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Atoms in strong resonant fields 1
1. General introduction
1.1. What questions do we try to answer in this course?

How do atoms behave in strong resonant (or quasi-resonant) light beams?
What kind of light do they emit? (intensity, polarization, spectral distribu-
tion ... ).

1.2. Why do we study these problems?

Spectroscopic interest. A lot of spectroscopic information (g factors, fine
or hyperfine structures, radiative lifetimes ... ) is obtained by looking at the
fluorescence light reemitted by free atoms irradiated by a resonant light beam.
It is important to have a quantitative theory connecting the detection signals
to the atomic parameters, and giving in particular the perturbation associated
with the light beam (radiative broadenings, light-shifts ... ).

Theoretical interest. How are the lowest order QED predictions modified at
high intensities? Comparison between various theoretical approaches providing
a better understanding of the interaction processes between atoms and pho-
tons.

1.3. Concrete examples of experiments we are dealing with

Fig. Ia: Atoms in a resonance cell are irradiated by a polarized laser beam.
One measures with a photomultiplier the total intensity Ly of the fluorescence
light reemitted with a given polarization in a given direction. One slowly sweeps
a static magnetic field B applied to the atoms and one records the variations
of L. with By, (level crossing resonances).

Static__ Atomic
field Bp | beam
Resorance Analyzer Photomultiplier Spectrometer
Polarizer ke J(w)

a Laser b
beam beam

Fig. 1.
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What kind of variations do we get? How does the shape of the curve change
when we increase the laser intensity? What kind of information can we ex-
tract from these curves?

Possible variants: Double resonance, quantum beats, ... .

Fig. 1b: An atomic beam is irradiated at right angle by a laser beam (no
Doppler effect). In the third perpendicular direction, a spectrometer records
the spectral distribution 9(w) of the fluorescence light.

Is the scattering elastic or inelastic? What are the changes observed on
9{w) when the laser intensity increases?

1.4. What effects do we neglect? Why?

We neglect interferences between light waves scattered by different atoms.
These atoms are randomly distributed, separated by distances large com-
pared to A, and we look at the fluorescence light reemitted not in the forward
but in a lateral direction. Consequently the relative phases of the light waves
scattered by different atoms are random and the coherence area of the scat-

tered light is negligible.

We neglect any coupling between atoms due to collisions or to a common
coupling to the radiation field (superradiance, multiple scattering ... ). We on-
ly consider very dilute vapors or atomic beams.

We neglect the reaction of atoms on the incident beam (for the same rea-
son).

To summarize, we calculate the light scattered by each atom from a given
incident light beam, and we add the intensities corresponding to the various
atoms.

1.5. Brief survey of the course

We start with a simple problem: spectral distribution 9(w) of the fluores-
cence light emitted by a two-level atom, and we try two approaches for deal-
ing with this problem.

(i) We recall lowest order QED predictions and we try to calculate some
higher order corrections.

(ii) We treat to all orders the coupling between the atoms and the incident
light, and we consider only one single spontaneous emission process calculated
by Fermi’s golden rule. We discuss the difficulties encountered in these two
approaches.

Because of these difficulties, we change our philosophy. Instead of calcu-
lating the detailed temporal development of the whole system atom + radia-
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tion field, we try to relate the detection signals (Lg(7), 9(w)) to some simple
quantities characterizing the radiating atoms. We find that L (1) is related to
the average of some atomic observables evaluated at time ¢ (one-time averages),
whereas 9(w) is related to some correlation functions of the atomic dipole
moment (two-time averages).

One-time averages of atomic observables are easily calculated if one knows
the master equation describing the evolution of the reduced atomic density
matrix. We first derive the terms of such a master equation which describe the
effect of spontaneous emission and we discuss their physical meaning.

Then, we establish the terms of the master equation which describe the ef-
fect of the coupling with the incident light beam in two cases:

(i) Pure monochromatic field with well-defined phase and amplitude.

(ii) Broad-line excitation (spectral lamps or free-running multimode lasers
which have a spectral width Av much larger than the frequency w; character-
izing the coupling of atoms to the light beam).

We solve the master equation for simple atomic transitions (J=0<J=1,
J =3 +J=1)and we discuss some important physical effects: optical pump-
ing, level crossing resonances radiative broadenings, saturation resonances,
Zeeman detuning ... .

We show from a Langevin equation approach how two-time averages may
be calculated from the master equation giving one-time averages (quantum
regression theorem). This gives the possibility of calculating the spectral distri-
bution of the fluorescence light for the two types of incident light beams con-
sidered above. We discuss the importance of the fluctuations of the atomic di-
pole moment.

Finally, we discuss briefly what happens with other types of light beams and
intensity and photon correlations.

A lot of papers, both theoretical and experimental, have been devoted to
the interaction of atoms with resonant fields. It is obviously impossible, in
these lectures, to present a detailed review of all this work. We have preferred
to focus on some particular topics and to discuss in detail some difficult
points. We apologize for the inadequacies of this presentation and for the non-
exhaustive character of our bibliography.

2. Discussion of a simple problem. Presentation of several theoretical ap-
proaches

We discuss the experiment of fig. 1b, assuming that atoms have only two
levels g (ground) and e (excited). We will come back to this problem in sect. 7
where several references are given.
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2.1. Very low intensity limit — lowest order QED predictions [ 1,2]
2.1.1. Basic lowest order diagram for resonance fluorescence

Absorption of one impinging photon wy . Propagation of the intermediate
excited state e. Spontaneous emission of the fluorescence photon cw.

mL// i
Fig. 2.

What is neglected? Processes where several interactions with the incident
light beam occur. Induced emission processes. This is valid for very low inten-
sities of the light beam.

Scattering amplitude. Contains two important factors.

8 (w—wy) : conservation of energy ,

1 § ;
..~ - resonant behaviour of the scattering amplitude ,
Wy —wy t 3T
with
wy = E'e - Eg : atomic frequency ,

r : natural width of the excited state .

2.1.2. Predicted shape of the fluorescence spectrum
(a) Monochromatic excitation. Because of 8 (w — wy ), the fluorescence is
also monochromatic with the same frequency as the excitation (fig. 3)

INw)=8(w—wyp). (2.1)
(b) Broad-line excitation. The incident light beam contains photons with

all frequencies forming a white continuous spectrum. Each individual photon
w is scattered elastically with an efficiency given by
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| i - 1
T .
|w—w0+211‘ (w_wD)Q_'_(%l-\)Z

Consequently, the fluorescence spectrum 9(w) is a Lorentzian curve, cen-
tred on w = w (atomic frequency), with a half-width 1 I (fig. 4)

Excitation Fluorescence
WL W W, w
Fig. 3.
1

9(w) ~ (2.2)

(@—wg)? +(T)?

Excitation Fluorescence

Fig. 4.

2.1.3. Scattering of a wave packet
As we know the scattering amplitude for each energy w, we can study the
scattering of an incident wave packet,

Oinc®) = [e(@)e ™ des  with  s=t—1/c, (2.3)

which becomes after the scattering

—iws
e

$(9) = f g(w) mdw (24)

(we do not write any angular or polarization dependence). We find that Bs.(s)
is given by the convolution of ¢;,.(s) by e~#05e~Ts/24 (s5) (8: heaviside func-
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tion), which is the Fourier transform of 1/(w — wq + 3iI'). This gives the pos-
sibility of studying a lot of time-dependent problems.

(i) Time dependence of the counting rate of a photomultiplier detecting
the fluorescence light emitted by an atom excited by a short pulse of resonant
or quasi-resonant light. From (2.4) one deduces that, if g(w) has a large width
and contains cwy (short resonant pulse), ¢¢.(s) has a long tail varying as
e~fwose=Ts/2 (fig. 5). This clearly shows the exponential decay of an excited
atomic state prepared by a short pulse of resonant light.

Atom

O
y q)sc(s) %
Fig. 5.

(if) Quantum beats [3] appearing where there is a structure in e, for exam-
ple two sublevels ey and e, separated from g by wq; and wy,.

The incident wave packet gives rise to two scattered wave packets corre-
sponding to intermediate excitation of the atom to e; or e5. The quantum
beat signal, at frequency wp; — wyy, is associated with the interference be-
tween the tails of these two wave packets (fig. 6).

IAl e—fwmse—l"sﬂ +A26—iwgzse—l‘sf2|2

=|4;2e7 T +|4,2 e T + 2 Re 4, A5 1 @or1— w05 (35)

Atom

O

Fig. 6.
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2.1.4. Higher order corrections — perturbative approach

We come back to a monochromatic excitation (at frequency wy ) and we
study higher order diagrams involving two interactions with the light beam (in-
stead of only one). Diagrams 7a and 7b represent the scattering of two imping-
ing photons ¢y , ¢ into two scattered photons wy , wg. They differ by the
order of emission of w, and wg.

a g//wa B Q/AJA
k¢ [
o L/ E//L-JA o L// \a// Wy
Ae e
w/ g m,//i g
Fig. 7.

What does conservation of energy imply?
wp twp = wy twg, (2.6)

and not necessarily wy = wy = wp. Only the lowest order diagram (fig. 2) pre-
dicts elastic scattering. At high intensities, non-linear scattering processes in-
volving several photons of the incident light beam give rise to inelastic scatter-
ing.

How are w, and wp distributed? Let us write down the energy denomina-
tors associated with the three intermediate states of diagrams 5a and 5b. (The
numerators are the same for 5a and 5b, and proportional to the incident light
intensity as they involve two c; interactions.) Adding to the energy w of e
an imaginary term —3#I" which describes the radiative damping of e, we get

1 1 1
= 1.9 »
200 —wy —wy il Wy —w, tie wL—w0+§rI‘

diagram 7a: (2.7a)

1 1 1
1% H 1 H]
2wL—wB—w0+5:F wy —wptie wL—w0+§z[‘

diagram 7b: (2.7b)
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where € is an infinitesimal positive quantity. Adding (2.7a) and (2.7b), and us-
ing 2wy = wy + wpg, one gets for the total amplitude of the non-linear process
Wy Tl iy
1
(wp — @y +3i0)(w, — @y +3iT)(w, — 2w +wy — i)’

(2.8)

One of the two photons is distributed over an interval ;T around w = w. As
wp = 2w — w,, the second photon is symmetrically distributed over an in-
terval ;T around 2w — wy.

Shape of the fluorescence spectrum (for wy # wy).

Wy W 2w -wg

£

Fig. 8.

The 6 function at w = w_is the elastic component given by the lowest or-
der QED diagram. It is proportional to the light intensity /. The two Lorentz
curves centred at wy and 2wy — wy are the inelastic components. The total
area below these curves is proportional to /2 (non-linear scattering processes).
The two photons are distributed over finite intervals but are strongly corre-
lated (wy + wp = 2wy ).

It would not be a good idea to consider higher and higher order diagrams
for understanding the behaviour of atoms in strong resonant fields. The per-
turbation series would not converge and the situation would be the more dif-
ficult, the nearer wy is to wy. So we are tempted to try another approach
where the coupling of the atom to the laser beam is treated to all orders.

2.2. Very high intensity limit — the “dressed atom” approach

We now try to treat to all orders the coupling between the atom and the
laser beam, using either a classical or a quantum treatment of this laser beam.
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2.2.1. Classical treatment of the laser field
Atomic Hamiltonian (7 = c = 1)H,,

(9

Coupling with the laser:
V=—DCcoswyt, (2.10)

where D is the atomic electric dipole operator (odd) and € is the amplitude of
the light wave,

0 d
D=( ) (2.11)
d 0

We assume d = {e|D|g) real. Let us put

le - _d¢ (2.12)

where w; is a frequency characterizing the strength of the coupling

01y 0 g A 0 glwr !
V=w, costh(l 0):iwl(efWLf . )+Ew1(e—:‘er 5 )

" V2

. . (2.13)
Interaction representation:

0 ef(wo—wL)I 0 ei (wotrwpt
o )+t )

s e—i{wo—wL}f 0 e—f(wo'l-wL)I 0

LT

Vl V2
(2.14)

Spin-} representation: A fictitious spin-;  can be associated with any
two-level system,

le>1+), Igy>1-), H —jwy>wyd,, V->2w,coswtd,.
(2.15)
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H, = Larmor precession of  around a magnetic field 98 parallel to 0z and
such that wg = —yWBy (v: gyromagnetic ratio). ¥ — Larmor precession of &
around a magnetic field “B; cos wy ¢ parallel to Ox and such that 2w, = —y“B;.

Rotating wave approximation (r.w.a.). 9 cos wy ¢ may be decomposed in-
to two right and left circular components of amplitude B, = %%1 (decomposi-
tion of Vinto ¥V, and ¥V, in (2.13)). r.w.a. amounts to keep only the compo-
nent rotating around 9B, in the same sense as J. Mathematically, we keep on-
ly ¥y since V5 is rapidly oscillating in interaction representation (see (2.14)).
When doing r.w.a., we neglect Bloch-Siegert type shifts (which are very small
in optical range) and which are due to ¥,. Note that we do not exclude “light
shifts” produced by ¥ when the irradiation is quasi-resonant:

I'<|wy, — wql € wq (see next paragraph).

Reference frame 0XYZ rotating at w; around 0z = 0Z (fig. 9). In 0XYZ,
B, becomes static and parallel to 0X. The Larmor precession around 0Z is re-
duced from wy to wq — wy . Finally, the spin § in this new reference frame
only sees two static fields: B parallel to 0Z and proportional to wqy — wy,
and B parallel to 0X and proportional to w;. Physical interpretation of w;:
Rabi nutation frequency of the spin at resonance (BO =0).

Z

By
(~¥ By=3;)

Fig. 9.

Summary. We have now a geometrical representation of the internal energy
of the atom (precession around B), of the coupling with the laser (precession
around By). The problems which remain are: How to describe spontaneous
emission (i.e. the coupling with the empty modes of the quantized electromag-
netic field)? How to compute Lg(1), 9(w) ... (i.e. the detection signals)?
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2.2.2. Quantum treatment of the laser field — “‘dressed atom” approach [ 58]
(i) Definition of the “dressed atom”. Total isolated system atom + imping-
ing photons interacting together. (Physical picture of an atom surrounded by
photons and interacting with them.)
(ii) Hamiltonian of the dressed atom. (We replace the two-level atom by the
equivalent fictitious spin 3.)

H=H +H _+V,

H =w,S,, H,

laser =WLd'@,  V=AS (a+d"), (2.16)

where a*, a are the creation and annihilation operators of a wy photon; X is
the coupling constant; a +a™ is the electric field operator (in the dipole ap-
proximation).

A
(n+2)w
o I /// [+n+1>
~
B ///
~. -
/)r‘--. En-ﬂ
-~ 1 fov
- i =~
Pt o e SOt l=n+2>
- /// N o
n+1 )W, ke
L
“‘-““‘-““‘- Efl CH //I
H::_______E_____Jf// +,n>
™~ A
,I /%“"--I n
;\.(/ ~.
e ~
- 1 T S
i gr-_-_‘l. E -\"--.“J—,n+1>
Wy k- i
L<\\‘ D'i ’ i
H\\\;\F//’// [+,n-1
~ 0
‘5“-\. 1 T
B: \\)‘(/ En-'l
:// \““-.. L
’ 8
~
- e A
el /ir/-— \: R I—rn>
(n-l){.l)L -~ FE D ~
I a
1}
| =
1
| P
L i
|
0w J g
0 L Yo Wy

Fig. 10.
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(iii) Energy levels of the uncoupled Hamiltonian &= 9, + Haer>
Hol+, n)= (23w +nw ), n), 21D

where |+, 7} is the atom in the + or — state in the presence of nwy photons.
The unperturbed energy levels are represented by the dotted lines of fig. 10
which give their variation with g, wy being fixed. At resonance (wg=cwy)
degeneracy between pair of levels. For example at point /, the two levels
[+, n)and | —, »n + 1) are degenerate.

(iv) Coupling V,

V=3NS,a+S_a)+iNS,a"+S a), (2.18)

VI V2

where V' couples [+, n} and |—, n + 1) which are degenerate at resonance. The
r.w.a. amounts to neglect ¥, which does not couple together these two degen-
erate levels. ¥y couples them to very far levels,

[+, m] <2 [1=, n+ D). (2.19)
Vai ke
|—, n—1> [+, n+2)

Multiplicities €, 41, €,;, €,_1 -.- - The unperturbed levels group into
two-dimensional multiplicities €,4; = {I+,n+ 1), |-, n+ 2}, €, = {I+, n),
|[—n+ D}, €, _;={l+.n—1D,|— n}..,each of them being degenerate at
resonance (wq = wy ). The only non-zero matrix elements of V; are between
the two states of such a multiplicity. So we are led to a series of two-level
problems.

(v) Energy levels of the dressed atom. The two unperturbed levels |+, n}
and |—, » + 1) which cross in [ repel each other when V is taken into account
and form an hyperbola (full lines of fig. 10). Such a hyperbola is sometimes
called “anticrossing”. The minimum distance between the two branches of
the hyperbola is obtained for wg = wp ,

K= {ani Vi i F =3 M+[S [ —Xnlaln + 1)

=INmt1~m as n>1. (2.20)
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Physical interpretation of } A/n: If at resonance (wp = wy ) one starts at
t =0 from | —, n + 1), the probability of finding, at a later time, the system in
|+, n}is modulated at the Bohr frequency 2A+/n of the dressed atom. This
frequency is nothing but the Rabi nutation frequency of the classical ap-
proach, Finally, we get the relation

w; =5\ (2.21)

between the parameters wq, A, n of the classical and quantum approaches.

(vi) Periodical structure of the energy diagram. As n > 1, the shape of the
various hyperbolas corresponding to €1, €,,, &,,_1 ... is the same. There is
a periodicity in the energy diagram when 7 is varied within a range An <n.
For a coherent state,

(Any=~/(n)>1,

(An) 1

) /)

The dispersion of # is large in absolute value, but very small in relative value.
Therefore, when the field is in a coherent state we can consider the energy
diagram of the dressed atom as periodical.

