the two states [1q(p)} and |y (p)) also acquire finite widths, or
departure rates, which are denoted I (’3 and I R’C'

lg+1,p £ k), F(p) can also be considered as subtended by the three or-
thogonal states |eg,p) , |Yc(p)), [¥nc(p))

F(p) = { leo, D), |g+1, P+ Rk}, |9-1, p — Rk} }

{(1115)
= {{Ieo, ), e (@), [¥nc(p) }-
Figure 23 represents these three states and the various couplings which
exist between them and which are due to Vay, (matrix element k(2 /2 be-
tween |eg,p) and |Ye(p))) and to Hy (matrix element hikp/M between
|e(p)) and |¢¥nc(p))). We have eliminated the exponentials exp(tiwrt)
appearing in expression (11.3) by using the transformation (8.19) (or by
quantizing the laser mode), which amounts to replacing wa by wa —wr =
—4&. If one includes the diagonal elements of Hy in the unperturbed ener-
gies of the three states of F(p), the energy separation between |eg, p) and

e (p)) (or [¥nc(p))) is —hd where
hé =hé+ Eg. (11.16)

In this subsection, we investigate the departure rates from F(p) due to
spontaneous emission. If we ignore Va1, and Hja, the only radiatively un-
stable state of F(p) is |eg,p) since no real* spontaneous emission process
can occur from any one of the two ground-state sublevels |g;) and |g_1) .

* Photons can be virtually emitted and reabsorbed from g; and g_1, when the rotating
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The departure rate from |eg,p) is equal to the natural width I" of |eg, p).
As long as one is interested only in the decay amplitude of an initial state
belonging to F(p), and not in the final states resulting from this sponta-
neous decay, one can show® that the quantum evolution within F(p) is
correctly described if one just adds an imaginary part —ifil'/2 to the en-
ergy of |eg, p) . The quantum evolution within F(p) is thus governed by the
following 3 x 3 non-Hermitian effective Hamiltonian

—ir/2 /2 0
Hag=h[ 2/2 0 kp/M (11.17)
0 kp/M 0,

which has in general three complex eigenvalues having different imaginary
parts. This means that there are in general three different spontaneous
decay modes from F(p). We want here to discuss the physical meaning
of these modes in the perturbative limit where the couplings h(2; /2 and
hkp/M due to Vay, and Hy are sufficiently small.

Consider first the particular case where p = 0. It is clear from fig. 23
that the state |[¢nc(p = 0)), given by

[¥ne(p = 0)) ) + 1941, +1ik) ] (11.18)

\/—[|g Ty &

is completely isolated from the other two states of F(p = 0) since the
coupling ikp/M between |¢nc(p)) and |1pc(p)) vanishes for p = 0. This
means that an atom which is put at ¢ = 0 in |ync(p = 0)) will remain there
indefinitely. The state |tnc(p = 0)), given in eq. (11.18), is therefore a
perfect trap. The departure rate I'(-(p = 0) from |[¢)nc(p = 0)) is strictly
Zero

Tho(p=0)=0. (11.19)

wave approximation is not made in the atom-vacuum field interaction Hamiltonian Vv,
appearing in eq. (2.1). One can show that these “virtual” processes give rise to energy
shifts of g1 and g_q1 which are the same for these two sublevels as a consequence of the
rotational invariance of Vay . These Lamb-shifts of g1 and g1, as well as the Lamb-shift
of eg, are supposed here to be reincluded in the atomic frequency wy .

* One possible method for demonstrating such a result is to study the restriction of the
resolvent operator within the subspace subtended by the three states of F(p) (see for
example ref. [2], Chap. I1I).
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The other two departure rates from F(p = 0) may be found by using
eq. (11.17), which splits up into two submatrices when p = 0, one 1x1
submatrix corresponding to |tync(p = 0)), and one 2x2 submatrix

5 (—5{;;?/2 !210/2) (11.20)

in the subspace {|eg,p = 0}, |Pc(p =0))}. If

2 < \/82 +(I'2/4), (11.21)

ie,if 4 € Ior ) < ‘3‘ the eigenvalues of eq. (11.20) can be found

perturbatively. The eigenvalue which tends to zero when 2, — 0 is given
by the well know second order perturbative expression

(hn/2)% - (56 i iF_{-,) (11223

Ao +i(I/2) 2
where
o (‘Q1/2)2
L=r RIS D) (11.23a)
;o ()2)? _
S =6 R (11.23b)

Such a result means that, under the effect of Vay,, the state [1c(p = 0)) is
light shifted by hé( and gets a finite width I'5, which can be also considered
as the photon scattering rate from |¢c(p = 0)) . This departure rate from
[1#c(p = 0)) is obviously due to the “contamination”, induced by Var, of
[tha(p = 0)) by |eg,p = 0) . The other eigenvalue of eq. (11.20) is very close
to —hé — ihI'/2.

