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(1.105)

where the index i labels mode kiEi.

As a recapitulation of this section, we give now the expansion of
Htran., Ptran., A.b El., B in ai and ai

with

B - . ~ rTJ} ( X ik··r * 'X -ik .. r)- 1 L... ;::JJWi aiKi Ei e' - a iKi' Ei e ' ,
i

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)

ln these expressions, Li means sum over modes kiEi. Note also that,
when going from Fourier integrals to Fourier series, 1/(27T)3/2in equa­
tions (1.19) is replaced by l/VI2. This explains why 'iSwi contains V
instead of (27T)3[compare (1.92) and (1.111)].

Finally, the equation of evolution of ai is

1 Ji,
ai + iWiai = V2eohwi

with

(1.112)

(1.113)

2. Quantum electrodynamics in Coulomb gauge - general framework

2.1. Introduction

After the brief survey of classical electrodynamics presented in the
previous chapter, the problem is now to quantize such a theory. We
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first review in this introduction a few possible approaches to such a
problem.

(i) Elemel1:.tary approach
We have shown in section 1 that the total system electromagnetic field
plus particles is formally equivalent to a set of interacting particles and
harmonie oscillators. The simplest possible idea for quantizing such a
system is therefore to quantize the corresponding particles and oscil­
lators. For the particles, the position ra and the momentum Pa of
particle a become, as usual, operators (with a commutator equal to
ifi). For the field, the normal variables ai and a"; of oscillator i are
replaced by the annihilation and creation opera tors ai and ai, weil
known for a quantum harmonie oscillator (and with a commutator
equal to 1). Ali physical observables which, as shown in section 1, can
be expressed in terms of ra, Pa, ai, a";, thus become operators acting in
the Hilbert space of the whole system.

Actually, what is lacking in such an approach is a proof of the fact
that ra and Pa can be considered as canonicalry conjugate variables, as
weil as ai and ai [more precisely (ai + anrV2 and i(ai - aj)rV2]. An
explicit expression of the Hamiltonian in terms of these variables is
also needed. We have indeed given in section 1 the expression of the
total energy of the system but we have not shown under what con­
ditions such an expression can be considered as the Hamiltonian.

A possible solution to this difficulty is to postulate the expression of
the Hamiltonian [actually eq. (1.61) in Coulomb gauge, with Htrans

replaced by (1.106)] and to check a posteriori that the Heisenberg
equations deduced from such an Hamiltonian, and from the basic
commutation relations, are correct [Maxwell-Lorentz equations be­
tween operators].

(ii) Lagrangian and Hamiltonian approach
Rather than postulating the expression of the Hamiltonian and the
basic commutation relations and checking afterwards that they lead to
the correct equations of motion, the usual procedure is to start from a
Lagrangian formulation of classical electrodynamics.

From the Lagrangian leading to the Maxwell-Lorentz equations
(which thus appear as Lagrange equations deduced from a variational
principle), it is first possible to define clearly the generalized coor­
dinates of the system and their conjugate moment a (derivatives of the
Lagrangian with respect to the generalized velocities). This leads to a
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clear identification of the pairs of conjugate physical observables,
which, in the canonical quantization, will become operators with a
commutator equal to ili. The expression of the Hamiltonian also
follows directly from the expressions of the Lagrangian and from the
definition of the conjugate momenta.

It turns out that the standard Lagrangian of classical electrodynamics
is a function ~f the potentials A and U, and not of the fields.
Furthermore, U does not appear in this Lagrangian, so that U has no
conjugate momentum. This raises sorne difficulties for the quan­
tization. One possible solution is to eliminate U from the Lagrangian
and aIl other redundant variables (such a redundancy is in particular
due to the presence of the potentials in the Lagrangian, rather than the
fields). ln this perspective, the choice of the Coulomb gauge appears to
be particularly convenient. A second advantage of the Lagrangian
approach is therefore to provide a better understanding of gauge
problems in both classical and quantum electrodynamics.