(vii) Light shifts [9—12]. They appear clearly in fig. 10. (a) Non-resonant ir-
radiation w( < wy : Unperturbed atomic frequency wq = A4'B’". Perturbed
atomic frequency wp = C'D’ < wy. (b) Non-resonant irradiation w > cy :
Unperturbed atomic frequency wq=A4"B". Perturbed atomic frequency
wp=C"D" > wy.

Conclusion: Atomic frequencies are perturbed when atoms are irradiated
by a non-resonant light beam. The light shift is proportional to the light in-
tensity / (near the asymptotes, 4'C", B'D', A"C", B"D" are proportional to
the square of the matrix element of ¥, i.e. to n, i.e. to [), provided that w,
is not too large (w; <|wy — wy |) so that the hyperbola is near its asymp-
totes. The sign of the light shifts is the same as the sign of w(y — wy . Note
that this light shift can be observed only if one irradiates the spin-; system
with a second probing RF field.

(viii) Bloch-Siegert shifts [13,14]. We take ¥, into account by perturba-
tion theory. Due to the non-resonant ¥, coupling of |+, n) to |—, n — 1)
which is far below |+, n), the |+, n) level (dotted line in fig. 11) is shifted
upward to a new position (interrupted line). Due to the non-resonant ¥,
coupling of | —, n + 1) to [+, n + 2) which is far above |—, 1 + 1), the
|—, n+ 1) state (dotted line) is shifted downward to a new position (inter-

<1. (2.22)
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Fig. 11.

rupted line). It follows that the crossing point / between |+, n) and | —, n + 1)
is shifted from 7/ to J. J is the centre of the anticrossing which appears when
the coupling induced by ¥; between the two displaced levels is introduced.

IJ is the Bloch-Siegert shift, of the order of w%;’wo, which is very simply
calculated in the dressed atom approach by elementary second order time-in-
dependent perturbation theory. Strictly speaking, we have also to take into
account the contribution of atomic levels others than e and g since the two-
level approximations break down when one considers such non-resonant pro-
cesses.

2.2.3. How to treat spontaneous emission in the dressed atom approach?

2.2.3.1. Fermi’s golden rule treatment. The dressed atom jumps from a station-
ary state | ) with energy £, to a lower state | ) with energy Ej, emitting a
photon w = E, — Eg with a probability per unit time given by [y, |D| g&ﬁ,)l2
where D is the atomic electric dipole operator.

Conclusion: The frequencies of the various components of the fluorescence
spectrum are the Bohr frequencies E, — E; of the dressed atom corresponding
to allowed transitions ({Y | D]y _G> #0).
2.2.3.2. Application: Predicted fluorescence spectrum at resonance. In fig. 13,
we have represented in the left part the multiplicities €41, €,, of unperturbed

Fig. 12.
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levels, in the right part the perturbed levels [} ,;), |¥5) which appear when
V7 is taken into account. We suppose wy = wq and w; > I'. The allowed tran-
sitions starting from |/;,,) are represented by the wavy vertical lines in

fig. 13. The numbers indicated near each of these lines are the Bohr frequency
of the transition and the matrix element of D between the two levels of the
transition (we have put {(+[D|—) = d). All other transitions to lower levels
belonging to Cn—l’ &€, _, are forbidden when r.w.a. is done. For the free
atom the transition probability I is proportional to [{+|D|—)|2 = d2. For the
dressed atom, we see in fig. 13 that all allowed transitions have the same tran-
sition probability, ;T" (all the matrix elements of D have the same absolute
value, 3d). It follows that the total probability of emission of a photon (of
any frequency) from any level of the dressed atom is the same and equal to
;T 43T = 3T All levels of the dressed atom have the same natural width 1T

28 1
== |[# 041>+ |- yn2>
]+,n+l> ]—,n+2> ) N’n.ﬂ) @ﬂ+n+ +|=yn+ ]

n+ 4 !u1 ! 1

‘ =  — — -
! ] | N"n+1>—ir§ E"‘:“"‘I:“ |:n+2)]
- W W Wy o -,
o {-db -4n 1dh

[y 3'%5 ﬂ+n>+|* n+b}
0] >=é ﬂ+,n>—|—,n+1»}

-n

4
J Im]
v

|+,n> l—,n+l>

Fig. 13.

Conclusion: One pre dicts three lines in the fluorescence spectrum. For wr,
the total probabillty is 3T + 3" = IT. The transitions connect two levels of
natural width 3T, It follows that the half-width of the component wr is
16r+in= I‘ For w; * wy, the total probability is 3. Same half-width
as the wy component since all levels have the same natural width 3T

We have represented in fig. 14 the three lines at wy , wy + wy, Wy — wy
with the same half-width 3T, the height of the central component being two
times greater than the one of the two sidebands. Although qualitatively cor-
rect, this prediction is not quantitatively exact as we will show later.

Remark: What happens for wy # w,? From fig. 10 one predicts one com-
ponent at cy (transitions £'D" and C'F"), one component at w(, (transition
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AT XA

0| - Wy W W+,

Fig. 14.

C'D'), one component at 2wy — wy (transition £'F"). We get qualitatively the
results predicted from perturbation theory (see fig. 8), except that the atomic
frequency wb is corrected by the light shift. We do not calculate here the
height and the width of these three components as Fermi’s golden rule ap-
proach to this problem is not sufficient as shown in the next paragraph.
2.2.3.3. The difficulty of cascades. We cannot consider only a single spontane-
ous emission process. Let us give some orders of magnitude.

Atomic velocity ~103 m/sec.

Laser beam diameter ~10—3 m

Transit time through the laser beam 7'~10-% sec.

Lifetime of excited state 7 ~10~8 sec.

It follows that the average number of spontaneous emission processes for
an atom flying through the laser beam and saturated by this laser beam (spend-
ing half of its time in e) is

N~LLsgnq.
27

The situation is more exactly described by fig. 15 than by fig. 12. To sim-
plify, we have considered only NV = 3 spontaneous emission processes. In
fig. 15a, the dressed atom is cascading downwards the energy diagram, from
Wy to a,bm then from d)n to ¥, 1, finally from ¢, _; to ¥,,_, successively
emitting photons wy ~ wy — wy, wg ~ wp + Wy, we ~ wy . Other possibili-
ties exist, differing by the order of emission of the three photons wy, wg, we
(figs. 15b, 15¢) and we can make the following remarks:

(i) The three cascades represented in fig. 15 start from the same initial level
Wp+1 and end at the same final level ¥, _,.

(ii) We cannot decide which is the quantum path followed by the system.
Being interested in a precise measurement of the frequencies Wy, Wy, We, WE
cannot simultaneously determine their time of emission and, consequently,
their order of emission (time and frequency are complementary quantities).
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Fig. 15.

(iii) The three amplitudes are simultaneously large. This is due to the peri-
odical structure of the energy diagram. We can find intermediate states which
approximately satisfy the conservation of energy.

Conclusion: The quantum amplitudes associated to different cascades in-
terfere and this modifies the height and the width of the various components
of the fluorescence spectrum. (Similar difficulties are encountered when one
studies spontaneous emission from a harmonic oscillator which has also a peri-
odical energy diagram. See ref. [2] p. 47.)

Correct way of pursuing the calculations. For all values of V, calculate the
N cascading amplitudes. Deduce from them the V-fold probability distribu-
tion PV (w4 wp ... wy) for having N emitted photons with frequencies
Wy, Wp - Wy- After several integrations, deduce from the P(V), a reduced
one-photon probability distribution 9(w) giving the probability for any indi-
vidual photon to have the frequency w, which is the measured spectral distri-
bution.

Criticisms: This method is correct but too ambitious and too indirect. We do
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not measure the 2V but 9(w). Would it not be possible to calculate directly
9(w) without passing through the ?()? This leads us to the problem of de-
tection signals.

3. Detection signals
3.1. Method of calculation [14,15]

We put a detecting atom in the field radiated by the resonance cell or by
the atomic beam of fig. 1. This detecting atom has a ground state 2 and an ex-
cited state b, separated by an energy w which can be tuned (by a magnetic
field for example). The natural width I'' of b is supposed very small so that we
can neglect spontaneous emission from & during the time 6 of observation
(7' = 1/T"" > ). The precision in frequency measurement is 1/6 and is supposed
much smaller than the frequencies characterizing the radiating atoms: wy, T,
wy > 1/6.

What we measure is the probability P(cw, 0) that the detecting atom is ex-
cited from a to b after a time 6. (For example, we measure a photocurrent
produced by the ionisation of the atom from its upper state b.) We repeat the
experiment for different values of w by tuning the energy difference between
a and b. P(w, 0) is proportional to the spectral distribution 9(w) of the fluo-
rescence light. We will use perturbation theory for calculating ?{cw, #). We can
always put a neutral filter before the detecting atom in order to reduce the in-
cident light intensity to a sufficiently low value (we avoid any saturation of
the detector). We also neglect the reaction of the detecting atoms or the radi-
ating atoms (they are far from each other).

3.2. Hamiltonian
H=Hp +Hy+W, (3.1)

where Hp is the Hamiltonian of radiating atoms + radiation field coupled to-
gether; Hpy is the Hamiltonian of the detecting atom; W is the — DE'interac-
tion between the detecting atom and the radiationi figld (D is the electric
dipole of the detecting atom).

Let us use interaction representation with respect to Hy +Hp. In this
representation, the electric field operator £(r, £) is just the Heisenberg electric
field operator of the radiating atoms + radiation field system (without detect-
ing atoms). In this representation, W becomes
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W(t) = —[DP e ED(r, ) + D=1t EO) (1), (3.2)

where D™ =§|bXa| and D) =8 |aXb| are the raising and lowering parts of
D (8 ={a| D|b)is assumed to be real) and E®) and E) are the positive and
negative frequency parts of the electric field operator E(r, 7).

3.3. Caleulation of P(w, )

At ¢ =0, the density matrix p(0) of the total system in interaction represen-
tation is

p(0) = laXal ® pg , (3.3)

where pp, is the density matrix of the radiating atoms + radiation field system.
As

L= i), o1, (3.4)

we obtain from perturbation theory

i} 5} t
p©)=p(0) i [ de[W(®), 0] — [ dt [ af' [W(x), [W(), p(O)]].
0 0 0 (3.9
We are interested in
P(w,0)=Trg_plbXblp(0), (3.6)

where Trp is trace over radiating atoms + radiation field variables and Tt is
trace over detecting atom variables.
From (3.2), (3.3) and (3.5) the first non-zero term of (3.6) is

7] I
P (w, B)=TrR’Df d:fd:'lbxbuW(r)p(O)W(z')Jrﬁ(:’)p(c))ﬁ(r)]
0 0

7] t ) ,
= 62 TrR f dr f dt"{efw (t—t )E(+)(!’, t)pR E(“')(’»s t')
0 0

+eHOE=DEM Ny o EO, ) (3.7
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e
Fig. 16.

Changing, in the last term of (3.7), ¢ into ¢ and t' into ¢ and using (see fig. 16)

g ] 5

fclrfrdr”rf dr’f d:=fdzf-dr', (3.8)
0 0 0

0 0 0
we get after a circular permutation of the three operators to be traced

a a
P(w,0)~ [ a [ A EO @ DED @, fyeiet=) (3.9)
0 0

We recognize the Fourier transform of the correlation function of the positive
frequency part of the electric field operator at the position r where the detec-
tor is. In (2.9), E®)(r, £) and E ) (r, ¢") are Heisenberg operators of the radi-
ating atoms + radiation field system. The average value is taken within the
whole quantum state of this system.

Remark: 1f we take into account the vectorial character of the electric
field and if we detect the light reemitted with a polarization é;, we must re-
place in (3.9) (EC) (v, HED(r, ') by

(8, EC@, 0)(&, - ED(r, 1)) (3.10)
3.4. Calculation of the total intensity of the fluorescence light
Suppose we have atoms with all frequencies w in the detector. Integrating

(3.9) with respect to cw gives a §(¢ — ¢') function, so that the total photocur-
rent recorded by the detector from O to 4 is

7]
f dw?(w, 0) = f AKEC (r, HED (v, ) . (3.11)
0
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The counting rate at time #, Lg(¢), is
Le@® ~EO (@, DED(r, 1)) . (3.12)
When polarization is taken into account, we use (3.10) with t' = ¢,
Lp(0)~ (8, - EO(r, ), - ED(r, D). (3.13)

Conclusion: Lg(t) is given by one-time averages; 9(w) is given by two-
time averages (more difficult).

Remark: For calculating L:(f), we can also take an atom with a continuum
of excited states (photoelectric effect) rather than an ensemble of atoms with
a discrete excited state b having all possible atomic frequencies w (see ref. [14]).

3.5. Expression of the signals in terms of atomic observables [16]

In Heisenberg representation, the quantum operator E(r, t) satisfies Max-
well’s equation: As £ (r, 7) is radiated by the atomic dipole moment (we sup-
pose the detector outside the incident laser beam), we have the following rela-
tion between operators (which may be derived from Maxwell’s equation in the
same way as in classical theory):

w2
ES(r, 1) ~-;°—D(” (t - 5) (3.14)

where  is the distance between the radiating atoms and the detector, and
D™ =d|eXg| and D) =d|g)e| (with d = (e|D|g)) are the raising and low-
ering parts of D. Neglecting the propagation time r/c, we get

9(w)~ [dt [dDOHDO()yeiwt1) (3.15)
0 0
Le(t) ~ DD 0pO(ay) (3.16)

(85 - DD)(&,; - DO

when we take into account polarization effects.
In terms of the fictitious spin-] § in the rotating reference frame we can
make the substitution
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DDNODENEY » (SHDS~(£)eioLEt) (-17)
where
S (3.18)

4. Master equation treatment of spuntaneous emission

4.1. General problem of the evolution of a small system coupled to a large
reservoir {4,15,17-21]

4.1.1. Formulation of the problem
A small system A4, of Hamiltonian H 4, is coupled by ¥V to a large “reser-
voir” R, of Hamiltonian Hy . Our problem is to describe the evolution of 4.
Hamiltonian:

H=H,+H, +V. (4.1)

All system variables commute with reservoir variables.
Density operator p of the total system:

do_1
ar ~in ). 32
(G)=TrA’RG,o= E (m,a|Gplm,a). (4.3)

m,a

where Tr 4 (T1g) is the trace over A(R) variables; {|m)) is an orthonormal
basis in the space of 4 states €4 (Latin indices for 4}; {|a)} is an orthonor-
mal basis in the space of R states € (Greek indices for R).

Suppose we are interested only in system A variables: G 4,

(GP=Try oG p= mZ()x (m,alG ,Im'ey (m',a | plm,a)

o’ (m|G 1S,
= E (m|G 4 Im') 27 (m' alplm,a). (4.4)
m,m @

From p, operator of €4 ® g, we can deduce an operator of €, 04, given
by
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(m'lo,Ilmy= 22 (m'alplma). (4.5)
A a

Here, 04 is called the “reduced density operator” of A, obtained by “tracing
p over R”

p=0,=Trgp. (4.6)

From (4.5) and (4.4), one deduces

(Gy)= 20 mlGImXm'lo 1m)=Te, G,y . 4.7)

]

All system averages can be done with the reduced operator 04 in the €4
space. If we are interested only in A4 variables, it is better to try to derive an
equation of evolution of 04 from (4.2), rather than solving (4.2) which is
much more complicated (as it gives also information on R),

do

4 _d
=R, g (4.8)

do_1
LAY gy

dr if

The equation giving do 4 /dt is called “master equation of A” and describes
the evolution of 4 due to its coupling with R.

It is important to realize that, although the evolution of p can be de-
scribed by a Hamiltonian H, this is not in general true for o4 . In other words,
it is impossible to find an hermitian operator ¥, of €, such that (d/d¢)oy
=(1/ih) [HK 4, 04]. This is due to the fact that ¥ depends on both 4 and R
variables: when tracing over R the right member of (4.2), one gets a difficult
term Trp [V, p] which cannot be expressed simply in terms of o 4. This non-
Hamiltonian character of the evolution of o4 introduces some irreversibility
in the behaviour of 4.

In this paragraph, we try to derive a master equation for o4 in conditions
where a perturbation treatment of V is possible. More precisely, we will show
that, when the correlation time 7 of the force exerted by R upon 4 is suffi-
ciently short, it is possible to consider only one interaction process between
A and R during this time 7.

These general considerations will then be applied in subsects. 4.2 and 4.3 to
spontaneous emission.
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4.1.2. Derivation of the master equation

Here we give the main steps of the derivation of the master equation giving
do, /dt. A certain number of approximations will be done which will be then
discussed in § 4.1.3. The results will be interpreted in § 4.1.4.

Interaction representation (all quantities in IR are labelled by a tilde).

p(t) > p() = HAMHRIM p(p)e~iE R (4.92)
0,(0~>5,(0)=eaths (e Hathh (4.9b)
V. > V(1) = el HatHRIM y o~i(H g +HR) (4.9¢)

One can easily show from (4.9) that

04(8) =Trg p()= 0 ,4(t) = Trg p(2) . (4.10)
Equation of evolution of p(z):

d o1 =

4 PO =5 V(©),6(0] . (4.11)

Two hypotheses concerning the initial density operator p(0) at t = 0.
(i) p(0) factorizes

p(0)=5(0)=0,(0) ® 5x(0) . (4.12)
(i) 05 (0) commutes with Hp,
[0£(0), Hz]=0. (4.13)

It follows that 05 (0) and Hp can be simultaneously diagonalized. An impor-
tant example is a reservoir in thermodynamical equilibrium, in which case
0p(0) ~ exp{—Hpg [kT).

We will see in § 4.1.3 that the factorization of p(0) is not a very restrictive
hypothesis.

Iterative solution of the equation of evolution of p. Integrating (4.11), we
get

4
50 =5(0) + 35 [ ar [P, () (4.14)
0
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Introducing (4.14) in the right member of (4.11) gives the exact equation

1
(ih)?