Suppose now that p is different from zero, but very small. More precisely,
the coupling hkp/M between |¢nc(p)) and |¢c(p)) is assumed to be very
small compared with the light shift or the width of [1/c(p)) calculated above
forp=20

% < |6g| or IG. (11.24)
Two of the three eigenvalues of eq. (11.17) are then still very close to the
two eigenvalues of eq. (11.20), i.e., to —hd — ih(I'/2) and hée — iRIG /2.
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As for the third one, one can get it by applying second order perturbation
theory to the coupling fikp/M induced by Ha between |¢nc(p)) and the
perturbed state |1c(p)) resulting from the coupling /2y /2 induced by Vap
between |ic(p)) and |eg, p) . One gets in this way, using eq. (11.23)

(hkp/M)? 0 & ]
R T h(dne-i52), (11.25)
e c 13 )
where
, (kp/M)* ., _ 4k*p° -
bne(p) = o3 5 6c = : (11.26a)
8%+ (IE2/4) M2(R
kn/M 2 4 b P
_ koMY g, AFD (11.26b)

T = —
Nl =5 (7 [0 T e

In eq. (11.25), héye(p) is the light shift of |¢nc(p)), whereas 'y (p)
is the departure rate from [inc(p)), more precisely from the eigenstate
[¥nc(p)) of eq. (11.17), which tends to |¢¥nc(p)} when p — 0 (|¢nc(p))
is a linear superposition of the three states (11.15) where |¢nc(p)) has
the largest weight). Here also, the departure rate from |t)nc(p)) is due to
the contamination of |[¢nc(p)) by |eg,p) . But this contamination results
now from two contaminations: the contamination induced by Va1, between
[1hc(p)) and |eq, p), which gives rise to a perturbed state |1)c(p)) containing
a small admixture of |eg, p) , and the contamination induced by Ha between
[¥nc(p)) and [Yc(p)).

It is clear from eq. (11.26.b) that the departure rate I\ (p) is very
small when p is small, and vanishes for p = 0%, This means that an atom,
which is put in [)nc(p)) at time £ = 0, can remain there for a very long
time if p is small enough, on the order of ( [{,C(p))_l. Conversely, for a
given interaction time @, we can find a range dp of values of p around
p = 0, such that if |p| < dp, an atom in |hxc(p)) has a high probability
to remain trapped in [)nc(p)) during the whole interaction time @. The
corresponding value of 8p is given by the condition

RKeldp) @ < 1, (11.27)

* The spontaneous decay rate FIJ:JC (p) is equal to half the semi-classical fluorescence rate
Rp(v = p/M) found in eq. (10.49). The factor 1/2 is due to the fact that, in steady-
state, the state [¢)c(p)) is also populated and contributes equally to the fluorescence
rate.
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which, using eq. (11.26.b), leads to

M oo
26T VO

The previous analysis thus demonstrates the existence of a velocity selec-
tion mechanism. The set of states |)nc(p)) with |p| < dp can be considered
as protected from the “bad” effects of spontaneous emission, since a spon-
taneous decay process from such states, during a time interval @, is very
unlikely. We have thus been able to give a correct full quantum descrip-
tion of the phenomenon of velocity selective coherent population trapping,
introduced semi-classically in section 10.6. We see now that the correct
trapping states are linear superpositions of states which differ not only in
the internal state g; or g_i, but also in the linear momentum which is
p+ hk for g7 and p — hk for g_,. We see also that dp can be as small as we
want, and in particular smaller than Rk, provided that @ is long enough,
since according to eq. (11.28), &p varies as 1/v/0.

(11.28)

11.2.4. Spontaneous transfers between different families

In the previous subsection, we have studied how an atom leaves a family
F(p) by spontaneous emission. We show now that after a spontaneous
emission process the atom can move into a new family. This diffusion in
momentum space is essential for transferring atoms into the trapping states
l¥nc(p)) with |p| < dp.