(iii) Full relativistic approach
The two previous approaches treat matter and radiation in a quite
asymmetrical way. Radiation is described by a relativistic field, matter
by a fixed number of nonrelativistic particles. It is clear however that
particles, such as electrons, can become relativistic and that their
number can vary (creation of pairs). A satisfactory approach to Q.E.D.
must therefore start from a more symmetrical description of radiation
and matter where both systems are described by a relativistic field.

Such a pro gram is achieved by starting from a Lagrangian for the
coupled Dirac and Maxwell fields considered as classical fields, and
giving Maxwell equations in the presence of the Dirac current on the
one hand, and Dirac equations in the presence of Maxwell fields on the
other hand. Such a theory is then quantized by using commutators for
the Maxwell field, anticommutators for the Dirac field. Photons, elec­
trons and positrons appear in such an approach as eiementary excita­
tions of the quantized Maxwell and Dirac fields.

ln this course, because of lack of time, we will follow mainly the
elementary approach described in (i). The Lagrangian and Hamil­
tonian approach is presented elsewhere [2,9]. It canbe shown that it
leads to the same expression for the Hamiltonian in Coulomb gauge,
as the one derived here in a heuristic way, and to the same quantum
theory. ln the last lecture (section 6), we will introduce by heuristic
arguments the full Q.E.D. Hamiltonian describing the interacting
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quantized Dirac and Maxwell fields and we wilI consider to what extent
the single electron nonrelativistic Q.E.D. Hamiltonian derived from
the element<U,"y approach (i) can be related to such a many-partic1e
relativistic HamiItonian.

ln the next subsection (section 2.2), we present the main lines of the
quantization in Coulomb gauge. We th en consider the problem of the
evolution in time in both Heisenberg and Schr6dinger pictures (section
2.3). Section 2.4 is devoted to a detailed analysis of the structure of the
HamiItonian. Finally we discuss in section 2.5 the electric dipole
approximation for localized systems of charges.

2.2. Quantization in Coulomb gauge - elementary approach

2.2.1. Basic dynamical variables-commutation relations
Each partic1e a is described by two conjugate operators r" and p"

satisfying

1, J = x, y, z.

(2.1)

The 15"/3 expresses that the variables of two different partic1es commute.
For quantizing the field, we replace the normal variables aj and ai

by the well-known annihilation and creation operators aj and a7
satisfying

[ai, aj] = [ai, an = 0, (2.2)

The 15jj expresses that the variables of two different modes of the
transverse field commute.

Remark. We implicitly suppose here that we are working in a
Schr6dinger picture where operators are time independent. The basic
commutation relations (2.1) and (2.2) remain however valid in the
Heisenberg picture provided that the two operators appearing in the
commutator are taken at the same time (equal time commutators).

2.2.2. Space of states
The space of states 'iE is the tensor product of 'iEp, space of states of the
partic1es, by 'iER space of states of the transverse field
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(2.3)

'(f;R itself is the tensor product of the spaces of states '(f;i of the various
oscillators i

(2.4)

A possible orthonormal basis of '(f;j is {Ini)} where ni = 0, 1,2,3 ...
labels the energy levels of oscillator i. If {Is)} is an orthonormal basis of
'(f;p, we can therefore take for the whole space '(f; the following basis:

(2.5)

2.2.3. Expression of the various field observables
The transverse fields E.l(r), B(r), A.l(r) in each point r of space
become opera tors obtained by replacing the normal variables aj and
a 1 of the classical expansions by the corresponding opera tors ai and
ai. We get in this way,

(2.6)

(2.7)

(2.8)

with

(2.9)

The total electric field E is given by

(2.10)

with

(2.11)

The position ra of parti cie a is now an operator in (2.11).
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Since we have kept the order between ai and a,\, in the calculations
leading to (1.87) and (1.88), it is not necessary to do such calculations
again in the quantum case and we can write for the quantum opera tors
Rtrans and Ptrans