I
& b= 7, B0+ = [ &' [P, (), 6N) . (4.15)
0

A first hypothesis concerning V. We assume that ¥ has no diagonal elements
in the basis where Hp, is diagonal. As 0 (0) has only diagonal elements in this
basis [see (4.13)], it follows that

Trg [02(0) V()] =0. (4.16)

Consequently, if we trace over R the right member of (4.15), the first term
gives (with (4.12))

Trg [V(2), 5(0)] = [Trg (05 (0) V(1)), 0,,(0)] = 0. (4.17)
Physical interpretation: Trg(og(0) V(1)) is an operator of ¢ 4 which represents
the energy of 4 in the average potential exerted by R upon 4 when R is in the
state 05 (0) (some sort of “Hartree potential”). So, we assume this average po-
tential is 0. If this were not the case, it would be easy to add, in the master

equation, a commutator describing the effect of this “Hartree potential”.
Finally, by tracing (4.15) over R, we get

t
%5A(;)=_;15f dt' Trp, [P(2), [P(2), BN - (4.18)
i° 9

Approximation 1: Factorization of p(t). Introducing 64 (¢") = Trg p(1'),
we can always write

p(t) = 6,(1")0R(0) + Ap(Z) . (4.19)

We insert (4.19) in (4.18) and neglect the contribution of Ap(z'), so that
the exact equation (4.18) is replaced by the approximate equation

t
(f—r 5 (0= ﬁlz Of dt' Teg [P(2), [P(£), 6, () o (O] (4.20)

The error we have made is given by
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t
——‘2 [ Te [P0, 17, AGONI, (4.21)
0

and will be estimated in § 4.1.3.
Explicit form of V. We will assume that V is a product (or a sum of prod-
ucts) of reservoir and system operators,

V=AR, (or V=2, APRP), (4.22)
p

where A is an hermitian operator of €, ’.R an hermitian operator of ¢p,
V()= AR, (4.23)
A(F) = eiHatln g g-iH g1l
R(f) =eiHRUN R o—itigtin (4.24)

Let us insert (4.23) in (4.20), change from the variable ' to the variable
7=t~ t', expand the double commutator, use the invariance of a trace in a
circular permutation. We get

t
AL -—;I—z-ofclf{TrR GR(OR(DR(t — 1))

X {A(DA(t—1)G i (E=1) A(r—r)aA(t-r)A(r)}

+ hermit. conjug. (4.25)

The reservoir only appears in the number
G(7) = Trp 0 (OR(R(t — 1), (4.26)

which is a correlation function of the reservoir. G (1) only depends on 7 be-
cause op (0) commutes with Hp . All other quantities appearing in the second
bracket of (4.25) are system operators. Eq. (4.25) is an integro-differential
equation. The rate of variation of ¢4 at time ¢ depends on the whole previous
story of A i.e.on 0 4(f — 7) with 0 <7 <1.

Approximation 2: Short memory of the reservoir. We will see that G(7)—>0
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if 7> 7¢, where 7¢ is the correlation time of the reservoir. We will assume that
7c is much shorter than the characteristic time T of the system, i.e. of 6. In
the interval of time 0 < 75 7c wWhere G (7) is not zero, 64 (¢ — 7) does not vary
appreciably, so that we can replace 64 (¢ — 7) by G4(2) in (4.25). If t> 7, we
can also replace the upper limit of the integral by +oo,

If we come back from the interaction representation to the Schrodinger
representation, we finally get

do =
A4 1 H 1
& “in Ha 04l = Ofd-rc(r)

X [Ae—iHAn’hAeiHAf{h OA([) __e—iHAffﬁ‘AeiHAﬂh OA(I)A]

+ hermit. conjug. of the second line. (4.27)

For the matrix elements of 04, we get a set of coupled linear first-order dif-
ferential equations with time-independent coefficients.

If we skip the index A for 04, and if we take the basis of eigenstates of H 4,
(4.27) may be written as

ER

dr % = 1wy 0y ijim %Im > (4.28)
where w;j = (E; - 1});’?’: is a Bohr frequency of 4, and the Rjjjp, are time-inde-
pendent coefficients which can be calculated from (4.27) and which will be
explicited and discussed in § 4.1.4.

Approximation 3: Secular approximation. In absence of damping ;i and
Oy evolve at frequencies w;; and wy,,. Let I" be the order of magnitude of
the coupling coefficients Ryj,. If I' <|w;; — wyy, |, we can neglect the cou-
pling between o;; and 0y,,,, the error being of the order of | l“f(w —wp,) <1
The argument for proving this point is the same as in pe rturbatlon theory: the
coupling V,;, induced by V" between two states |a) and |b) of energies £, and
£}, has a small effect if |V, | < |E, — E}|. Finally, with the secular approxi-
mation, (4.28) may be written as

g—a = zwa +ER

de % ij ifim %1m > (4.29)

with le,m — wﬁl <1
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4.1.3. Discussion of the approximations

Correlation time of the reservoir. Let us explicit the correlation function
G(7) given in (4.26). Introducing an orthonormal basis {la)} of eigenstates of
Hp  [in which oy is diagonal according to (4.13)], and putting

P, ={alon(0)lad (4.30)
(probability for the reservoir R to be in state a),

Wy = (B, — EQlh (4.31)
(Bohr frequency of the reservoir), we get

G(r) = 27 p(@)KalR B2 eiwap™
of

= [dwg(w)eir (4.32)

where
g(w)= aZﬁ) P@alRIBEE(w — w,y) - (4.33)

We see therefore that G(7) = 0if 7> 7 where 7 is the inverse of the
width of g{w); 7¢ is the correlation time of the reservoir. The force exerted
by R upon A is a random force with a memory characterized by 7.

The larger the width of g(w), the shorter the correlation time 7.

Parameter v characterizing the strength of the coupling between A and R.
To characterize this coupling, we can first take the average of V in the initial
state p(0),

Tr, p(0)V=Tr,(0,(0)Try a5(0) V), (4.34)

which is equal to 0 according to (4.16). So we take the average of V2 and we
put, using (4.22),

v =Tr,p p(0) V2 =(Tr, 0,(0)4%)(Tr, 05 (0O)R?) . (4.35)
Order of magnitude of the damping time T. Suppose the condition of valid-

ity of (4.27) is fulfilled. What is the order of magnitude of the coefficient I" of
0,4(2)? (I'=1/T.) We can take
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G(1)~G(0)e""C ~ (Tr ax(Q)R?)e~7"C . (4.36)
On the other hand,
A e-—fHA T."hA eiHa h ~(Tr o (0)4 2)81'0.}07 , (4.37)

where wy is a typical Bohr frequency of 4, so that we finally have

izgf dr(Tr 0g(0)R*)(T1 0,,(0)4%)e~7/"C el

U2
2
VT,
:1—2 —< (4.38)
A7 1+ wyTe
Neglecting w7 in the denominator gives an upper value of T',
2
v,
Ps—= (4.39)
ﬁ2

Condition of validity of approximation 2. This condition is, as we have
mentioned above, that the characteristic time of evolution of 04, i.e. T=1/T,
must be much longer than 7,

T=1>7. (4.40)
Using (4.39), we see that we must have

U2‘T2

C <. (4.41)
h2

The condition v7 /A < 1 means that the effect of the coupling between A and
R during the correlation time 7 of R is very small.

Condition of validity of approximation 1. Taking the time derivative of
(4.19) and using (4.15) and (4.18) we get the following equation of evolution
for Ap(z):
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14
G LGOI R J & 7@, (76, 7]

1
~L RO, [ ar' [, [7(), 5G] (4.42)
0

We can integrate (4.42) and introduce the value so obtained for A g into
€q. (4.21) which gives the error introduced by approximation 1. As we expect
this correction to be small, we only need an approximate expression A g, so
that we will replace in the right member of (4.42) 5(¢") by 6,4 (¢") 6 (0). We
assume that the average value of an odd number of operators R is zero [gen-
eralization of (4.16)], so that the first term of the right member of (4.42) does
not contribute. We will not explicit the contribution of the last two terms of
(4.42). But it is easy to see that they will lead to corrections of the damping
coefficients T" given by triple integrals of four ¥ operators. The order of
magnitude of these triple integrals is

vird vl w22 v2r2
Gt — Yol (4.43)
AR TR n?

according to (4.41). These corrections represent the effect of more than one
interaction occuring during the correlation time 7. So, if approximation 2 is
justified, approximation 1 is also justified.

We see also that we can forget Ap(¢") in (4.19) since keeping this term in
(4.18) does not appreciably change the master equation. So, it is a good ap-
proximation to consider that the density matrix factorizes at each time in
0,4(t)0R(0), so that hypothesis 1 assuming such a factorization at # = 0 is not
very restrictive. We must not forget however that, even when replacing 5(¢')
by 0 4(¢") 6% (0) in (4.18), we take into account the correlations which appear
between 4 and R in the interval (¢', ). Because of the correlation function
G(r) of R, this interval is in fact limited to (¢ — 7¢, #), so that the master
equation derived above includes the effect of the correlations appearing be-
tween 4 and R during a time 7. 4 and R cannot remain correlated during a
time longer than 7.

To summarize, the condition of validity of the master equation (4.27) is
(4.41) which means that the correlation time 7¢ of the reservoir is so small
that the effect of the coupling between 4 and R during 7 is very small and
can be treated by perturbation theory. Eq. (4.27) describes the effect on 4 of



Atoms in strong resonant fields 37

a single interaction process with R occurring during the correlation time 7c.
From (4.42) we can, by iteration, calculate the effect of multiple interaction
processes occurring during 7¢, an effect which is smaller by a factor v272/h2.
We finally note that the order of magnitude of I is not v/#, but v27 /A2

= (v/h)v7[h, which is smaller than v/% by a factor vTe/h. This means that the
fluctuations of R are so fast, that their effect on 4 is reduced by a “motional
narrowing” factor which is precisely vTefh.

4.1.4. Explicit form of the master equation. Physical interpretation

4.1.4.1. Simplification. To simplify, we will assume that 4 has discrete non-
degenerate energy levels and that the distance between any two pairs of levels
is large compared to the damping coefficients T",

Iwﬁi >T wheni#j. (4.44)

In this case, because of the secular approximation, the diagonal elements oj;,
i.e. the populations of energy levels of 4, are only coupled to themselves, and
not to the off-diagonal elements of o,

Z) R, (4.45)

1ijj H

An off-diagonal element 0y which corresponds to a non-degenerate Bohr fre-
quency w;; of 4 (i.e. no other Bohr frequency wy; exists with |w;; —wyyl =3
is only coupled to itself. Only off-diagonal elements corresponding to the same
Bohr frequency (within I") are coupled together.

4.1.4.2. Rate equations for the populations. Pauli equations. Let us first cal-
culate the coefficient R;; (coupling of oy; to itself). Starting from the second
line of (4.27), taking the matrix element of the two operators between |i}

and (i[, keeping only the contribution of 0};, and using expression (4.32) of
G(1), we get

L s N
Ryii=— _i-of dr G(T)( IE Ay Ayeteim —Aﬂ.Aﬁ.) + hermit. conjug.

477

= p(a) IROEﬁIZIAHIZ bf ef (waﬂ-!-wﬂ}rd?_

=r

+ hermit. conjug. (4.46)
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(Note that the term I = i disappears.) Now we use

oa oo

[ eiordr=tim [ 974 = jim —L Zf?:—‘?‘l'ﬁ@(w).
0 e—'0+0 e—0+ €
(4.47)

As all other quantities are real, the contribution of the principal part
iP[1/(wqg + wj)] vanishes when we add the hermitian conjugate and we get

Riimi DI,

iifi 12 ot
with
I, _,I:i—” 2 p(@) 27 Ked | VIBDI28 (E,; — By, (4.48)
a g

where E; (£g) is the unperturbed energy of the combined state |ai) (182)) of
the total system 4 + R and where we have used (4.22).

I';.; has a very simple interpretation. It represents the transition rate (given
by Fermi’s golden rule) of the total system A + R from the initial state |a, i,
weighted by the probability p(a) of finding the reservoir R in the state |a), to
any final state |B, [} where 4 is in the state /, the § function expressing the en-
ergy conservation for the total system 4 + R. In other words, I';_; is the prob-
ability per unit time that 4 makes a transition from |i} to |/} under the effect
of the coupling with R.

Let us now calculate R;;;; (coupling of oy; to 0j;) A calculation similar to
the previous one gives

i = Djosi (4.49)
Finally we get for ¢;; (Pauli’s equations)
0=~ D1 o + 21y 0. (4.50)

Physical interpretation: the population of level |i} decreases because of transi-
tions from [#) to other levels |/}, and increases because of transitions from oth-
er levels |} to |).
In steady state, the populations of two levels V; and V; usually satisfy
i"\f}l’}_,}fh}l’ﬂ (4.51)

ind B
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The number of transitions from |7} to |/} must compensate the number of tran-
sitions from |7 to |7}

Particular case of a reservoir R in thermodynamic equilibrium at 7. In this
case, we have

P@) _ _(E ~EJkT
T e Sl (4.52)
Let us write (4.48) in the following way
2m o ;
ONEL DIPIFIC 28 il VIBDIS (B By (4.53)

But, because of the § function which expresses that £, + E; = Eg + Ej, i.e. that
EO! = Eﬁ =Ef - Ef’ we have

ﬁ% =~ EaEPIT = o~ (B~ EDIKT (4.54)

We can therefore take p(a)/p(B) out of =, Z4 and obtain, after some rearrange-
ments,

Ff~+1=e_(Ef_Ef)fkT2h—HE p(ﬁ) Z; I(BHV|QI->126(EM _ Eﬂj)
8 @

=g~ CEEpATY (4.55)

In other words,
e L v Ll ST (4.56)

Comparing (4.56) and (4.51), we see that when the system A4 reaches a steady
state, the population of any level # is proportional to exp(—£;/kT). By inter-
acting with a reservoir R in thermodynamic equilibrium at temperature 7', the
small system A itself reaches the thermodynamic equilibrium.

4.1.4.3. Evolution of an off-diagonal element of o corresponding to a non-de-
generate Bohr frequency. We have only to calculate R;;;;. The calculations are

iij-
similar to the previous ones and give

5 ; _A:'j
Gy =—iwy 0y — Ty ti5r) oy, @50



40 C. Cohen-Tannoudji

where I';; is the damping rate of o;;; Ay; is a shift of the energy separation be-
tween lr) and |f). Let us first give the expressions of I';;. One finds that I';; is
the sum of a “non-adiabatic’ and of an “adiabatic” contribution,

_ pnon-adiab adiab
I =T iy (4.58)
where
phnon-adiab - EI‘ ik 21 5 4.59
¥ I#i m#j i ( )
I‘“Oﬂ'adiab is half of the sum of the total transition rates from i to levels [ oth-

er than i, and fromj to levels m other thanj. Fadlab is given by

diab _ 27
3 - %} p(a) %) 8(E, — E,)

X {1 Kail VIBDIZ + L Kaf I V1B 12 — (i | VIBIXBi I V1)) . (4.60)

The first term of the bracket of (4.60) represents the destruction of “co-
herence” between 7 and j due to an “elastic collision” with R during which
A +R transits from |ai) to |87} (this “collision™ is “elastic” because £, = Ej)
(see fig. 17a). Similarly, the second term of the bracket of (4.60) represents
the effect of elastic collisions |aj) - |87 (fig. 17b). The last term represents a
“restitution of coherence” due to elastic collisions which transfer a linear su-
perposition of |ai) and |aj) to a linear superposition of |8i) and |8/} (fig. 17c¢).

The transitions which appear in Fnon'ad‘ab are such that Ey # E, contrary
to the transitions which appear in I‘ad'ab for which £, = E. This is the origin

lai> IBi> loci> lai> Bi>
o j> locj> = B3> la j> _FIGP
(a) (b) (c)

Fig. 17.
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of the denominations adiabatic and non-adiabatic. When the diagonal elements
of the A operator appearing in V' = AR are zero, I“"‘d“l =0.
Let us now come to A;;. We find

A;}':‘&f - Aj, (4.61)
with
A= Z:> 5 2 nid )I(a:IVifft)I ‘ (4.62)
« B =

Here A, is a second order shift due to virtual transitions of the total system
A + R from state |a, i) (weighted by p(a)) to all other states |, I). The singu-
larity of the energy denominator for £ ; = Ej; is eliminated by the principal
part.

4.1.4.4. Evolution of a set of off-diagonal elements of o corresponding to a
degenerate Bohr frequency. We find

- . A
R (I‘ i —é-) EI‘H_,U 0 » (4.63)
with |wgy — wjl ST. We have already given Iy and A We have for Iy, ;;
2 . ;
Chy =5 ? ? () $Bil VIakXal | VIB)S (Eyy — Eyp) . (4.64)

Here Iy, ;; corresponds to “collisions” with R (not elastic as £, — £ # 0)
which transfer a coherent superposition of |ak) and |a!) to a coherent super-
position of |87} and |6j) (fig. 18).

o k> IBi>

JE—

lal> IBj>

Fig. 18.
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4.2. Application to spontaneous emission. General considerations {20/

4.2.1. What is A? What is R?
A is an atom. R is the quantized electromagnetic field which has an infinite
number of degrees of freedom (infinite number of “modes™).

4.2.2. Whatis V?

V=-D-E= 2 BE (4.65)

a=x,y,z

where D is the atomic dipole moment operator; E is the electric field operator
evaluated at the position r of the atom (taken at the origin r = 0);

F(H=E® F(-)
E (=E oy ri(r),
where E‘Sﬂ is the positive frequency part of £ in interaction representation

EO = EO),

E® @) = %) ) SZEk ety 0P, (4.66)

where € is one of two unit vectors €, €' perpendicular to k (¢ - &' = 0), k being
the wave vector.

€ =i |!iw—~ (L3 = quantization volume) , (4.67)
3
2¢, L

ayg (ag¢) is the annihilation (creation) operator of one photon ke,

(g g1 = 8 ppr g - (4.68)
4.2.3. What is ox(0)?