Suppose that, at time ¢, an atom whose state is described by a ket |14(t)}
of F(p) spontaneously emits a photon with a momentum hk having a
component fik, = u along Oz. Such an emission is possible only if |1)(t))
contains a certain admixture of the unstable state |eg, p) . We momentarily
use a vector p for the atomic momentum and not only the component p of
p along Oz. Just after the spontaneous emission process, the atom is in a
linear superposition of |g;,p — hk) and |g_;,p — hk) which is determined
by the direction of k and the polarization of the spontaneously emitted
photon. If one is not interested in the z and y components of the atomic
momentum, i.e., if one takes the trace of the final density matrix over
these quantum numbers, keeping hk, = u fixed, and if one averages over
the polarization of the emitted photon and on the azimuthal direction of
k, one finds that the final atomic density matrix is a statistical mixture
with equal weights, of |g1,p — u) and |g_1,p — u). Such a result is a clear
manifestation of the conservation of the total linear momentum along Oz.

Figure 24 represents the three states |g1,p + hk), |g-1,p — hk) and |eg, p)
of F(p) and the two possible final states |g1,p —u) (a) and |g_1,p — u)
(b) of the statistical mixture obtained after the spontaneous emission of a
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Fig. 24. Transfers between families due to spontaneous emission. Starting from |eq, p)
which belongs to F(p), the atom can, by spontaneous emission of a photon with mo-
mentum u along Oz, go either into |g1,p — u) which belongs to F(p — u — hk) (a), or
into [g_1,p — u) which belongs to F(p — u + hk) (b).

photon with momentum w along Oz. According to eq. (11.5), |g1.p — u)
belongs to F(p—hk—u) whereas |g—1,p — u) belongs to F(p+hk—u). Since
u can take any value between —nk and +hk, this shows that spontaneous
transfers can occur from F(p) to F(p') with p — 2hk < p’ < p + 2hk.
Combining the results of this subsection and the previous one, it would
be possible to make a Monte-Carlo simulation of the time evolution of an
atom. Just after a spontaneous emission process one knows the state of the
atom, which is for example the state |g1,p — u) or |[g—1,p — u) . Knowing
this initial state and the effective Hamiltonian (11.17) corresponding to
the family of this initial state, one can then calculate the probability that
the next spontaneous photon will be emitted after a time {. When such
a process occurs, one knows the new initial state of the atom and the
new family, and so on. There is a certain analogy between the calculation
sketched here and the calculation of the delay function used for interpreting
the phenomenon of intermittent fluorescence and quantum jumps (see ref.
[37] and ref. [2], Chap. VI, subsection E.3.c). In the two situations,
one calculates the distribution of the time delays between two successive
emissions of photons by the same atom, and the existence of very slow decay
rates explains why the fluorescence can stop for a very long time. Such an
analysis explains also the mechanism for entering into the trapping state
[ne). Just after a spontaneous emission process the atom is for example
in |g1,p — u), which is a linear superposition of the three eigenstates of the
effective Hamiltonian corresponding to the family F(p — u — hk) to which
|g1.p — u) belongs. But these three states decay with quite different rates
so that, if no spontaneous emission process has occurred after a time long
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enough, the initial state is filtered and reduces to |¢ync(p — ik — u)). Note
finally an important difference between the situation analyzed here and
the one analyzed in ref. [37]. We take into account here the momentum
change following spontaneous emission. Since the slow decay rates are
very sensitive to p (see eq. (11.26.b)), the length of the dark periods, .
during which the fluorescence stops, can change appreciably during the time
evolution. Such a Monte-Carlo simulation has been recently performed [88].

11.2.5. Ezxpected final momentum distribution

Consider an atom in the state [¢)nc(p)) . Such a state is not an eigenstate
of the component P, of the atomic momentum operator P. According to
eq. (11.5), a measurement of P, of an atom in |¢ync(p)) gives two possible
results, p—hk and p+hk, with equal probabilities. After an interaction time
@, a notable fraction of the atoms will be trapped in the states |Ync(p))
(which are very close to |ixc(p))) with |p| < 0p, &p being related to @ by
eq. (11.28). One therefore expects to see in the final atomic momentum
distribution (i.e., after an interaction time @) two peaks centered around
+hk and —hk, each of these two peaks having a width dp. If @ is large
enough so that dp is smaller than Ak, one expects these two peaks to be well
resolved. Increasing @ should decrease their width, and hopefully increase
their weight, since atoms will have a longer time to diffuse in momentum
space towards p = 0.