- L hWj [ + +] - L h [+ 1]- - a·a·+a·a· - W· a·a·+2. 2 1 1 JI. 1 1 1 ,
1 1

[we have used (2.2) to replace ajat by ataj + 1]

- L hkj [ + +] - L hk +- - a·a·+a·a· - ·a·a·
. 2 1 1 JI. 1 1 1
1 1

[we have used Lj hkJ2 = 0].
Since we are in Coulomb gauge, we can finally write

AU=O,

1
U(r)=-L~

47Teo a Ir - rai'

U is simply the electrostatic potential of the charge distribution

(2.12)

(2.13)

(2.14)

(2.15)

Remark. From the expansions of the various field observables in ai and
at [(2.6) to (2.8)], and from the basic commutation relations (2.2), one
can derive the following field commutators:

fA.u(r), A.lj(r')] = 0,

[A.lj(r), E.lj(r')] =.l~ 8t(r - r/),
100 1

(2.16)

(2.17)

where i, j = x, y, z and 8t is the "transverse delta function" defined in
(1.35),

(2.18)
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d 1

dt G(t) = ifi [G(t), H(t)], (2.21)

where H(t) is the Hamiltonian

Heisenberg equations for the particles. Con sider first the Heisenberg
equation for ra

ra = i~ [ra, H] = i~ [ra, 2~a (Pa - qaA.L(ra))2 ]

1
= - [Pa - qaA.L(ra)] .ma (2.22)

Such an equation is nothing but the well-known relation (1.59) between
the mechanical momentum 'TTa= mara and the canonical momentum
Pa·

For the following ca\culations, it will be useful to evaluate the
commutator between the two components 7raj and 7ral of 'TTa (j, 1 =
x, y, z)

[7raj, 7ral] = -qa[Paj, A.LI(ra)]- qa[A.Lj(ra), Pal]

= ifiqa [ajA.LI(ra) - aIA.Lj(ra)]

= ifiqa L tjlkBk(ra) .
k

We consider now the Heisenberg equation for 7raj,

(2.23)

(2.24)

and ca\culate the contributions of the four terms appearing in the
expression (2.19) of H. The contribution of the first term of H (kinetic
energy) is, according to (2.23),

(2.25)
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and can be considered as the j-component of the symmetrized Lorentz
magnetic force

(2.26)

The second and third terms of H (Coulomb energy) give

(2.27)

i.e., the j-component of the longitudinal electric force qaEn(ra). Finally,
we have for the last term of H (energy of the transverse field)

i~ [ 1Taj,L hWj(at aj +~)]= iqa L wi[A.Lj(ra), at a;] .1 1
(2.28)

Using [ai, ata;] = ai, and the expansions (2.6) and (2.8), one can
transform (2.28) into the j-component of the transverse electric force
qaE.L(ra ).

Combining ail the previous results, we finally get

(2.29)

where E is the total electric field. Equation (2.29) is the quantum form
of the Newton-Lorentz equation.

Heisenberg equations for the fields. The same linear relations exist
between the classical transverse fields and {ai, ai} on the one hand, the
quantum transverse fields and {ai, an on the other hand. If we show
that ai and ai satisfy similar equations, this will prove that ail field
equations are the same in classical and quantum theories. Instead of
writing Heisenberg equations for E.L, B, A.L, it is therefore simpler to
consider such an equation for ai,

. 1
aj =7i[a. H]1 t, . (2.30)

As for '1Ta, we ca1culate now the contributions of the four terms of
H. The last term gives -iwiai. The second and third terms of H commute
with ai and do not contribute ta aj. Finally, the first term gives
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(2.31)

We have used [ai,f(an] = at/oai which follows from (2.2). Introducing
the symmetrized CUITent

(2.32)
a

we transform (2.31) into

1

(2EohWi)l/2 j i,

where

is the Fourier component of j. Finally, we get

1 .

ai + iWiai = (2Eohwi)1/2 cf i·

(2.33)

(2.34)

(2.35)

The quantum equation of motion of ai in (2.35) has therefore exactly
the same form as the classical equation of motion of ai [see eq.
(1.112)]. We conclude that Maxwell equations remain valid between
field operators.