0(0)=10X0|  where [0)= vacuum state . (4.69)

In the vacuum, there is no photon present. All modes are empty. In this state,
the reservoir R, i.e. the quantized electromagnetic field, can be considered as
in thermodynamic equilibrium at temperature 7 = 0.

As |0} is an eigenstate of Hp, condition (4.13) is fulfilled.
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As Tr agg 0g(0) = (0lagg|0) = 0=(0laj |0, we have Trg(Vag(0)) =0
and condition (4.16) is fulfilled.

4.2.4. Correlation time of the reservoir
Let us calculate

G (1) = Tr oR (OVE (D E (t — 1) = (OLE () Ey (t — )]0 (4.70)

Using (4.65), (4.66) and (4.68), we immediately get
= 2 i
G, (M) = k;&zéz,k o 65 [E P,

Summation over the two unit vectors €, €': Using the completeness relation
for the three orthonormal vectors ¢, €', x = k/k, we get

r !
€ € +eaeb +K’a“{b _6ab :

so that
% e Kakp
ssuce‘*eb cephe e =S =8 = " (4.71)
Transformation from a discrete sum to an integral:
k (2?7)3 f a3k yer f dQ k2 dk . (4.72)

Summation over angles

It dﬂ( fa K"") =3, . (4.73)

Finally, we get

=25 s, [aeter 519

We see that the correlation time of the “vacuum fluctuations” is extremely
short, certainly shorter than the optical period 1/wq of the atom A4,



44 C. Cohen-Tannoudji
To <l/wy . (4.75)
4.2.5. Order of magnitude of the damping coefficient I. Validity of the master

equation
Calculating I' by Fermi’s golden rule, we find that

I’/wo ~a3 (4.76)
where wy, is the optical frequency and a = ez,r'4freohc = 1/137 is the fine

structure constant. Comparing (4.75) and (4.76), we see that the damping
time T'= 1/I" satisfies

T=1T'> 1wy >1c. (4.77)

As the damping time is much longer than the correlation time, this shows that
the master equation can be used for describing spontaneous emission.

4.2.6. Some important relations satisfied by the T';_,;

As R is in the ground state |a) = [0), all other states |8) which are connect-
ed to |a) by ¥ have a higher energy. These states correspond to one photon in
a given mode |3 = |ke),

Ey—E,>0. (4.78)

Consequently, the atom A can only go from a state |7} to another state |/}
such that

EI~EE=EQ—Eﬁ<O. (4.79)
Therefore
Liy=0 if Byt =, (4.80)

By spontaneous emission, an atom can only decay to lower states. The steady
state corresponds to the atom in the ground state (thermodynamic equilibri-
um at "= 0). For the same reason [see expression (4.64)]

Tyy=0 if E—E =E—E>0. (4.81)

As D is an odd operator, it has no diagonal elements in the atomic basis and
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rg.diab =0. (4.82)

4.2.7. Signification of the A;

A; is the “Lamb shift” of level i due to the coupling of the atom to the
electromagnetic field. We will not consider here the problem of the renormali-
zation of the A;’s, and will suppose that the A;’s are incorporated in the atomic
Hamiltonian. Let us just remark that we have not used r.w.a. and that the mas-
ter equation approach gives simultaneously the Lamb shifts of the two states e
and g of an atomic transition. This is not the case in the Wigner-Weisskopf ap-
proach where the Lamb shift of the final state is more difficult to derive.

4.3. Explicit form of the master equation describing spontaneous emission in
some particular cases

4.3.1. Two-level atom. E, — E, = hwy )
Let us put: I',,, = I". We have seen that Iy = 0and that ngfhab =0, so
that the master equation can be written

F oL B et 1

6= —I‘cree S Opp = —1W) Oy — zPaeg )

i - . e - 1

G R0 oge—(oeg) ~1w09ge—21"age. (4.83)

Spontaneous emission is sometimes described by a “non-hermitian Hamil-
tonian” obtained by just adding an imaginary term, —}iT, to the unperturbed
energy of e. Let us remark that it is impossible, with such an approach, to
derive the second equation (4.83) which describes the transfer of atoms from
etog.

If we consider the fictitious spin 1S associated with this two-level problem,
we have

(5,)=4(o,, — o)y Ao AS9=0, (4.84)

so that the master equation can also be written as
($)=-TUS)+3), (S)=-ITS)+iwy(sS,). (4.85)

We have used 0, + 04, = 1 for the first equation. This equation means that
(S,) reaches its steady state value, —3, corresponding to the spin in the |—)
state, with a rate I'. The second equation means that (5.} are damped to zero
with a rate 3T
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4.3.2. Harmonic oscillator
As the matrix elements of D = eX are non-zero only between two adjacent
states [n) and |n — 1) and are proportional to v/, we have

Dy S0BO . 40 (4.86)
where
I'= Fl—»o .
3 —_—
hwg
2 _]k;
hwg
 [PRETONE, SESE
3
ﬁh)g
Qi o
Fig. 19.

As the levels are equidistant, we have a coupling between 0,,, and 0,,,
when p — ¢ = m — n. Using (4.64), we immediately find that qu—»mn is pro-
portional to the product of the matrix elements of X between p and m, and
between ¢ and n. Furthermore, as m must be lower than p, we have
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qu—rmn =\/pql“6m,p_16”,q_l . (4.87)
Finally, we get the following master equation:
6!1,!1 = _nr‘gn,n t(n+ l)I“':"—Jrr+1,a"1+1 '
('rm,n =—i(m— n)woom,n
—3m+mlo,  +\m+D)(n+Dlo, . 4 - (4.88)
We now show from (4.88) that the mean energy (H) — 2 hiw, {a), (a*) are

damped with rates equal to T, 3T, 4T, respectively.
Evolution of (H) — jhw=hwZ _ no, . Using (4.88), we get

i = 2

J:;{J " = : [_ n=0 " Onn +n§0 At l)unﬂ’nﬂ] . S

But
- 2
EO BT g _Eé [(2+ 1) (2 + D)0y 41 par
= E (n? - n)o,, = ng{;) (n? - n)o,.

so that

E no_=-r E no...

n=0 ™ n=0 "™
which may be written as

c%((b’) —1hw) = -T(HD - 3hw) . (4.90)

Evolution of {a*) = E:=1 \/r?on_l - Using (4.88), we get
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oa

Z% \/Edn—l,rz :fw()( Z; \/EUH—].,H)

n= n=

+I‘[— nvgll (n - 1)\/}?071_1,” +ﬂz=;1 nymnt1 Un,n+l] . (491

But,

-

EU n/n + 1 o”’”“:ng (n— l)\/r;crn_l,n :

n=

25 nn+tlo

n=1 n,n+l =

The second line of (4.91) can therefore be written as

-I 2 \/Ecn-l,n [%(2}’1 - 1} _(n - 1)] = _%F Z:;l \/Egn—l,n 5

1

2

Finally, we have
& @ =(iwy — 4", (4.92a)
and consequently

S @=(-iwy - ir)@. (4.92b)
As (X) and (P) are linear combinations of {(«} and (a*), we also conclude
that (X and (P) are damped by spontaneous emission to zero with a rate i
These results clearly show the importance of the coupling coefficients
Uyp+1 n+1—m,n- If we forget these terms in (4.88), we are tempted to consider
that o,,, is damped with a rate L(m +n)T. Such a mistake would lead us to
the prediction that, the higher the initial excitation of the oscillator, the faster
is the damping of (X). In fact the coherence which leaves the couple of states
m + 1, n+ 1 is not lost; it is transferred partially to #, n and this explains why
the damping of (X) is independent of the initial excitation, and consequently
why the spectral distribution of the light emitted by the oscillator has a width
I" independent of the initiz] state.

4.3.3. Dressed atom of § 2.2.3
We come back to the dressed atom studied in § 2.2.3, and we study what
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happens for a strong resonant irradiation (wy, = wg, w; > I'). What we have
neglected in § 2.2.3.2 is the transfer of coherence from one pair of levels to
another one corresponding to the same Bohr frequency, wq + w, W,

wp — wy. As we suppose wy > I" we can, because of the secular approxima-
tion, neglect any coupling between wg and wq * wy, wy + w; and wy — wy.
The important transfers are represented below (fig. 21). The numbers near the
arrows are the matrix elements of D between the two connected levels which
may be calculated from the wave functions given in fig. 13. Remember that
= [(g|Dle)]? ~d2.

Let us recall that we have established that the total transition rate from any
level is the same and equal to 3. So the rate of disparition of any coherence
is (3T +1T) = 1T Let us now calculate the transfer of coherence correspond-
ing to figs. 21a,b,c,d, and which were neglected above in § 2.2.3. We have just
to multiply the two numbers shown near the arrows for a given transfer and
use d2~T.

If we put
€ ey _ €€
Welolysr =, , (4.93)
we get
fig. a > d e —i(wy + wq) ¥Pol o— AT T
g dr Opn—-17~ TRE] an n—-1" n,n—1 n+l,n?
= (.IJO"" U-, wo‘— w-' (.IJO tﬂo
LI"n-M ; _—
- \ / /
¢n+‘| \\ ,"‘ [
\i \ \\ v \ /
\472 \-i2 AL R )
\ % g\ -4 JraLd,«’g
+ \ \ Ny \\ I
$n ‘\ —F ]
o \\ \ .‘.‘ Ao .f
n 1y A T
/ !
\\‘ \v\ \‘ 4 \ I
-q -d / -q /
/2‘\ L‘|/'2\\ 2\ 4 Ji/ /2\‘ fwd/z
\ A 14 \ /
\ \ N \ I
+ \ \ ‘¥
n-1 \\ “ f.‘
L% _
(a) (b) (c) (d)

Fig. 21.
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d 4 —+
fig. b > dar Opn-17 I(MO"wl)Unn 1 lron,n— 4F0n+1 n’
fi d i ++ —ir ++ 11-. FEe 51 s
g.c= dr n n-1- I(“")0 n,n—1 On,n— On+1,n On+1,n >
fig. d - 4 1[‘ bl 5 3 ir
18 dr Onon-17 I(":'0 Un n-1 %n,n-1 0n+1 nta gn+1 n-
(4.94)
Subtracting the two last equations, we get
T ("nn =50 o) SCsie =T G,y R ) (4.95)

Let us now use egs. (4.94) and (4.95) for determining the damping rates of
the components of (D) oscillating at wq + wy, wy — wyq, w. We get for the
negative frequency parts

(D(wy+wy))=—}d Zn} B s

(D(wy —w ) =—3d a2 o=t
H

nn-17?
(D(wy)) =1d Z) CHAITE mmli) B (4.96)

Using (4.94), we immediately find for the damping

g e %onnnl I72J ot =—%FEU;_
n n >

ar Onn-1" n+l,n 4
=3l ? il (4.97)

and in the same way
E 5 —rEoml (4.98)

From (4.97), (4.98), (4.95) and (4.96) we conclude that the damping rate of
(D(wq + wy))is 3T that of (D(wq — wy))is 3T, and that of (D(wq)) is 3T
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We see now that the spectrum given in fig. 14 is not quantitatively correct:
the two sidebands have a width which is not equal to 2 X 3" =T but to
2 X 31" = 3T. As the height is inversely proportional to the width, we see that
the height must be reduced by a factor (3T)/(3T") = %. So the two sidebands
have a half-width 3T and a height three times smaller than the height of the
central component.

We will derive again this result in a next section by calculating the correla-
tion function of the dipole. But we see how the transfer of coherences in the
master equation approach can describe the effect of interferences between
cascades discussed in § 2.2.3.

4.3.4. Atomic transition between two states e and g of angular momentum J -
and Jg [9,10,22]
The atomic density matrix has the following form:

U!E Ueg
Oge | Tgq
Fig. 22.

The Zeeman sublevels of a are called |/, m,) (-J, <m, <J,), those of g are
called |, my) (—J; Sm, <Jp); 04 1sa(2J +1)><(2J' +1)matr1x g, a
(20 1K (2 % 1) matnx ) Ugg has L 1 rows and 2J + 1 columns;
Ope = U;. The dlagonal elements Oy, and Omgmg Of 0, and o, are the popu-
lations of the Zeeman sublevels of e and g. The off-diagonal elements 6,,;,p,.,
and Opmgmy of 0, and 0, are called “Zeeman coherences”.

0gg consists only of off-diagonal elements 0y, = which are called “optical
coherences”. Because of the secular approximation (wg > I'), 0, is only cou-
pled to 0, and not to 0, (0, is not coupled to o, because I'y_,, = 0; see
(4.8(})_); 0 is coupled to 0, 0,, is coupled to oeg

Because V is a sum of products of atomic and field operators (see (4.65))
we must replace in (4.27) G (7) by G (7) and the two A4 operators by D, and
Dy, and sum over ¢ and b. But as G, contains & ;, (see (4.74)), we have just to
add a subscript a to the two D operators and to sum over a.

(1) Damping of o,. From the previous remark and eq. (4.27), we get for the
damping term of g,
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d ==}
O I af }
e f Go(MP,D, P, e Hathp Hatlhp g dr
0
+ hermit. conj. , (4.99)

where P, and P, are the projectors into e and g. Using

—iH 4 7/h iH 4 7/h = odwgT
Pge A Dae A Pe e OPgDaPe,

P, o—iH 47/h D, ety Tr’ffpe =g~ iWo TPeDan : (4.100)

(we suppose that e and g are degenerate, i.e. that there is no magnetic field),
we get

a g a e

z ——iz [ G, (nP,D,PD,P,c (1)eiw dr
0

+ hermit. conjug. (4.101)

G4q(7) does not depend on a (see (4.74)). The operator X, P, D, P, D, P, is
obviously scalar in the e space (the scalar product EaDaD is scalar and P, is
also scalar). One easily finds

21 P,D P, D,P, = N =

el DIg)2P, (4.102)

where {e||D| g} is the reduced matrix element of D between e and g.
Using expression (4.74) of G ,,(7), integrating over 7, we get

e _Fe—»g o,, (4.103)
where I' is a number given by (g is the charge of the electron: D = gr),

3

2 02( 1 )2 5 %o
Ly Kellrlig)ls —— . (4.104)
e~y fi EU 2Je+1 (211.(:)3

We note that all matrix elements of 0, are damped at the same rate. This is



Atoms in strong resonant fields 53

due to the isotropy of spontaneous emission. The atom interacts with all modes
of the electromagnetic field, having all wave vectors and all polarizations.
(ii) Damping of 0,,. We always start from (4.27) and get

do 2

g _ . 1 ;
& w00 — 2 QE f £D.ED.E aggGM(r)e"‘"O"dT

0
]- r ® —f
- z of Oog P, Dy P D, P, Gl(r)e 07 dr (4.105)
from which we derive, using (4.74), (4.102) and (4.104),

d s 1
3 e = (i~ AT, Do, (4.106)

(remember we have included the Lamb shift in H ).
(iii ) Evolution of 0g. The same calculations give

d 1 7 ;
w5 J dr ? G o(1)P,D, P, 0,()P,D, P, ei*’"
+ hermit. conjug. , (4.107)
which can be transformed into

f G@)e' o7 dr) U B,D, P, 0,()P,D,F, . (4.108)
0

d

_2
ar %= (Re

If we introduce the standard components of D,
D, =i, +iD)), Dy=D,, D_;=i(D,~iD)), (4.109)

we can write

22 PDPoPDP

a“e’e"ea
a=x,y,z ¢ £

s q=—§o,+1 (-DF D F 0 FD_,F, . @110
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Using the Wigner-Eckart theorem,

(Je,mequng,mg)=

AR
\/%—+l(ellDllg)<Je,meiJ ,1,mg, @), (4.111)
where

U myly, 1,m, q)

is a Clebsch-Gordan coefficient, we get after simple calculations
d

= =T o i W
dr "mgmg €78 o041 MeTMgtdiMeMgtd
XS, mg+ql.}' , 1, My q}(.fe,mg +q|Jg, I,mg,q). (4.112)
q =+ 1 q=0 q =-1
m+1 m'+1 m m’ m-1 m-1

[] x b4 o b4
g *® l }( x x

m m' m m' m m'

Fig. 23.

The different arrows represent Clebsch-Gordan coefficients, the product of
which appears in the transfer coefficients.
Examples. (i) J, = 1 > J, = 0 transition (we putT'=T,_)

-1 0 +1
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do do
e Sk = AN
s e a2
d
ar %60 =105 41 togo + 02 ). (4.113)
(i) J, =3 +J = ! transition
-1/2 +1/2
e 4
1 =1
3 B
2/ \rs
9
-1/2 +1/2
Fig. 25
do
ey oy = Saeibey
dr —La, df e = 720 0% >
a? ++ F(S 3(:‘l )’
d—i—o{_ =I'(lo®_+20
0 1 e
50;_——1‘ S05 . (4.114)

Here again, note the isotropy of spontaneous emission. Populations of Oy
are only coupled to populations of g,, Zeeman coherence of 0 is only cou-

pled to Zeeman coherence of g,,.

Remarks. (i) If g is not the ground state, the transfer from e to g described

by eq. (4.112) remains unchanged. In (4.103), T, , must be replaced by

T, =Z;T,.,;, and in (4.106) by Hr I,) where I’y = Z;T,., .
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(ii) The master equation describing spontaneous emission can be expanded
on a set of irreducible tensor operators [22].