All these predictions are quantitatively confirmed * by a numerical in-
tegration of the quantum equations of motion [80]. The interested reader
may find in ref. [80] a detailed description of such calculations and of
their conclusions. In particular, the prediction (11.28) that the width &p
of the two peaks at +%ik should vary as £2, /6 is very well confirmed. We
just mention here that the quantum equations of motion cannot be trans-
formed, as in subsection 5.3.3, into coupled Fokker—Planck equations. Since
the atomic momentum distribution contains sharp peaks, with a width &p
which can become smaller than Ak, it is no longer possible to make an
expansion of the density matrix elements in powers of hk/bp.

Note finally that one-dimensional laser cooling of the type described
in this section was recently demonstrated on a beam of metastable ‘He
atoms [79]. Two counterpropagating o and o~ laser beams were exciting
perpendicularly the atomic beam on the 235 « 23P, transition of *He
at A = 1.08 nm. Double peak structures with a width d6p smaller than

* Note however that the problem of the evolution of the weight of the peaks in the long
time limit is still open.
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hk: were observed on the final momentum distribution, corresponding to a
one-dimensional temperature of 2 pK, smaller than the recoil limit of 4 pK
corresponding to this transition of “He.

11.5. Generalization to higher dimensions

In this last section, we present possible extensions to higher dimensions of
the one-dimensional cooling scheme analyzed in the previous section. A
few proposals have been published, extending the idea of velocity selective
coherent population trapping to two dimensions [80,82] or three dimensions
[82,83]. We will follow here the presentation of ref. 83, restricting ourselves
to the particular case of a J, = 1 «» J, = 1 transition. Other transitions
have been also considered in the literature [84].

11.3.1. Equivalent expression for the absorption amplitude

At two or three dimensions it is no longer possible to ignore the ground-
state sublevel gg and the two excited Zeeman sublevels e_; and e;. In the
position representation, the most general wave function representing the
quantum state of the atom (both internal and external) in the lower state
g can be written

Zy(r) = Y_1(r)|g-1) + Yo(T)|g0) + Y4+1(7r)|g+1)- (11.29)
It is in fact a three-component wave function, one wave function ¥, (r) be-

ing associated with each of the three Zeeman sublevels |g,,,) of g. Changing
from the spherical basis {|g.,)} to the Cartesian basis

|gx>=:-—;%5(|g+4>—-|g_1>),

| 9) =+%(l9+1>+|9—1>): (L)
| 9:) =+ | g0)

transforms eq. (11.29) into
By (r) = Ba()lgz) + by (r)lgy) + s (rlgs), (11.31)

where 1, (r), ¥, (r), 1.(r) are three wave functions which are transformed
by rotation as the three components of a vector field ¥4(r)

Po(r) = {¥a(r), ¥y(r), $=(r) }. (11.32)
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A similar argument shows that the most general quantum state in the
upper state e is described by a vector field ¢.(r)

= { 62(r), dy(r), 6:(7) }- (11.33)

We consider now the probability amplitude A for the atom to be excited
from the state ¥,(7) to the state ¢.(r) by absorption of one laser photon.
Such an amplitude depends not only on the initial and final states 1,(r)
and ¢, (), but also on the laser electric field E; (r), which is, as t,(r)
and ¢.(r), a vector field. From the Clebsch- GOIda.Il coefficients of a J, =
1 < J. = 1 transition, one can show that

A=, | Viy |0 )= C/(l3r @e(r) - [Ef (r) x ¥y(r)], (11.34)

where C is a constant. In fact, the structure of eq. (11.34) can be easily
understood if one notes that the only vector field which can be constructed
from the two vector fields 1,(r) and E;f (r) is Ef (r) x 9,(r).

11.3.2. Conditions for having a trapping state
Recalling the approach followed in the previous section, we can now identify
two general conditions which must be fulfilled by an atomic state ng(r') in
g if one wants this state to be a perfectly trapping state, i.e., such that, if
an atom is put in zp;r(r) at time ¢ = 0 it remains there indefinitely.

First, this state must be insensitive to the laser light. More precisely,
one must have

VaLl¥y) =0, (11.35)

which generalizes eq. (11.6), or equivalently, according to eq. (11.34)
[ oum) - B ) x $1@] =0 Vau(r). (11.36)

Secondly, the atomic Hamiltonian Ha must not couple !If;r to any other
state which could be coupled to the laser light. Such a condition implies
that SPST must be an eigenfunction of Ha. or equivalently that !P;r is a
stationary state with respect to Ha. In the absence of a magnetic field,
the three Zeeman sublevels of ¢ have the same infernal energy so that the
requirement for !!7;1" to be an eigenfunction of Hy can be replaced by

extw—,T) e |5P’T) I@T) (1137)

211{
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where P is the atomic momentum operator and where the eigenvalue
p?/2M is a c-number.