AlI basic equations of classical electrodynamics can therefore be
extended to Q.E.D. (with a proper symmetrization of the products of
non-commuting Hermitian operators, such as the magnetic Lorentz
force, or the charge cUITent).

Advantages of the Heisenberg picture. A first advantage of the Heisen­
berg picture is that it provides a convenient framework for a discussion
of the analogies and differences between classical and quantum
theories. It leads to similar equations of motion, but for operators
instead of c-numbers.
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A second advantage of such a picture is that it gives the possibility of
defining "2-time averages", i.e., the average value in the time in­
dependent state vector 1rf1) of products of two operators F(t) and G(t')
taken at two different times

(rf1IF(t)G(t')Irf1) . (2.36)

Important examples of 2-time averages are statistical functions such as
correlation functions or linear susceptibilities which can be introduced
for a quantum system and which respectively describe the dynamics of
the f1uctua~ions taking place in such a system, or the linear response of
the system to small perturbations. We will consider these statistical
functions in more detail in section 4, in connection with a discussion of
the physical mechanisms responsible for radiative corrections.

2.3.2. Schrodinger picture

ln such a picture, the observables Gare time independent and the
state vector 1rf1(t) evolves according to Schr6dinger equation

ifi :t 'rf1(t) = HIrf1(t) .

If 1rf1(t) is expanded on the orthonormal basis (2.5),

(2.37)

(2.38)

and if the expansion (2.38) is introduced in (2.37), one gets a set of
linear differential equations for the coefficients CSn1"2" .(t).

The Schr6dinger picture is very convenient for introducing transition
amplitudes

(s'; nI, nz, ... 1 U(t)ls; nt, n2, ... ) ,

where

U(t) = e-iHt/h

(2.39)

(2.40)

IS the evolution operator. From a physical point of view, (2.39)
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represents the amplitude that the combined system field plus particles,
starting from the initial state Is; n], n2, ... ), ends up, after a time t, in
the final state Is'; nI, nz, ... ). Perturbation techniques are usually used
for calculating such amplitudes, which can be introduced for various
important pro cesses where photons are emitted, absorbed or scattered
by systems of charged particles.

2.4. Structure of the Hamiltonian

2.4.1. Hamiltonian in the presence of static fields
We first slightly generalize the expressions (2.19) of H to situations
where an external static field, described by the potentials Ao, Uo, is
applied to the part icies (such a static field is not considered as a
dynamical system and the values of Ao and Uo in a given point r are
fixed c-numbers). We must now take

1
H= '2.-2-[Pa-qaA.l(ra)-qaAo(raWa ma

+ VCoul + '2. qaUo(ra) + '2. liw;(ataj +~). (2.41)

The justification for such an expression is that Heisenberg equations
for the particles give the Newton-Lorentz equations in the fields
E + Eo and B + Bo, where E and B are the quantum field operators
already introduced, and where Eo = -V Uo and Bo = V x Ao are the
static electric and magnetic fields.

Note that the gauge used for Ao, Uo is not necessarily the Coulomb
gauge.

We will frequently use the notations

(2.42a)

(2.42b)

2.4.2. Hamiltonian of the particles - Hamiltonian of the radiation field
Interaction Hamiltonian

It is interesting to divide the Hamiltonian H given in (2.19) into three
parts

(2.43)
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where Hp only depends on the parti cie observables ra and Pa (Hamil­
tonian of the particles), HR only depends on the field operators ai and
ai (Hamiltonian of the radiation field), HI depends on both ra, Pa and
ai, ai (interaction Hamiltonian). From (2.19) one derives

(2.44)

(2.45)

(2.46)

where Hu is linear in the fields

(2.47)

[we have used the transversality of Al. which implies Pa· Al.(ra) =
Al.(ra)· Pa], and Hu quadratic