4.3.5. Angular momentum. Connection with superradiance [20]
Let us consider an ensemble of 2V identical atoms. If §; is the fictitious
spin-3 associated with atom i, the atomic Hamiltonian H, may be written as

H, =Z§ Wbl 5., (4.115)
1=
with
2N
$=215,. (4.116)
I:

It looks like the Hamiltonian of angular momentum § in a static magnetic
field paralle] to 0z. Suppose now that the 2V atoms are in a volume small
compared to the cube of the wavelength. As we can neglect the variations of
exp(ik - R;) from one atom to another the interaction Hamiltonian of these
2N atoms with a mode of the electromagnetic field may be rewritten as

V23 (Sia+Sia*)=8,a+S_a*. (4.117)
1

It looks like the interaction Hamiltonian of angular momentum S with the
same electromagnetic field. Suppose that we start with all atoms in the upper
state. The initial state is the completely symmeiric vector

[++, ... H=|J=2N,M=J). (4.118)

[ —

2N

As H, and V are symmetric, the state vector remains completely symmetric
at any later time, L.e. remains in the J = 2N subspace. We have therefore the
following simple result: Spontaneous emission from a system of 2V identical
atoms, initially excited and contained in a volume small compared to A3 isa
problem mathematically equivalent to the spontaneous emission of an angular
momentum J = 2V starting from its upper level |J, M = J). Applying the gen-
eral expressions (4.48) and (4.64) we get for an angular momentum J = 2N

Copon =08y gy WU +1) — MM - 1)], (4.119)



Atoms in strong resonant fields 57

|J,J>
[J,J=-1>

| J,M>

—_— | M1

|J,-J+1>
|J,-J >
Fig. 26.
FPQ%MN =P8y p_y 5N,Q 2
XV +1)-P@- DU+ 1) -0(@ - 1], (4.120)

where T'is a constant. We will not write down the master equation in such a
case (let us just mention that {/,) and (/. ) are not eigenvectors of this equa-
tion), but we will restrict ourselves to a qualitative discussion. According to
(4.119), we see that, when M ~J = 2N,
Dapsarq =TI~ 2NT. (4.121)
At the beginning of the decay of the 2V atoms, the decay rate is proportional
to 2NV, When M ~ 0, i.e. when half of the initial excitation has been radiated,
we see from (4.119) that
S e P 2
Doty DI G NE L (4.122)
The radiation rate is considerably higher. Finally, when M = —J, all atoms are
in the lower state and the system does not radiate any longer.
We expect therefore that, as a function of time, the radiation is not emitted
at a constant rate, but as a short burst.
The total area under the curve of fig. 27 is of course proportional to NV (ini-

tial total energy). As the height of the maximum is proportional to N2, we ex-
pect that the width of the superradiant pulse is proportional to 1/N.
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5. Master equation describing the interaction with a light beam in two
particular cases

3.1. Coherent monochromatic light beam

5.1.1. How to describe spontaneous emission in presence of a light beam

Let us come back to figs. 13 and 21. If w; < wy, we can, when we calcu-
late the transition rate between two levels of the dressed atom, consider that
the density of final states of the spontaneously emitted photons is the same
for the three frequencies wy, wy *+ wy, wy — wy. From (4.74), we see that
this density is proportional to w3, so that this approximation is equivalent to

w3 ~(w0+w1)3 N(wo—w1)3 , when wy <wj . (5.1)

This means that, when studying spontaneous emission, we can neglect the
splittings which appear as a consequence of the coupling with the light beam,
if these splittings are sufficiently small compared to the optical frequency. In
other words, we can add independently in the master equation the terms de-
scribing spontaneous emission (which have been calculated in sect. 4) and
those which describe the coupling with the light beam.

Physically, condition w; < w( means that 1/w; > 1/wqy > 7, i.e. that the
correlation time of the vacuum fluctuations is much shorter than the charac-
teristic time 1/ of the coupling between the atoms and the laser beam.
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During the correlation time 7 of an elementary spontaneous emission process,
we can therefore neglect this coupling. Between two spontaneous emission
processes, separated by times of the order of 1/I', this coupling plays an im-
portant role and we must, of course, take it into account by adding the corre-
sponding terms in the master equation.

The same argument shows that, if there is a magnetic field giving rise to a
Zeeman splitting wy, and if wyz < wg, we have just to add the terms
(1/in)[Hy, 0,1, (1/ih) [Hz, o], (1/in)[Hy, U] to the three equations (4.103),
(4.112), (4.106) (H being the Zeeman Hamiltonian).

5.1.2. Classical treatment of the light beam

To simplify, we will adopt a classical treatment of the incident light beam.
It can be shown that this leads to the same results as a quantum treatment. We
will call €& cos wy ¢ the incident electric field of frequency wy , polarization
€p, amplitude €. In the rotating wave approximation, the coupling with the'
atom is described by the following interaction Hamiltonian:

2V~ 6y DT — PR GEDL (5.2)

We suppose that the light beam is in resonance (or quasi-resonance) with
an atomic transition e - g connecting two levels of angular momentum J, and
Jg * Dgg represents P,DP, where D is the atomic dipole operator and P, and Py
are the projectors into e and g.

5.1.3. Generalized Bloch equations [ 23,24]
(d/dr) o is given by a sum of three terms describing
(i) Free evolution due to the atomic (H,) and Zeeman (H,) Hamiltonians

-% [H,, 0] - [H,,0].

(ii) Spontaneous emission. Terms calculated in § 4.3.4. To simplify, we will
call 7(o,) the terms appearing in 0, and describing the transfer from e to g
(see egs. (4.112)).

(iii) Coupling with the light beam, (—i/#)[V, o]. We will put

o —iwy t
O S8 L%, (5.3)
(equivalent to the transformation to the rotating reference frame). This elim-
inates all time dependences in the coefficients of the equations. Finally, we
get
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5.1.4. Explicit form of Bloch equations in some particular cases

(i) Two-level atom. We have just to add to egs. (4.85) the terms describing
the coupling with the laser, i.e. the terms describing the Larmor precession
around the field B; of fig. 9 (we also use the transformation to the rotating
reference frame, which amounts to change in eq. (4.85) w( by wg — wy ). Fi-
nally, we get

(S,)= ! Il—r(<sz>+;) :+§ W, ((S_)—(S,)),
| | 4
; |
(8,0 = | ti(wy—wy )S,) | —3T¢S.) 1 Fiw(S,).
* : ( 0 L) Ll 2 * I Wy (5.5)
i I
| free evolution | spontaneous | coupling with the laser
: ll emission :

(i) J, = 0 < J, = I transition with a o-polarized excitation. We suppose
€y =€, 0Z being the axis of quantization along which the static magnetic

+1

Fig. 28.
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field B is applied. With this polarization, only sublevels m = 1 of the J, = 1
upper state are excited and we can forget the m = 0 excited sublevel so that ¢
takes the following form:

0, [0 Oy Oy f0+0
= =lo_, 0__|0_, (5.6)
= .
e |
1 &1 %+ %-—|%o0

When explicited, eqgs. (5.4) become

Oy = I -T'o,, : —10(pg1—P4q) »
6 'l & 1A Iﬂ'v(ﬂg__p_o),
G_, =2iQ0_, |-To_, | +iv(og,+p_g) »
T I‘+F(o+++o ) 140G g~Pagto0s—00.).
hor =i(wo—w ¥Q)gs | —1Tog, | 10(0,4—0_,~0gq),
P =i(wy—wyp—8,)pg_ [——I‘po f Ho(o__—0,_—0p) -

free evolution I spontaneous E coupling with the (5‘7)

| emission | light beam

Here €, is the Zeeman frequency in e (the energies of sublevels +1 and —1 are
wq + 2, and wy — §2,); v is a coupling parameter proportional to the product
of the atomic dipole moment by the amplitude € of the light wave. More pre-
cisely,

v2=3 Czezfge,fmmhwe ; (5.8)

where j}e is the oscillator strength of the transition g—e, while e, m are the
charge and mass of the electron.

5.2. Broad line excitation [9,10,23,25,26]
As in subsect. 5.1, we add independently in the master equation the terms

describing spontaneous emission and the other ones. We also treat classically
the incident light beam.
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5.2.1. Description of the light beam

The light beam is supposed to result from the superposition of parallel
plane waves having all the same polarization &g but different (complex) am-
plitudes €, and frequencies w),. The positive frequency part € (2) of the
electric field is given by

2 EM(p) = ¢ ? &, eiwul |

Fig. 29 shows the intensities |<Sut2 of the various waves forming the light
beam. In the case of a spectral lamp, the frequencies w,, of these waves form
a continuum. If we have a laser beam, we suppose that the laser oscillates on
a great number of modes. In both cases, we will assume that the width A of
the spectral interval covered by the frequencies w,, (see fig. 29) is very large
compared to the Doppler width Avpy and the natural width I' of the atomic
line, and that the spacing § between modes is small compared to T,

A> Avy, T, Sw<T. _ (5.10)

In this case, the different “Bennett holes” burnt by the various modes in the
Doppler profile overlap, and it is easy to understand that the response of an
atom does not depend on its velocity, so that o refers to internal variables
only.

The relative phases of the various modes are assumed to be random: we
have a “free-running” multimode laser and not a “phase locked” one. The in-
stantaneous electric field €(¢) of the light wave (see eq. (5.9)) may be con-

A
.- -
2
//!E'[-l-l
' <
e \ W
dw ‘W

Fig. 29.



-Atoms in strong resonant fields 63

sidered as a stationary random function. The correlation function

EGN) E@(t — 1) of E(r) only depends on 7 and tends to zero when T is
larger than the correlation time T’C of the light wave which is of the order of
1/A [27].

Relation between the correlation function of € and the spectral distribu-
tion /(w) of the incident light. Putting €, = lC”ief‘?’,u and assuming that the
¢ ’s are random, we easily calculate the correlation function of €™,

EEX&) EM(t — 1), and show that it is proportional to the Fourier transform
of I(w) (Wiener-Khintchine relations; see ref. [19])

EOWEPG =2 1€ 1€ 1ei0u=9)
we, AR
X efwyl g=itwy (t=17) (5.11)
But

¢y —0,) =
etV 6””.

so that (5.11) may be written as

+oa
OO EPE-n =T 1€, Pefow= [ dwlwe,  (5.12)
” — 00

and consequently

+oo

Iw)= [ dreir €O eWe-1). (5.13)

The strength of the coupling between the atom and the light wave may be
characterized by a parameter v which is the product of the atomic electric di-
pole moment d by an electric field amplitude and which gives an order of mag-
nitude of the evolution frequency of G,

v=d- [|<i(r)12]”2=d-[§) qulz}m : (5.14)

5.2.2. “Coarse grained” rate of variation of o
Let T}, be the time characterizing the evolution of o under the effect of
the coupling with the light beam. We will assume in the following that the in-
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tensﬂy is sufficiently low so that T is much longer than the correlation time
T = 1/A of the light wave,

TP>TE—:= L (5.15)
Let us consider a time interval At such that
T,> At> T (5.16)

As At <T,, 6(t + At) — 6(¢) is very small and can be calculated by pertur-
bation theory. We show in this paragraph that the average variation of @,
a(t+ At) — o(¢f) (the average is taken over all possible values of the random
function € (1)) is proportional to At and only depends on G(7),

o(r+Ar)—o(r) Aa(z) -
- = F[5(0)], (5.17)

where AG(£)/At is a “coarse grained” rate of variation of @ since we consider
the variation of ¢ over an interval A7 longer than the correlation time of the
light wave which drives the atoms.

In interaction representation and with the rotating wave approximation,
the interaction Hamiltonian ﬁ(r) may be written as

V(1) = —EM(Befwot & - D, -¢ i erivinie] 2 (5.18)
Applying perturbation theory, we get

a(t + Atf) — ¢(¢) = spont. emission terms (5.19)
i t+ AL N 1 AL t' _ o
Ho rf (7). 501~ [ g{ A", [V, 6(0]]

t

Let us now take the average over the random function €(¢). As a(¥) is driven
by V(£), V(¢') and G(¢) are correlated and we cannot in general consider that

V(Ya(e) = V(£ (),

V()Y V()60 = V()P (") a(r) (5.20)
except if

{1215, "~ 127, (5.21)
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But the intervals of variation of #' and ¢" in expression (5.19) are [z, £+ Atz),
much longer than 7 since Af> 7, so that the error made in writing (5.20) is
negligible, of the order of 7-/A¢ < 1 according to (5.16) (see fig. 30). It fol-_
lows that the first term of the second line of (5.19) is zero since V{(t") ~ (1)
=0.

For evaluating the double integral, we note that ¥(z") V(") only depends
on 7=t — ¢". If we change from the variables {¢', "} to the variables
{r=1¢"—1",1'), the integral over ¢'is trivial since the integrand does not de-
pend on ¢’ and gives a multiplicative factor A¢ which shows that 6(z +A 1) —a(7)
is proportional to Af. After doing the integral over 7 (the upper limit of the
integral, Az, can be extended to +oo since At > 1), we get a rate equation
coupling Ao (¢)/At to G(z) [to simplify, we do not write 6(¢) but simply &(¢)]
which we now calculate in detail.

Calculation of Ad,/At. Writing D = er, separating the angular and the radial
part of r, and putting 7 =r/r, r,, =(gllrlle), we get

AEfe ezlﬁ"egi2

—— = spont. em. terms —
At p 72

+oo .
X [ €O e = et dri(sy ) (85 -7,)5,(0)
0

— (&) - 7,) 0, (1)(£5 - F,,)] + hermit. conjug. (5.22)
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Using (5.12) and (4.47), we transform the integral over 7 into

oo

f dr f+ i de I(w)e 9= = 1 [(0g) —iP f
0 —oa

I{w)dw
w—wy

Introducing the two parameters

i Wf(wo)ezlreg 2

n?

[

1 @ff(w)ezlr 12

AE'[h=
W — (do

da,

and the operator B, acting inside the e multiplicity,
B,=(8y P (&g - Fpp)

we finally get for AG,/Aft,

Ad AE
—Af = spont. em. terms — 5 {B,, 6,()), +i=5— [B,, 0 (1]

i i gy
T (£, reg)ag(r)(eo rge),

where {U, V},=UV + VU is the anticommutator of U and V.
Calculation of A Egm t. Similar calculations give

L BE 15 5.0)
Ar -sp0n.em. erms—ZT g,(]'g 3 » O
] g . AP
S CRALIGICRRY

p

where Bg is an operator acting inside g and is given by

B =(8 - F ) (8 Fp) -

(Note the change of sign of the AE” term from (5.26) to (5.27).)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)



Atoms in strong resonant fields 67

Calculation of A Eegmr. Because of the secular approximation, we neglect
the coupling between 0, and 0, and we get
Aaﬂ-\' 1 r ~
A7 - spont.em. terms — (ﬁ —iAFE )Be oeg(r)

(2; zAE') Gy (DB, . (5.29)

Collecting all the above results, coming back to the Schrodinger picture and
writing do/d? instead of Aa/A¢t, we finally get

| free evolution | spontaneous emission |
| | I
TR | |
Tl % l
s Fis 1 iAE'
+Fp*(80‘?'eg)0g(8§ ol _ﬁ 8,,0,),+—=— [B,,0,],
(5.30a)
d
dr % o,] +1(o,)
Loy BB p g M e b gy
2Tp gz Foieciee TpOgeeOeg‘
(5.30b)
d oo i '
70 TlO50, 7 [HZ’Ueg] ~2I‘creg

1 one ' I AE
_(:??p —IT)Ueng I (— )B o, (5.30¢)
|
|
|

absorption

stimulated emission

We have added the Zeeman terms (—i/h) [Hz, 0], assuming that the Zeeman
splittings €2, and {2, in e and g are small compared to the spectral width A of
the 1nudent light so Lhal 1/2 T and AE’ do not depend on £2, and Q

5.2.3. Explicit form of the master equation in some particular cases
(i) Two-level atom. We take B, = B:g See A=
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d 1

T “Fo. _g(%_ og) ,

T =R~ i(og a,),

g 2AF' ekl

dr Ceg ™" ‘(wo h )Ueg n (51 ¥ Tp) Oeg - (5.3
In terms of {S?, (5.31) may be written as

d 2

748 = TS +3) 7, ),

d i L§ ‘ 2AE

L s,= ( ”Tp)‘S:)*‘(“’o - )(b ). (532)

(i) J, = 0 < J, = 1 transition with a ¢ polarization (€y = e, ). We will sup-
pose that AE" = 0 and we will put l,r’TP =1v. We-get for the elements of g, and
0y (see egs. (5.6)),

|

free evolution | spontaneous : absorption I stimulated emission
| emission | |
| | |

O 1= :_PU++ :'WUOO l 2')'(‘7+++U++ L
| | |

g = :—ch_ :"7“00 : dv(o__to__~0_,-0, ),
| | |

— 9 ) 1 .

6_, =2iw,a_, I—l gy I_TUOG 1|+27w+++0 20_5)s
| | |

0o = |l+[‘(a+++o__) :—27000 I+'r(o+++o —0_,—0,

(5.33)

We do not write the evolution of optical coherences. w, is the Zeeman split-
ting in e.

(iii) Jg =le J, = transition. We would now like to give an idea of what
happens when Zeeman coherences exist in both levels e and g, and, for that
purpose, we take the simplest possible example of such a situation, the case of
a transition J, =3 ©J, =3

We restrict ourselves to a broad-line excitation. The light beam is supposed
to be ¢* polarized and to propagate along 0z, the magnetic field being applied

along 0x. The relaxation of the ground state (which was absent in the previous
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case asJ, = 0) is supposed to be produced by the leakage of atoms from the
cell through a small hole (the probability per unit time of escaping from the
cell is 1/T)). A balance is provided by an entering flux of n atoms per unit
time, all in the ground state and completely unpolarized. If the collisions with
the inner walls of the cell are not disorienting, the relaxation time is simply 7.
As in the previous example, we suppose AE’ = 0 and we put l,r'T =7.We
do not write the evolution of optical coherences. w, and w, are the Zeeman
splittings in e and g.