11.5.3. Finding a trapping state
We show now that a very simple way to satisfy both conditions (11.36) and
(11.37) is to take

¥y (r) = u Ef (r), (11.38)

where 1 is a constant. Equation (11.38) defines an atomic state in g whose
wave function is described by the same vector field as the laser electric
field. It is first clear that eq. (11.36) is fulfilled since

Ef(r) x ¢)(r) = p Ef (r) x Ef (r) = 0. (11.39)
Secondly, we note that, the laser field being monochromatic with frequency
WL, Eﬂ' (7) is necessarily a superposition of plane waves with wave vectors
having all the same modulus ki, = wy, /¢, so that

ViE! = -k ET, (11.40)
Since P = —ihV, we then deduce from eqs. (11.38) and (11.40) that

P?
2M

2
. nh
i Y

h2k?
2M

¥, (11.41)
which shows that 1,{)3" also satisfies eq. (11.37) since it is an eigenfunction
of P?/2M with the eigenvalue Ex = h*k? /2M.

It should be noted however that conditions (11.36) and (11.37), which
must necessarily be fulfilled by a three-dimensional trapping state, are not
sufficient for defining such a state. Consider for example a laser configu-
ration which is formed by three coplanar plane waves whose wave vectors
k1, ko, k3 are all in the zOy plane, with

|k1| = |k2| = |k3| = kL = wL/c (11.42)

Suppose now that, instead of taking a constant p in eq. (11.38), we replace
f by €%, so that we take for 9]

Y1 (r) = exp(irz) Ef (r). (11.43)

It is clear that eq. (11.43) still fulfills eq. (11.36) since ';{;;r x E is still
equal to zero. On the other hand, the multiplication by e** in eq. (11.43)
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amounts to adding to the wave vectors k; (i = 1,2,3) of the three plane
waves forming E; the vector k = ke,. It follows that the vector wave
function (11.43) is now the sum of three de Broglie plane waves with wave
vectors k; +k (2 = 1,2,3). Since &, which is parallel to Oz, is perpendicular
to ki, ko, ks, which are all in the Oy plane, the three wave vectors k; +
& have the same modulus (kf + n‘-z)m, so that eq. (11.43) is still an
eigenstate of P?/2M with eigenvalue h” (k7 + x?) /2M.

B e ik
ﬁ ekp(lfiZ}EL (T) = "—Zﬂ'—/‘f—

exp(ixz) Ef (r). (11.44)
We have thus demonstrated that eq. (11.43) still satisfies eqs. (11.36)
and (11.37). But, since x can take any value, eq. (11.43) defines now a
whole set of trapping states which differ from each other by the value of the
momentum along Oz. In other words, with a laser configuration formed by
three coplanar plane waves, taking 17 proportional to Ef‘L does not lead
to a three-dimensional trapping state, since there are an infinite number of
trapping states which differ by the momentum perpendicular to the plane
of the three waves. We have only a two-dimensional trapping.

The previous discussion suggests that, in order to get a unique 3-D trap-
ping state, one must take a laser configuration consisting of at least four
plane waves k; (i = 1,2,3,4), the directions of the four wave vectors k;
being such that there exists a single sphere (of radius ki, = wy,/¢) centered
on 0 and containing the extremities of the k;'s. Any translation & then
destroys the equality between the modulus of the four vectors k;+x. A 3-D
atomic trapping state ( for a J; = 1 « J. = 1 transition) must therefore
be a superposition of at least four states |g;, k;), (with |k;| = kr, ), differing
not only in the direction k;/k; of the momentum, but also in the internal
state g;. Since, according to eq. (11.38), each state |g;, k;) is the replica of
a laser plane wave, and since such light waves are transverse, the internal
atomic state g; must be also transverse with respect to k;.

It would be very interesting to try to demonstrate the existence of such
3-D trapping states which exhibit non-separable quantum correlations be-
tween internal and external degrees of freedom. A certain number of prob-
lems remain to be investigated. For example, one must get rid of gravity.
Also, the filling efficiency of the trapping state, which depends on mo-
mentum diffusion, could be much smaller in three dimensions than in one
dimension and it would probably be helpful to supplement the method by
other schemes increasing the momentum diffusion towards the low values
of p.
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