(2.48)

ln the presence of static fields, one must start from (2.41) and Hp and
Hu are replaced by

(2.49)

(2.50)

1T~, defined in (2.42a), is a pure atomic operator.
Up to now, we have considered charged particles without internaI

degrees of freedom. We can remove this restriction by adding to be
observables ra and Pa of particle a the spin operator Sa. Because of the
magnetic moment associated with such a spin,

(2.51)

where g is the g-factor, new terms must be added to the Hamiltonian.
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The magnetic coupling of Sa with the static field Bo

(2.52)

must be added to Hp, and a new interaction Hamiltonian HI!' linear in
the field operator B, appears

(2.53)
a

Note that, since 9l3w = '{;wfc [see (2.9)], the coupling of the spin Sa with
B is of order l/c in comparison with the electric coupling of the charge
qa·

Ali these spin-dependent terms have been introduced here in a
heuristic way. For electrons, they can be derived directly from Dirac
equation (see section 6).

2.4.3. Relative magnitude of the various interaction terms for bound
particles

Consider first the ratio HulHu. The order of magnitude of A and p is
taken equal to the square root of their mean-square value in the state
considered.

Hu_ q2A2/m _ qAp/m _ Hu
Hu - qAp/m - p2/m - Hp·

(2.54)

If Hu ~ Hp, which is always the case for smail radiation intensities
(since Hu - A), Hu is smaller than Hu. At very high intensities (when
the incident field becomes of the order of the intra-atomic field), Hu
can become larger than Hu.

Note however that in sorne scattering processes, such as Rayleigh
scattering, Hu can play a role at order l in perturbation theory (Hu
can destroy the incoming photon and create the outgoing one, so that a
single matrix element of Hu is needed), whereas Hu only appears at
order 2 (Hu can only create or destroy one photon at a time, so that
two matrix elements of Hu are needed). Even if Hu is smaller than
Hu, the contribution of Hu to order l can be of the same order as the
one of Hu at order 2.

Remark. For a free particle, or for a weakly bound particle, Hu (more
precisely the diagonal elements of Hu) can be interpreted as a kinetic
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energy of vibration of the electron in the radiation field. We will come
back on this physical picture in section 4.

We consider now the ratio HidHn. Using (2.51), (2.53) and the fact
that B ~ kA (since B = V x A), we get

Hil_ qhB/m _ hkA _ hk
Hn - qAp/ rn-pA - p ,

(2.55)

i.e., the ratio between the photon momentum hk and the partic1e
momentum p. For low-energy radiation, Ï.e., for optical or microwave
radiation, such a ratio is much smaller than 1.

2.4.4. Selection ru/es

From the basic commutation relations (2.1), (2.2), one can show that, in
absence of static fields (or in presence of static fields invariant in a
space translation)

[P, H] = a = [P, HI] (2.56)

where P is the total momentum given in (2.20).
It follows that the total momentum is, as in c1assical theory, a

constant of motion (in Heisenberg picture)

d
dt P(t) = 0 . (2.57)

From (2.56), it also follows that HI can only induce transitions
between states of the combined field plus partic1es system having the
same total momentum. As a consequence of this momentum con­
servation (combined with energy conservation) one can derive well­
known effects in emission and absorption processes, such as the
Doppler effect or the recoil shift.

2.4.5. Introduction of a cut off
The Hamiltonians (2.19) or (2.41) are of course only valid for slow
(nonrelativistic) partic1es. They cannot therefore describe correctly the
interaction of the partic1e with relativistic modes of the radiation field
(for which hw 2:: mc2), since such interactions would give high velocities
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to the particles, or create new particles (such as electron-positron
pairs).