For the spontaneous emission terms, we use egs. (4.114).

relaxation Larmor precession
Ofy = =0T Hiw(o; —o°)
-Tog, Hyof_ vyl
6¢_ = —of_|T —Hiw(of_—0°))
-T'e® _,
6.8.+ = —Ui_*,fT -—%z'we((}'i+—{)i_)
—Pﬂ'i+ —37Y0 + 2
o5, =lny—of T +§iwg(a§_—o§+)
+2lof 421 0t
6% _ =ing—of _IT —Hiw o (05_—0%,)
+3Po¢ _+ilo, —Sy0f_ 4ok,
0, = 08T hiwyof,~of )
_%F0i+ —é70§+ (5.34)
spontaneous absorption stimulated
emission emission

5.2.4. Physical discussion
(i) Rate equations. Let us discuss the third and fourth term of each equa-
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tion (5.30) (written on the second line of each equation). The third term of
egs. (5.30a) and (5.30b) couples 6, to Oy and c’rg to g,. It describes the effect
of absorption processes which take atoms from g and transfer them to e. The
fourth term of these equations couples 6, to g, and ¢, to g,. It describes the
effect of stimulated emission processes which take atoms from e and transfer
them to g. These processes also affect Oeq (third term and fourth term of
(5.30c)).

Eqs. (5.30) are rate equations. They do not couple g, and 0, to optical co-
herences Og- This important difference with the generalized Bloch equations
derived in subsect. 5.1 for a monochromatic excitation will be discussed later
on.

(ii) Physical interpretation of I/Tp and AE'. l}’Tp is the probability per
unit time of an absorption or stimulated emission process, and is proportional
to the incident light intensity at frequency wq (see (5.24)). AE' describes the
light shifts produced by the light irradiation. For example, for a two-level
atom, the last equation (5.31) shows that the atomic frequency is changed
from w to wy — 2AE" [ in presence of the light irradiation. AE" is # 0 even
for a non-resonant irradiation (see (5.24)). This shows that AE" is due to vir-
tual absorptions and reemissions (or stimulated emissions and reabsorptions)
of photons by the atom. (For a detailed discussion of light shifts and optical
pumping, see refs. [9,10,28,29].)

(iii) Angular aspect. As the atom interacts with a light beam having a defi-
nite polarization and a definite direction of propagation, absorption and stim-
ulated emission processes do not have the spherical symmetry of spontaneous
emission (which is due to the interaction of atoms with a spherically symmet-
ric set of empty modes).

Let us compare for example the second and the fourth columns of egs.
(5.33). One sees on the last equation that spontaneous emission does not cou-
ple 6y to the Zeeman coherence o, _. This is due to the fact that oy and
04_ do not have the same transformation properties in a rotation around 02
so that they cannot be coupled by a spherically symmetric process. But such a
coupling exists for stimulated emission and is at the origin of “saturated reso-
nances” which will be discussed in the next section.

More generally, the effect of absorption inside the g multiplicity and the ef-
fect of stimulated emission inside the e multiplicity are described by the two
hermitian operators B, and B, given by (5.28) and (5.25). In general, B, and
B, are not scalar. The eigenvectors lg;) ofBg, corresponding to eigenvalues r;,
are the sublevels of g which have a well defined light broadening r; fT and a
well defined light shift r; AE'.AE B can be considered as an effectlve Hamil-
tonian describing the llght shifts mduced by the light beam inside the g multi-
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plicity. Similar considerations can be developed for B, and stimulated emis-
sion processes.

(iv) Condition of validity of egs. (5.30). Let us recall (see eq. (5.15)) that
the ‘pumping time” T, must be much longer than the correlation time
¢ = 1/A of the light beam. Using the equation of definition of 1/Ty, (5.24),
and eq. (5.14) which defines the parameter v characterizing the couplmg be-
tween the atoms and the light beam, one easily finds that

[35]

1 1
e el (5.34)
T 2 A
so that eq. (5.15) may be written as
)
2 b
ol T (5.35)
h2A2 ﬁZ

which means that the effect of the coupling with the light beam during the
correlation time 7 of this beam is extremely small. This condition is very
similar to the one used in sect. 4 for deriving the master equation of a small
system coupled to a large reservoir.

In the present case, we can consider that the light beam is a large reservoir,
so large that one can consider only a single absorption or stimulated emission
process during TC Egs. (5.30) describe the effect on o, and 0, of an indefinite
number of uncorrelated one-photon processes.

Let us finally note that, according to (5.34),

.
hA

—hg. (5.36)

e
Sl
<

....1_._ A~
Tp
1/T,, is smaller than v/A by the motional narrowing factor vrelh.
Remark Egs. (5.30) may still be used if lfT and AFE' are functions of -
time (excitation by a light pulse) provided that the time characterizing the

evolution of 1/7}, and AE" is much longer than 7 [30].
(v) Exfstence of two regimes.

E"L <T'| or according to (5.34): v <A\/TA .
P

One can drop the stimulated emission terms of egs. (5.30a) and (5.30b)
which are negligible compared to the spontaneous emission ones (note that
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we must keep the absorption terms since they involve o, which may be much

greater than o,). We get in this way the usual optical pumping equations which
have been first derived for thermal sources

<-L| or according to (5.34): VTA Suvfn <A .

Te

Fl o
FNT

Suppose now that 1/T}, is of the order of I', or larger than T, the condition
of validity (5.15) being maintained. In this case, we must keep the terms con-
tained in the last column of (5.30) which are at the origin of some new effects
which are observed in optical pumping experiments performed with intense
laser sources [25]. We will discuss some of these effects in the next section.

Figs. 31a and 31b visualize the evolution of the atom in these two regimes.
The ascending and descending straight lines represent absorption and stimu-
lated emission processes, the descending wavy lines spontaneous emission pro-
cesses. The mean time spent by the atom in the ground state is Tp = 1/v. The
mean time spent in e is 7 = 1/I" when " > v (in this case, the deexcitation of
the atom is mainly due to spontaneous emission) or T}, = 1/y when I' € (in
" this case, the deexcitation is mainly due to stimulated emission).

(vi) Comparison with the monochromatic excitation. The correlation time



Atoms in strong resonant fields 73

of the perturbation is, for a monochromatic excitation, very long and it be-
comes impossible to neglect the correlations between successive interactions
of the atom with the light wave. We cannot consider that the atom undergoes,
from time to time and without any phase memory, transitions from g to e or
from e to g as this is visualized in fig. 31. For a monochromatic excitation, we
have a coherent oscillation between e and g, analogous to the Rabi nutation in
magnetic resonance. Furthermore, the optical coherence Oy becomes signifi-
cant and oscillates at the same Rabi frequency, in quadrature with the popula-
tions of e and g. In the broad line case, 0,, is negligible as the coherence time
TE-; = 1/A is too short for permitting Ogg t0 build up appreciably.

At the end of these lectures, we will say a few words on the case v/ > A
> I' which cannot be described either by Bloch equations like (5.4) or by rate
equations like (5.30).

6. Application to the interpretation of some level crossing experiments
6.1. J, =0 J, =1 transition

In order to discuss some of the new effects which appear in optical pump-
ing experiments performed with laser sources, we will consider the simplest
possible transition J, = 0 < J, =1, and a resonance which does not require the
use of any RF field, the Hanle zero-field level crossing resonance. We will sup-
pose that the light beam, propagating along Oz, is linearly polarized along Ox,
and that a magnetic field By, is applied along 0z (situation considered for egs.

(5.7) and (5.33)).

LF(G)« )/

O- polarized e
|ighl excitation T
//
| 0}~
l = z

Fig. 32.
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6.1.1. Detection signals
One measures the variations with By, of several types of fluorescence light:
Ly(é,): Total fluorescence light reemitted along Oy with a polarization é,;
Lp(é‘y): Total fluorescence light reemitted along Ox with a polarization é,,;
LF(é ) — Lg(€,): Difference between these two signals.
Au:ordmg to (3.13) and (3.14), Lg(éy) and L(é,) are given by the one-
time averages

Lp(6,) =~ DPOD()=Tr o (H)P,D, E.D.E. (6.1)
Y (DOADEN5) =
L8 =D DS =Tro (OB, D P.D.P,. (6.2)

The matrix elements of D, and Dy are given below (up to a multiplicative
factor). (To calculate these matrix elements, we use the standard components
of D

D+=—\/%_(Dx+ny), D,=D,, D_=\/;:(Dx—zD)

4

so that
D,=—/ip,-p),  D,=iiD,+D)),

and we apply Wigner-Eckart’s theorem.) We get in this way

Lp(€)~0o,to__—2Reo_,, (6.3)

LF(é‘y)~0+++o__+2(Reo_+, (6.4)

LF(é‘y) —Lg(e,)~2Rea _, - (6.5)
D, D

Fig. 33.
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We see that the detection signals are sensitive, not only to the populations o,
and o__ of the two Zeeman sublevels of e, but also to the Zeeman coherence
o_, between these two sublevels. This is very important for level crossing re-
sonance experiments. In some experiments, where g is not the ground state,
but the lower level of a pair of excited levels, the observation of the fluores-
cence light emitted from g, with for example a 7 polarization, gives a signal I,
proportional to the population oy of g

I?‘r o Opo - (66)

(In this case, eqgs. (5.7) and (5.33) have to be slightly modified to introduce
the rate of preparation of atoms in levels e and g, the spontaneous decay of g,
the spontaneous decay of e to levels other than g. But this does not modify
the physical results.)

The principle of the calculation is now straightforward. We have to solve
egs. (5.7) or (5.33) according to the type of irradiation which is used (narrow
line + atomic beam, or broad line + resonance cell). The steady state solution
of these equations gives us a quantitative interpretation for the four signals
(6.3)—(6.6).

6.1.2. Broad line excitation (spectral lamp or free running multimode laser)

We will use egs. (5.33). Let us first briefly recall what the situation is when
an ordinary thermal source is used (broad line excitation with y <T"). Neglect-
ing the terms in the last column of (5.33), we readily get the steady state solu-
tion of these equations. To lowest order in 7, this solution is

04y =0__ =3(Ny—0g0) =TN, /T, (6.7)
i 0 6.8
S o o)

where Ny = 0,4 + 0__.+ 0q is the total number of atoms (N is a constant
of motion, as can be seen by adding the first two equations (5.33) to the last
one).

We see that the Zeeman coherence o_, exhibits a resonant behaviour when
the Larmor frequency w,, is varied around 0, by sweeping the magnetic field
By. This is the origin of the Hanle zero-field level crossing resonance appear-
ing on the fluorescence light (for example Lp(é,)),

'ZTNO (1 . 2 )

L (£)= (6.9)
R r r+ 40)3



76 C. Cohen-Tannoudji

and which has a Lorentzian shape and a width I" independent of v, i.e. of the
light intensity. On the other hand, no resonances appear on the populations
044, 0__, 0pg Which are independent of W,

What are the modifications which appear when we use a much more intense
broad-line source (for example, a free running multimode laser)? We now have
to keep the last column of eqgs. (5.33). The calculations are a little more diffi-
cult, but it remains possible to get analytical expressions for the steady state
solution of these equations.

We find for the populations

i I T RS 6.10

0++—0___—§(N{)_000)_I‘+37 s m, L
[

. p' = [T+ D + 47)] 12 (6.11)

T+4y’ (T +37) ‘

The populations now exhibit a resonant behaviour near w, = 0. The corre-
sponding resonances are called “saturation resonances”. They have a Lorent-
zian shape, a contrast S, and a width ',

The saturation resonance appearing on oy, may be interpreted in the fol-
lowing way. A first interaction with the laser (absorption process) removes the
atom from the ground state and puts it in a coherent superposition of the —1 -
and +1 sublevels of e (fig. 34a). The combined effect of Larmor precession and
spontaneous emission gives rise to the well known resonant behaviour of the
Zeeman coherence o_ . A second interaction with the laser (induced emission
process) brings back the atom to the ground state (fig. 34b) and partially con-
fers to the population o of this state the resonant behaviour of o_,. Such a
process cannot occur for spontaneous emission which is an isotropic process
and which, on the average, does not couple o_ to ogq.

+1 +
-1 -1

Fig. 34.
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r

Fig. 35.

Eq. (6.11) gives the variations of "' with v, i.e. with the light intensity (see
fig. 35). ' is equal to I for y = 0 and increases linearly with +y for v <T. This
may be interpreted as a radiative broadening proportional to the laser intensi-
ty. For y > T, I"' increases only as /37T, i.e. as the amplitude of the light wave.
This shows that some care must be taken when extracting atomic data from
experimental results. Plotting the width I'' of a saturation (or Hanle) resonance
as a function of the laser intensity, and extrapolating linearly to zero light in-
tensity, may lead to wrong results if the majority of experimental points do
not fall in the linear range of fig. 35.

When > T, i.e. at very high intensities, 0,4 and 6__ tend to 3Ny, 0gg to
3Ny The contrast S of the saturation resonance reaches the limiting value ;.

The steady state solution for o__ may also be calculated from egs. (5.33)
and included with (6.10) in the expression (6.3) of Lp(€,). We get for Ly(é,),

2YN, 2yN, ([T + 27) 2
Lo(€)= + ,
FV¥? T4+ 3y (T +39)(T +4y) D72 4 42
€

(6.12)

i.e. the sum of a constant and of a Lorentzian curve having the same width I"'
as the saturation resonance. It follows that the Hanle resonances undergo the
same radiative broadening as the saturation resonances. For large values of
¥/T", the shape of the resonance does not change when 7 increases, provided
that the scale of the horizontal axis is contracted proportionally to v/y.

Let us summarize these new results which appear when the light source is a
free running multimode laser: saturation resonances observable on the popula-
tions of the Zeeman sublevels, radiative broadening of these resonances (and
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also of the Hanle resonances), which is not a simple linear function of the laser
intensity.

A detailed experimental verification of all the above results has been done
on the 25, ¢ 2p; transition of Ne (A = 1.52 um). See refs. [31,32].

6.1.3. Monochromatic excitation (single mode laser + atomic beam)

We now consider the case of an atomic beam irradiated perpendicularly by
a single mode laser. We have therefore to use egs. (5.7). We suppose that the
illuminated portion of the beam is sufficiently long so that each atom reaches
a steady state régime when passing through this zone. As before, 0, +0_ _
+0(g =Ny is a constant of motion and represents the total number of atoms
in the illuminated zone. To simplify the discussion, we will suppose that
W = Wy, i.e. that the laser frequency w is tuned at the center of the atomic
line (the general case w # wy is studied in ref. [24]).

The steady state solution of eqs. (5.7) may be found in an analytical form
after some simple algebra, and we get for the Hanle signal,

Le(é,)= 16v2N, (I + 4v?)/D (6.13)
where
D = 16w + (877 + 160%)w? + (% + 402)(I2 + 16v7) . (6.14)

The theoretical curves computed from (6.13) (and represented in ref. [24])
exhibit a radiative broadening when the laser intensity, i.e. v, increases. The
shape is no more Lorentzian and, when w, is very large, the signal does not
tend to a non-zero value (as is the case for the Hanle resonances obtained with
a broad-line excitation — see expression (6.12)). This is due to the fact that,
when w, increases, the frequencies wq * w, of the two optical lines 0 < +1
and 0 < —1 are out of resonance with the laser frequency w.

When v — 0, expression (6.14) takes the simple form

r?

L e
(4w? +T2)?

E = 1602V, (6.15)

We find the square of a Lorentz curve which is easy to understand: a first Lo-
rentz denominator describes, as in the previous case, the decrease of the Zee-
man coherence due to the Larmor precession, the second one comes from the
Zeeman detuning of the two components of the optical line with respect to
the laser frequency.
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g @ /m

eq=+1 ey=-1

Fig. 36.

Expression (6.15) may also be obtained from the Born amplitude for the
resonant scattering (fig. 36) [33]. The initial state corresponds to the atom in
the ground state in the presence of an impinging w photon. The atom can ab-
sorb this photon and jump to one of the two excited sublevels 1 of energies
w( * w,, and then fall back to the ground state by emitting the fluorescence
photon. As there are two intermediate states for the scattering process, the
scattering amplitude A is the sum of two terms which are respectively propor-
tional to 1/(w — wg — w, *3iT) and to 1/(w — wy + w, + £iT"). As we as-
sume w = wy, we get

1 1 4iT
A= + =— . 6.16
—w, +3il' w, +3iT 4652 + T2 (3l

The cross section is proportional to |4 > and has the same w, and T" depen-
dence as expression (6.15). For v2> T, the shape of the curve giving Ly does
not change any more when v increases, provided that the scale of the horizon-
tal axis is contracted proportionally to v. The variations of the other detection
signals: LF(éy), L&) - Ly(@)) are studied in ref. [24].

To summarize, we see that the essentially new results obtained in the ab-
sence of the Doppler effect (single mode laser and atomic beam) come from
the Zeeman detuning of the atomic lines. The zero-field level crossing reso-
nances have more complicated shapes (non-Lorentzian), but they still have a
width which is of the order of I" at low laser intensity and which increases
with the laser intensity.

Hanle resonances with a monochromatic excitation have been observed by
several experimental groups (see refs. [34-36]). The agreement with the above
theoretical predictions seems quite good.
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6.2. More complicated situations

In the examples studied above, no structure was existing in level g. There
was only one Zeeman coherence in level e, and the Hanle effect was only ob-
servable in this level. We now give a few examples of what happens when both
levels e and g have a Zeeman structure. We restrict ourselves to a broad line
excitation.

6.2.1.Jg =3 © J =} transition

We will use eqgs. (5.34) which are the rate equations for the various matrix
elements 0§, 0¢ _, 0€, and 0§, 08 _, 0%, of g, and 0. W, is the Larmor
precession in g. As before, 7 is the reciprocal of the pumping time. We note
that the absorption and stimulated emission terms are simpler than in (5.33),
whereas the Larmor precession terms are a little more complicated. This is
due to the choice of the axis of quantization 0z which is parallel not to the
magnetic field, but to the direction of propagation of the o™ polarized laser
beam.

In a Hanle experiment performed on aJ =} level, one detects components
of the atomic orientation J perpendicular to the magnetic field Byy. As By is
along Ox, we are interested here in J{ (z component of the orientation of
level €), i.e. in 6, — o€ _ (one can for example measure the difference be-
tween the ¢* and o~ fluorescence light reemitted along 0z). To study these
Hanle signals, we have to find the steady state solution of (5.34). Putting

S -1
Le=T*+7, Le=7
D =T 437, D =wt b, (6.17)
we get for 0, — 0 _,
) B
1
0f, —0¢ =in T ———— =, (6.18)
G A W2+ D
e e e
where
puiet et Telessunla Tl
2 2 R ) '
T 2otep,r; 2Touir Ty
(w EPHI.r
+%§ - T (6.19)
g(cae+1"el’e)(wg+]"gl"g)
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Hanle signal

0 Magnetic field

Fig. 37.

Fig. 37 gives an idea of the variations with the magnetic field of the Hanle
signal computed from (6.18) and (6.19). (Precise theoretical curves corre-
sponding to different values of the light intensity, i.e. of v, are given in ref.
[23])

One clearly sees in fig. 37 that the Hanle signal observed on the fluores-
cence light emitted from e exhibits a structure. The dip observed in the centre
of the curve is associated with the Hanle effect of g: at very low intensities,
this dip has a width determined by the relaxation time T of the ground state,
whereas the broad resonance has a width I'.

When the light intensity increases, one finds that the widths of both reso-
nances increase. At very high intensities, the two Hanle effects of e and g are
completely mixed in a time short compared to 1/T" and T, but this mixing
does not smooth out the structure apparent in fig. 37: we always get the su-
perposition of two resonances with different widths and opposite signs giving
rise to a curve with two maxima.

6.2.2. Jg =2 © J, = 1 transition

More complicated structures may be observed if the values of the angular
momenta J, and J, are higher than 1. For example, in the case of a
Jo =14 J, =2 transition, and for a o linearly polarized excitation, one can
observe Hanle signals with three maxima. As in the previous example, the cou-
pling between the two transverse alignments of e and g (perpendicular to the
magnetic field) gives rise to a structure similar to that of fig. 37. But as Jg>1,
there is also in the ground state g a “hexadecapole” moment (Hertzian coher-
ence 0% 5 ,,) which can be induced in this case after two interactions with the
laser, one absorption and one induced emission processes (see fig. 38a). A
third interaction with the laser (absorption) can couple this hexadecapole mo-
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+2

Fig. 38.

ment to the transverse alignment of e (0¢; ;) (see fig. 38b). As the Hanle re-
sonance assouated with 085 45 hasa smaller width (the resonant denomina-
tor is I‘2 + 16we) the total result of these various couplings is to give for some
values of'y a structure with three maxima. This effect has been observed on
the 3s, ¢ 2py4 transition of Ne (A = 6328 A) and interpreted quantitatively
[25,32,37]. For another manifestation of hexadecapole moment, see also

ref. [38].

Optical pumping of molecules also provides several examples of Hanle re-
sonances observed in levels having very high angular momentum [39]. Some
efforts have been made to write the optical pumping equations in a basis of
quasiclassical states well adapted to the high values of J [40].

To summarize the results of this paragraph, we see that one can observe, on
the fluorescence light emitted from e, level crossing resonances having a width
much smaller than the natural width of e. This is not related to the broad-line
or narrow-line character of the pumping light (as it appears already on the re-
sults of the previous paragraph). These narrow resonances must be attributed
to the other state g of the optical line which has a longer lifetime or a higher
J value.

7. Spectral distribution of the fluorescence light emitted by a two-level atom

After having calcula’ed some one-time averages in order to interpret the
various characteristics of level crossing resonances, we now come back to the
problem of the spectral distribution of the fluorescence light emitted by a two-
level atom which is more difficult as it requires the evaluation of two-time av-
erages.
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7.1. Monochromatic excitation

Let us first recall the master equation written in terms of the equivalent
fictitious spin 3 : Bloch’s equations (5.5) for the average value of the spin (§):

= 1 TS +8) [ Hiw,((5)—<S,)),
| | |
$)= |ti(wy—w)S,) | -3I¢S,) | Fiw(S) .
| | E &
| free evolution | spontaneous | coupling with the
| | emission | laser

According to (3.15) and (3.17), the spectral distribution 9(c) of the fluo-
rescence light is given by

a @
9w~ [ at [ ar's,()s_(¢peiwmw=1), (7.2)
0 0

In (7.2), @ is the measurement time of the detector. In fact, we are limited
by the time T during which the atoms radiate: @ > T. T is approximately the
time spent by an atom inside the laser beam. Therefore, in (7.2) we can replace
0 by T.

7.1.1. “Naive” approach of the problem based on Bloch’s equations

Before evaluating the two-time average contained in (7.2), let us first give
a naive approach of the problem, strongly suggested by the analogy with a
magnetic resonance experiment, but which, in the present case, is incorrect.
Then, in trying to understand where the mistake is, we will get some physical
insight into the problem [41].

What is the solution of eqs. (7.1) for an atom flying through the laser
beam? After a transient regime which starts when the atom enters the laser
beam at ¢ = 0, and which lasts for a time of the order of 7 = '~! (damping
time of the transient solutions of egs. (7.1)), (S(¢)) reaches a stationary value
(8, independent of ¢, and corresponding to the steady state solution of
(7.1). This situation lasts during all the transit time T through the laser beam
(remember that T'> 7). After that, the atom leaves the laser beam at time
t =T, and {S) damps to zero in a short time, of the order of 7. This behaviour
is schematically represented in fig. 39.

At this stage, one is very tempted to consider that the light radiated by the
atom corresponds to this evolution of (S(#)) (we have to return from the ro-
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Fig. 39.

tating to the laboratory reference frame) and, consequently, that its spectrum
is given by the squared modulus of the FT of (S,())e!’L’. If such a conclu-
sion were correct, one would get first an elastic component, at frequency wy,
representing the contribution of the forced steady state motion (S, )y e’“L’ of
the dipole moment driven by the laser field and which, as we have seen above,
is the main part of the motion of the dipole. Strictly speaking, this elastic com-
ponent would have a non-zero width 1/T (corresponding to the finite transit
time 7"), much smaller however than I" (as 7> 7). In addition, one would get

a small inelastic component, associated with the two small transient regimes
appearing at the two small regions where the atom enters or leaves the laser
beam. This suggests that one could suppress these inelastic components just by
eliminating the light coming from these two regions, which is wrong as we
shall see later on.

7.1.2. What is missing in this approach? Importance of the fluctuations

The method we have just outlined is not correct. A mathematical argument
for showing it is that, when we calculate the squared modulus of the FT of
(S,(#)), we find an expression analogous to (7.2), but where (S, (£)S_(#")) is
replaced by (S,(£))(S_(t")), and these two quantities are not equal.

It is perhaps more interesting to try to understand physically where the
mistake is. The important point is that the light emitted by the atom is not
radiated by its average dipole moment represented by (S, (7)), but by its in-
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stantaneous dipole moment S, (7), and, even though the effect of spontaneous
emission on {(S()) may be shown to be correctly described by the damping
terms of egs. (7.1), such a description is incorrect for $(7).

Let us try to visualize the evolution of S(#). We can consider the atom as
being constantly “shaken’ by the “vacuum fluctuations” of the quantized
electromagnetic field [42]. These random fluctuations, which have an ex-
tremely short correlation time, have a cumulative effect on the atom in the
sense that they damp (S(#)), but we must not forget that they make the in-
stantaneous dipole moment S, (¢) fluctuate permanently around its mean val-
ue. The light which comes out is radiated not only by the mean motion of the
dipole, but also by its fluctuations around the mean motion.

When we consider the effect of atoms on the incident electromagnetic wave
which drives them, i.e. when we study how they absorb or amplify this wave,
the average motion (S(#)) is very important since it has definite phase relations
with the driving field. The fluctuations of $(¢) act only as a source of noise
and can be ignored in a first step. In the problem we are studying here, we
cannot ignore the fluctuations since they play an essential role: we are inter-
ested in spontaneous emission, not in absorption or induced emission, and the
fluctuations of S, () cannot be neglected.

7.1.3. Elastic and inelastic parts of the fluorescence spectrum
Let us write

S,(0)= (S, () +55,(0), (73)
where 8 S, () is the deviation from the average value and obviously satisfies
(6S.())=0. (7.4)
Inserting (7.3) into (7.2), and using (7.4), one immediately gets
(S ()S_(£) =(S (OUS_(£') +(8S,()8S_(t)) . (7.5)

One clearly sees from (7.5) that, in the spectrum of the fluorescence light,
there is an elastic component corresponding to the first term of (7.5) and
which is the light radiated by the average motion of the dipole. In addition,
we get an inelastic component corresponding to the last term of (7.5) and
‘which is the light radiated by the fluctuations. The spectrum of this inelastic
part is determined by the temporal dependence of these fluctuations, i.e. by
their dynamics.
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Before studying this problem, let us show how it is possible to derive simple
expressions for the total intensity radiated elastically and inelastically, /,; and
Le1- Integrating (7.2) over w, one gets a § (£ — ¢') function which gives, when
using (7.5),

T
Iy ~ [ atls,onr,
0

T T
T ~ | 4665,(085_(0= [ dt(S,(DS_(1) — S, (D]
0 0

T
= [ dr[d +45,() - S, ()] . (7.6)
0

(We have used the relation S, S_ =52 — S2 +5, and the identities §2 = 3,
52 =1 valid for a spin 1.)

As the two small transient regimes near # = 0 and ¢ = T have a very small
relative contribution (of the order of 7/T), we can replace in (7.6), (S.(£)}
and (S,(7) by the steady state solution (S,)¢ and (S,) of Bloch’s equations.

We get in this way

o~ 2
51 TS
T ™~ T[; FAS X |(S+>31[2] . (7.7)

This clearly shows that /,; and /o are proportional to T and that the inelastic
part of the fluorescence is radiated uniformly throughout the whole period of
time spent by the atom in the laser beam, and not only at the beginning or at
the end of this period, as suggested by the naive approach described above.
The calculation of (S is straightforward and one gets

2w Aw l'w,

(Sx )st

= - ) = s
T2 + 202 + 4(Aw)? VS 124202 + 4(Aw)?

2 2
+
S, =— c L e where Aw = wy —wy - (7.8)

P2 24202 +4(Aw)?
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From (7.7) and (7.8), one deduces

Iy @f? 44wy —wp)’]

T P2+ 4(wy —wp)? + 2020
4

finet 204

; 7.9
T2 +4(wy — wp )2 + 203 e
Similar results are derived in ref. [16] where /) and I, are called coherent
and incoherent scattering.

For very low intensities of the light beam (w; <T, [wy — wql), we see
that 7 varies as w}, ie. as the light intensity /, whereas I varies as wi, ie.
as 12 (see fig. 40). Most of the light is scattered elastically and we can define a
cross section for such a process which is well described by fig. 2. /j,,; is much
smaller and can be considered as due to non-linear scattering processes of the
type shown in fig. 7.

For very high intensities (wq > I, |wy — wql), we see on the contrary that
I tends to O (fig. 40). This is due to the fact that the atomic transition is
completely saturated: the two populations are equalized ((S,); = 0) and the
dipole moment is reduced to 0 ({5.)g = 0). On the other hand, ;. is very
large and independent of the light intensity / (this appears clearly in the
bracket of the last equation (7.7) which reduces t0 § as{S,)g = (Sy)g = 0).
This means that the atom spends half of its time in e and cannot therefore

klel

Saturation
Linel

inel

—

Fig. 40.
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emit more than 3 T/7 photons. Increasing the incident light intensity cannot
change this number.

One therefore concludes that inelastic scattering, which is due to the fluc-
tuations of S, is predominant in strong resonant fields. If we ignore these
fluctuations, we miss all the physics. One can finally try to understand why
these fluctuations are so effective at high intensities (/;,o) > I;) whereas they
have little influence at low intensities (7}, </,). I think this is due to the
fact that the greater the probability to find an atom in the excited state e is,
the more sensitive is this atom to the vacuum fluctuations. Some components
of the vacuum fluctuations are resonant for the atom in e as they can induce
it to emit spontaneously a photon whereas they can only produce a level shift
of g. At low intensities, most of the atoms are in g and are not very sensitive
to the vacuum fluctuations whereas at high intensities half of the atoms are in
e and fluctuate appreciably.

7.1.4. How to study the dynamics of the fluctuations? Quantum regression
theorem

Let us now discuss the temporal dependence of (565,(£)8S_(¢")). Consider-
ing the physical discussion given above, it seems that a good idea would be to
try to write down an equation of motion for 8(¢) (and not for (S(£)}) includ-
ing the random character of the force exerted by vacuum fluctuations. These
fluctuations have a cumulative effect on S(#) which can be described by damp-
ing terms analogous to those appearing in (7.1). In addition, S(¢) fluctuates
around its mean value in a way which can be considered as resulting from the
action of a random *Langevin force F(t), having an extremely short correla-
tion time and a zero average value [43]. It is clear that some relations must
exist between the damping coefficients I' and the statistical properties of F(r)
(relations between dissipation and fluctuations) but we will not consider this
problem here since, hereafter, we will only use the ultra short memory charac-
ter of F(1).

So, we will write the following equations of motion (which can be derived
from the Heisenberg equations of motion after some manipulations):

d : ;
E}'Sz(‘) = —3iw, 8,(t) —TS,(t) +}iw, S_() =T +F,(,

(%St(f) = [#i(wy — wy ) — AT1S, () Fiw, S,() +F, (1) , (7.10)

with
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(el =0,
FOF(fN=0, if lt-1IR75. (7.11)

When averaged, (7.10) reduces to Bloch’s equations (7.1) since (F) = 0.
Subtracting (7.1) from (7.10), one gets the equations of motion for
68 =8 — (8) which look like eq. (7.10) except for the inhomogeneous term
—3T" which disappears in the subtraction. We will write these equations in the
form

d
8Si0= ? B,6S5,(0) + F(), (7.12)

where I, ] =+, z, — and where the ‘B!-- are the coefficients of the homogeneous
Bloch equation, forming the following 3 X 3 matrix:

+ o —
| -Gr+idw)  —iw, 0
1Bl =2z | —3iw, -T jiw, . (7.13)
0 iw, —(3I —iAw)

We have put Aw = wp — wy.
From now, we will suppose that # > ¢'. To calculate the correlation function
(88,(1)8S_(1")) when t <1', we will use the following relation:

(88, (N8S_(')=(BS(£)8S_(HN*, (7.14)

which is a consequence of the adjoint character of S, and S_: S, =(S_)*..
Consider now the product § 5,(¢)8S_(¢") with ¢ > ¢, and let us try to un-
derstand how it varies with ¢. When calculating d{6.5,(#)6S_(¢'))/ds and using
(7.12) for dé S,(z)/dt, the only difficulty which appears comes from the
Langevin term F,(¢)8 S_(¢"), since we have not explicited F,(¢). But we only
need to calculate d{(8S,(£)8S_(¢"))/dt, so that we only need to calculate the
average (F(r)8.S_(¢')). And it is easy to understand that such an average gives
0 since the motion of the dipole at ¢/, S_(#) cannot be correlated with the
Langevin force F.(7) at a later time ¢, as a consequence of the ultra short cor-
relation time of F,(¢). It follows that the rate of the f-variation of the three
correlation functions (§.5;(#)6 S_(£))(with t>¢', and i = +, z, —) is described
by a set of three first order differential equations with the same coefficients
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as the ones appearing in the homogeneous Bloch equations giving the rate of
variation of {S;(¢)). More precisely, we have, for t > ¢/,

S(65,(1055_(1)) = 1 B65,1)55_(1). (7.15)
7

This important result is a particular case of the “quantum regression theo-
rem” [44]. In the present case, it means that, when the dipole undergoes a
fluctuation and is removed from its steady state, the subsequent evolution
and the damping of this fluctuation are the same as the transient behaviour
of the mean dipole moment starting from a non-steady state initial condition.

7.1.5. Quantitative calculation of the correlation function
Mathematically, the quantum regression theorem gives the possibility of
calculating two time averages once the i3;’s are known (see eqgs. (7.15)), i.e.
once the master equation giving the evolution of one-time averages is known.
We give in this section two different methods for calculating
(8S,(£)8S_(t")), and, consequently, the spectral distribution of the inelastic
_part of the fluorescence spectrum which, according to (7.2), (7.5) and (7.14)
is given by
T
inet(@) ~2Re [ dt
0

df' (8 S, (H8S_(f')e Hw—w) =) (7 16)

o,

The elastic part of the fluorescence light is not strictly speaking a
8 (w — wy ) function. It has a finite width which is the larger of the two fol-
lowing quantities: width Av of the laser, inverse 1/7T of the transit time of
atoms through the laser beam. We have already calculated in § 7.1.3 the ratio
between the integrals over w of the elastic and inelastic parts of the fluores-
cence spectrum.

(1) First method. Let V, (o = 1,2,3) be the three eigenvectors of the matrix
(7.13) corresponding to eigenvalues £ . As(7.13) is not hermitian, these eigen-
values £, are not real and may be written as

E, =is, —7,, (7.17)

where &, and 1y, are real.
Therefore, we have for £ > ¢’

V(5 =V ()efalt=1) (7.18)
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Let us expand & S,(¢) on the V,(7),
88,(H)= 23 C, V. (2). (7.19)

Inserting (7.19) into the correlation function (8 S,(£)8S_(¢")), using the
quantum regression theorem and (7.18) and (7.17), we get

(85,()8S_(£) =27 C AV, (185 _(£)e'balt=1e=%alt=1) | (7.20)
so that (7.16) may be rewritten as

T T
ginel(w) ~2%Re f At — 1" f dr' Z; Ca(Va(f’)ﬁs_(t'))
¢ 0 o

X e—ilw—wy=8)(1=1") o= (t—1") (7.21)

As 7, is of the order of I" = 1/7 (7 is radiative lifetime of €) and as T> 7,
we can replace the upper limit T of the integral over ¢ — ¢' by +o. Neglecting
the two small transient regimes near = 0 and # = T, we can also in the inte-
gral over ¢ replace (V,(¢')8 S_(#')) by the steady state value (V,8.S_), s0
that we finally have

LT F.e(@) ~ 2Re Za; CAEBE b f emlilw=wp =80 1l7 g7
C (7.22)

We get a very simple result: the inelastic spectrum consists of three compo-
nents having a Lorentzian shape (more precisely, when we take the real part,
we find a mixture of absorption and dispersion shapes). Each of these compo-
nents « has:

a mean position wy +8,;

a half-width v,;

a weight C (V85 ).

(ii) Application. Shape of the inelastic spectrum at resonance
(Aw = wy — wp = 0) and in strong resonant fields (co; > I'). Let us come
back to eq. (7.12) and change from the three quantities 8 5; {85, +i8 SJ,, 8S,,
85, — i85S} to the three quantities {55, =85, +i85,,85;=085,,
68, = 6Sy — 16 S,}. We find that the matrix B given in (7.13) transforms into
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o 8 Y
a |iw, -3 0 i
g |0 —ir 0 (7.23)
v |ir 0 —iw, -3r

As w; > T, the two off-diagonal elements of (7.23) are much smaller than
the differences between any pair of diagonal elements, and we can, to a very
good approximation, consider that (7.23) is diagonal. We know therefore the
eigenvectors and eigenvalues of (7.13):

o § e 3
v, =08, 4188 E, =iw; —3T,
it i 1
V, =88, B, =T,
V. =55,-18S, , E, =—iw, -3r. (7.24)

Let us now calculate C, Cg, C,,. From
88, +i8S, =V, + 3V, + V) (7.25)
we deduce

C =1i, c.=1, =

gk (7.26)

b=

We still have to calculate the (V,6S_)g. As wq > T, we will take for the
steady state value of the atomic density matrix the completely depolarized

matrix
e 7.27
31_2(0 1)’ e

corresponding to a complete saturation of the atomic transition (two equal
populations and no dipole moment). Using elementary properties of Pauli
matrices, we get

(V85 04 =((8S, +i85,)(8S, — i85, )y

T

= ((Sy +iS,)(S, — 1'Sy))st m (Sy TS b — iSy)s1

=0 since{$H, =0,
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1Tx(S, +iS,)(S, — iS,) = —3i Tr -
and similarly

(V88 )y =3T1S,(S, — iS,)=4Tr 82 =

(V, 88 _)y=4Tx(S, - iS,)(S, —iS,) =i Tx Sﬁ =1,

Finally, inserting all these quantities in (7.22), we get
1 1 T
— g. ((4.)) - __I: 4
inel
s 4l (w—w, —w))?+(r)?
ir —
(@=w)*+GT)? (w—op+o)?+GT)?

+2
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(7.28)

(7.29)

(7.30)

(131}

We find that 9, consists of three Lorentz eurves (with an absorption
shape), centred on wy + wy, wy, Wy — w; with half widths 3T, 1T, 2T, re-
spectively (see fig. 41). The total area under the central component is two
times larger than the total area under each sideband. As the central compo-
nent is narrower by a factor 2, its height is three times larger than the one of

each sideband.

Elastic
component
i
Central !
Inelastic |
. component i |
Sideband Sideband 1
/ I
/\ o
1
. ; 1 $3_ %
Wy W W+ Wy
- - - —— -.————— -
2 i 3r
2 2

Fig. 41.



94 C. Cohen-Tannoudji

We have also represented the elastic component which still exists when
wy /T is not infinite. This elastic component must not be confused with the
central component of the inelastic component. It has a much smaller width
(which is the width Av of the laser or 1/T). I is spread over Av (or 1/7")
whereas the central component of 9;,./(w), corresponding to an intensity
31 e is spread over T'. It follows that the ratio between the heights of the
elastic component and the central inelastic component is of the order of

I I
el I' el
oy or 2 T T, (7.32)

inel

J‘rinel
i.e. much larger than //I;, 4 which is given by (7.9). We must therefore have
wi > I'in order to be allowed to neglect the elastic component.

Such a structure is simple to understand. The two sidebands correspond to
the modulation of 6.5, due to the transient precession of the fluctuating part
of § around B, at frequency w; (see fig. 9; as we are at resonance, By = 0).
As the projection of § in the plane ¥ 0Z perpendicular to By is alternatively
parallel to 0Y and 0Z, and as the two damping coefficients associated to S,
and S, are respectively I and 1T (see egs. (7.1)), one understands why, when
wy > T, the damping of the precession around By is given by } [['+3I'] = 3T
and this explains the width 3T" of the two sidebands. The central component
is associated with the transient behaviour of § S, which is not modulated by
the precession around B; and which has a damping coefficient 3T This ex-
plains the position and the width of the central component.

We see also that the classical treatment of the laser field, combined with
the quantum regression theorem, leads to the same results as a correct quan-
tum treatment taking into account the transfer of coherence between pairs of
levels of the “dressed atom’™ having the same Bohr frequency ( § 4.3.3).

(iii) Second method. We now present a second method which gives directly
an analytical expression for 9;  (w) and which does not require the diagonali-
zation of the matrix (7.13). Let us introduce the quantity &;(z, t') given by

(2, 1) =(8S8,(1)8 Sf(r’)){?(t gy (7.33)

where (¢ — t') is the Heaviside function.
As T'> 7, we can write

+oo

ginel(w)"{Tz 2Ke f dr e_j(w_wL)T S, (7). (7.34)
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Note that because of the 6 (¢ — ¢') = 6(7) function, the integral over 7 can be
extended to —oo. It follows that 9; (w) is proportional to the real part of the
FT of &, _ (7). If we put

+oa
g, _(w)= f dr g~ieT d. {1); (7.35a)
L o
S =5 f dwe™Tg, (w), (7.35b)
we get
ginel(w)’!TN 2Reg, (w-— (‘-’[_) - (7.36)

Let us now take the derivative of (7.33) with respect to 7. Using (7.15) and

Loe- r’)=ad;a(f)=5(f) (7.37)
we get
L8, (=28, 0, 0+, (08(0). (7.38)
7 7

By this method, we introduce the initial conditions in the differential equa-
tion. We have

S;_(0) =R, =(8S8S_) =(S; 8 ), —(SHS_)y, . (7.39)

The °R;_ can immediately be calculated from the steady state solution
(7.8) of Bloch’s equation. We find

2@‘1‘ —w{’(m —il")
R
0-

= A

(T2 +202 +4a2)2 (T2 +202 + 4422

—wi(2a —ir)?

e _ (7.40)
(T2 + 202 +442)2

Let us finally take the Fourier transform of (7.38). Using (7.35a), we get
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iwg; (w)= Zf) B8 (@) + R, . (7.41)

Eqgs. (7.41) are a set of three linear equations between the three unknown
quantities g, _(w), gg_(w), g_ _(w) with inhomogeneous terms given by
(7.40). From these equations, we can immediately determine g, _(cw), which

is given by a ratio of two determinants. This analytical expression for g, _ (),
combined with (7.36), gives I () for any values of w, 57 /T, Aw = wy —wy.

7.1.6. Comparison with other calculations and with experimental results

A lot of theoretical papers have been published on the spectral distribution
of resonance fluorescence [1,16,45—56].

The first paper predicting the spectrum represented in fig. 41, with the cor-
rect values for the heights and widths of the various components is Mollow’s
paper [11], which uses a classical description of the laser field and where ana-
lytical expressions are also given for the non-resonant case (wy # wy). Subse-
quent papers, using a quantum description of the laser field, obtain the same
results (see for example refs. [51,55], and also ref. [57] where the problem of
the equivalence between classical and quantum descriptions of the laser field
is discussed). Other calculations predict different values for the heights and
widths of the sidebands of the spectrum represented in fig. 41. I think they
are based upon too crude approximations, as the one which neglects the inter-
ference between different cascading amplitudes in the dressed atom approach
described in § 2.2.3.

Concerning the experimental situation, the first experimental observation
of the fluorescence spectrum of an atomic beam irradiated at right angle by a
laser beam was published last year by Schuda, Stroud and Hercher [59]. The
precision is perhaps not yet sufficient to allow a quantitative comparison be-
tween theory and experiment. Similar experiments are being done in other
laboratories [35,60]. A three-peak structure has been observed at resonance.

Such an experiment is difficult to perform. A first difficulty is the spatial
inhomogeneity of the laser intensity. As the interval travelled by the atom
during its radiative lifetime is short compared to the diameter of the laser
beam, each part of the illuminated portion of the atomic beam radiates a
three-peak spectrum with a splitting w; corresponding to the local amplitude
of the laser field. A too large spreading of this amplitude would wash out the
structure. We must also not forget the elastic component which is not com-
pletely negligible when ¢ is not very large compared to T,
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7.2. Broad line excitation with T, > 1/A

The spectral distribution of the fluorescence light reemitted by an atomic
beam irradiated by an intense broad line spectrum does not seem to have been
investigated.

If the pumping time T, is longer than the correlation time TC = 1/A of the
light wave, we can use the master equation (5.32) and extend the quantum
regression theorem to the Langevin equation associated with (5.32). We find
immediately

L 65,0085_('»

= [,- (wo _ %) _(%r +-f};)] (68,(5)8S_()) . (7.42)

At vanishing light intensities, we can neglect AE'/A compared to wj and
1/T, compared to 3. We find the result obtained in § 2.1.2 from lowest or-
der QED: a Lorentz curve centred on wy with a half-width ;T (see fig. 4).

At higher light intensities, we find that this Lorentz curve is shifted by an
amount —2AE' [k, and broadened by an amount IHT these two quantities
AE'[f and 1/T}, being proportional to the light mtenmty

7.3. What happens with a real non-ideal laser beam?

Let us consider a realistic laser light, having a non-zero spectral width Av

and a very large intensity. More precisely, we suppose w?> T, Av where
w? is the mean Rabi nutation frequency associated with the probability

distribution of the amplitude of the laser. As \/o:ﬁl Te = w?/Av is not small,
the motional narrowing condition is not satisfied and we cannot introduce
rate equations like (5.32). When Av 2 T, the light wave does not appear mono-
chromatic for the atom and we cannot introduce Bloch’s equations like (5.5).

A first important remark is that the knowledge of Av is not sufficient for
characterizing the light beam. One can imagine different light beams having all
the same spectral width Av, i.e. the same first order correlation function, but
completely different microscopic behaviour, corresponding to different higher
order correlation functions [14]. One can for example consider a light beam
emitted by a laser well above threshold, which has a very well defined ampli-
tude undergoing very small fluctuations, and a phase ¢(r) which, in addition
to short time fluctuations, slowly diffuses in the complex plane with a charac-
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teristic time 1/Av. At the opposite, we can consider a quasi-monochromatic
Gaussian field, or a laser just above threshold, for which both phase and am-
plitude fluctuate appreciably with the same characteristic time 1/Av.

We have done, in collaboration with Paul Avan, calculations of the fluores-
cence spectrum corresponding to different models of light beams [58]. The
general idea of these calculations is the following. We consider a light wave
which has two types of fluctuations: short-time fluctuations (for example, er-
ratic motion of the phase) and long-rime fluctuations (for example, slow phase
diffusion or slow amplitude variations). We assume that the correlation time
of the short-time fluctuations is sufficiently short to allow a perturbative
treatment of these fluctuations. Their effect is therefore analogous to the one
of a relaxation process. We treat to all orders the coupling with the slowly
varying light wave assuming that the long-time fluctuations are sufficiently
slow to be adiabatically followed by the atom. Finally, we make statistical av-
erages over the long-time fluctuations. These calculations show that the shape
of the spectrum is very sensitive to the microstructure of the light beam. The
three-peak structure described above is only maintained when the fluctuations
of the amplitude are sufficiently small. The three components are broadened
differently in a way which depends not only on the phase diffusion, but also
on the short-time fluctuations of this phase ¢(#) (more precisely of d¢/dr).
When the fluctuations of the amplitudes are too large, only the central com-
ponent survives, superposed on a broad background having a width of the or-
der of \/w:f This is easy to understand: there is a destructive interference of
the various Rabi nutations around B, as a consequence of the too large
spreading cf the possible values of By.

We are also investigating the sensitivity of level crossing signals to the fluc-
tuations of the laser beam. The only calculations which have been performed
up to now (see sect. 5) suppose either a pure coherent field or a very broad
line excitation (Av > T, \/(,Tf) so that, within the correlation time of the light
wave, at most one interaction between the atom and the light can occur: in
such a case, only the first order correlation function plays a role. It would be
interesting to try to fill the gap between these two extreme situations.

7.4. Intensity and photon correlations

Instead of looking at the spectrum 9(w) of the fluorescence light, one
could try to measure the intensity correlations of this light, which are charac-
terized by the correlation function

U=t +1), (7.43)

I(?) being the current of the photomultiplier.
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As the fluorescence light is in general very weak, it is better to use photon
correlation techniques, and to measure the probability
P(t,t=t+1) (7.44)

for detecting one photon at time # and another one at a later time £ = ¢ +7.
In this last paragraph, we try to calculate P(¢', 7).

P(t', £) is related to higher order correlation functions of the electric field.
It is shown in ref. [14], p. 84, that

P(t', 1) ~(EEOEDEDDED(L)) . (7.45)

We will restrict ourselves to the case where there is at most one atom inside

the laser beam at any time, so that the two detected photons are emitted by
the same atom (very low densities for the atomic beam). In this case, the posi-
tive and negative frequency parts of the scattered electric field are proportional
toS_(t —r/c) and S, (t — r/c), respectively, so that we have to calculate the
correlation function

(S+(t’)S+(f)S“_ (S ('Y (7.46)
which can also be written as

(S, +S,01S_(')

=318, (1)S_(IN + (S (1)S,(DS_(I') . (7.47)
(For a spin-3,8,S_=3 +S,.)
As above, we consider only steady state conditions, so that (S,(z)S_(z"))

does not depend on ¢ and (S,(¢)S,(£)S_(z")) only depends on 7 — ¢'. We
will put

p=(S,(NS (), (7.48)

where p is the steady state probability for finding the atom in its upper state
(5.8 =4+ S, is the projector into this upper state). Finally we have

P(e D) ~3p 148, ()5S, (08 (). (7.49)

For calculating the correlation function appearing in (7.49), we will use a
method very similar to the one of § 7.1.4. We start from the Heisenberg equa-
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tions of motion (7.10), multiply them at right by S_ ("), at left by S,(¢), and
take the average. As the motion of the dipole at time ¢’ cannot be correlated
with the Langevin force at a later time ¢, we get

d T ]
4 SIS, OS_(1

= 218,48 (£)S;(0)S_(£))+ C(S,()S_(1), (7.50)
)

with
t>t i=z,+ —.

Here “B;; and C; are the homogeneous and inhomogeneous coefficients ap-
pearing in Bloch’s equations (only C, is different from zero and equal to —3T;
see first eq. (7.10)).

Using (7.48), and introducing the reduced correlation functions I';(z, £
given by

(S,(t)S,(DS_(£)=pTy(t, 1), (7.51)

we easily transform (7.50) into

d " _ '
ol r)—?%ﬁrf@,rwq. (7.52)

We get a very simple result: the ¢ dependence of the three correlation func-
tions I';(z, ') is given by Bloch’s equations. According to (7.49) and (7.51),
the photon correlation signal p(¢, t') is given by

P, = pl} 0] - (7.53)

We have already mentioned that § +5, is the projector into the upper state.
AsT,,T'_, T, satisfy Bloch’s equations,  +T',(, ') may be interpreted as
the probability, computed from Bloch’s equations, for finding the atom in its
upper state at time ¢, It remains to find the initial conditions, i.e. the values of
the T; fort=1¢".

For a spin-}, we have

(2 =(5_)2=0, S.8.8 =158 . (7.54)
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It follows that

(S,()S,()S_(EN=4S,(t)S_(tHS_(tN=0,

$,(£)S,()S_(£) = —KS, (NS _()=—bp. (7.55)
Consequently, we get from (7.51) and (7.55)

r,@=t)=r_(t=£)=0, T (t=t)=-}. (7.56)

This result shows that the initial conditions for the I'; correspond to an atom
in its lower state.

Finally, we have obtained in (7.53) a very simple result: the probability of
detecting one photon at time ¢’ and another one at time 7 is given by a product
of two factors: p, which is the probability for detecting one photon, and
3 (2, ') which is the probability, computed from Bloch’s equation, that
the atom, starting from its lower state at time ¢’ is found in its upper state at
the later time . The physical interpretation of this result is clear: the probabil-
ity of detecting the first photon is p. The detection of this first photon “re-
duces the wave packet”. Immediately after this detection, the atom is certain-
ly in its lower state. Then, it evolves and, in order to be able to emit a second
photon, it must be raised in its upper state during the time interval £ — ¢'.

Fig. 42 shows for example the variations of P(¢', r) with ¢ — ', at resonance
(wy, = wy), and for very high intensities of the laser beam (w; > I'). One finds
in this case from Bloch’s equations that p =1 and that
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P(t, )~ L[1 — 3T oo w(t-1)]. (7.57)

When 1= ¢, P(¢', 1) = 0: at time ¢, the atom is in its lower state and cannot
emit a second photon. P(¢', £) is maximum when ¢ — ¢’ = m/w; . This time in-
terval corresponds to a “m pulse” which transfers the atom from g to e. When
t— t'> 1T, the two eniission processes are independent and P(¢', 7) reduces
topZ=1i.

The very simple interpretation given above raises the following questions:
s it possible to consider such an experiment as a possible test of the postu-
late of the reduction of the wave packet? What would be the predictions of
other quantum theories of measurement (such as “hidden variables™)? We just
ask these questions here without entering further into these problems.

Let us finally give some orders of magnitude concerning the feasibility of
such an experiment. We have mentioned above that each atom remains about
106 sec in the laser beam. If we want to have at most one atom in the laser
beam at any time, one could not send more than 106 atoms per second. As
each atom emits about 50 photons, this would correspond to a number of
emitted photons less than 5 X 107 per second (in 4 solid angle). It does not
seem hopeless to make photon correlation experiments with such intensities.

Note added after the course

The suggestion of photon correlation experiments for studying the fluores-
cence light emitted by atoms irradiated with strong resonant fields has been
made independently by Carmichael and Walls (D.F. Walls, private communi-
cation; H.J. Carmichael and D.F. Walls, refs. [63,66]).
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