We prefer therefore to eliminate the coupling with relativistic
modes, which is present in the interaction Hamiltonian HI, and which
is certainly inaccurate. Such an elimination is achieved by introducing a
cut off in the expansions of the field operators appearing in HI. AlI
summations over ki are limited to

(2.58)

where

(2.59)

The cut-off frequency Wc is however chosen large compared to the
characteristic frequencies Wo of the particles

(2.60)

so that a broad spectral range is kept in HI for describing the important
electromagnetic interactions of the particles, in particular the resonant
interactions which give rise to real emission and absorption processes.
ActualIy, with the cut off (2.58), we renounce describing the effect on
the particles of virtual emission and reabsorption of high-frequency
photons. *

Remarks

(i) For consistency, the same cut-off kc must be also introduced in
the interaction with the longitudinal electric field which gives rise to
the Coulomb interaction term. If the longitudinal electric field created
by particle a is expanded into longitudinal modes, and if a cut-off kc is
introduced in this expansion, the energy Sa of the Coulomb field
associated with particle a becomes finite and equal to

(2.61)

The electrostatic interaction between different particles is also

* ln the subsequent seminar [1], the elfect of such virtual processes on the electron-spin
anomaly g - 2 is evaluated to order 1 in the fine structure constant Œ. The calculations
are based on the full relativistic Q.E.D. Hamiltonian.
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Fig. 2. Sorne important photon energies and wavelengths for the hydrogen atom (figure
not at scale).

modified, but such a modification can be neglected if the average
distance between two different partic1es is larger than l/kc (a cut off at
kc in k-space is equivalent to an averaging over a length l/kc in
r-space). For hwc = mez (where m is the electron mass), the charac­
teristic length is li/me, i.e., the Compton wavelength which is much
smaller than the atomic dimensions.

(ii) The modes which are selected by (2.58) have their wave vectors
inside a sphere in k-space. For a different observer, moving with a
velocity v, these modes will be Doppler shifted and will no longer form
a sphere. It follows that the cut off introduced in this section is not
relativistically invariant.

(iii) We can consider some important photon energies hw and the
corresponding wavelengths i\ = he/hw for the simplest atomic system,
the hydrogen atom (see fig. 2 which is not at scale). A first important
energy is the electron rest mass energy me2, the corresponding
wavelength being the Compton wavelength i\c = li/me. The cut-off
energy hwc must be smaller than me2• The characteristic atomic ener­
gies (noted hwo above) are of the order of the ionization energy of the
atom, i.e., of the order of aZmez, where a is the fine structure constant.
Since a = 1/137, such an energy is at least four orders of magnitude
smaller than mc2• It is therefore easy to find a cut-off frequency Wc

fulfilling condition (2.60). Finally, we can note that the Bohr radius ao

is equal to i\c/a, so that a wavelength of the order of ao corresponds to
photon energies of the order of ame2, much smaller th an me2, but also
much larger th an a2me2 (see fig. 2). For an atom such as hydrogen, the
energy range between a and ame2, which contains all important atomic
frequencies, corresponds therefore to wavelengths large compared to
atomic dimensions. This leads us to introduce now the electric dipole
approximation.

2.5. Eleetric dipole approximation

When the charged partic1es interacting with the radiation field form
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one (or several) localized systems such as atoms or molecules, with
spatial extensions a smaller than the wavelengths À of the field, one
can neglect the spatial variation of the field over each localized system
of charges. Such a long wavelength approximation allows one to
transform the Hamiltonian H studied in the previous section into a
more suggestive one involving electric dipole couplings. We analyze in
this section such an electric dipole approximation.

2.5.1. A few results concerning dipole moments
For the following discussion, it will be useful to review first a few
simple results of electromagnetism.

Charge density for a system of localized charges. Con sider a set of
charges qa, with positions ra localized near a point RA, in a volume
with linear spatial extension a

(2.62)

The corresponding charge density in r-space and k-space can be
written,

(2.63)

(2.64)

The localization assumption can be used to transform (2.63) or
(2.64). It is simpler to work in k-space. For ail wave vectors k such that
ka ~ 1, we can write .

a

(2.65)

Introducing the "total charge" QA,

(2.66)
a
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and the "dipole moment'" dA with respect to RA,

dA = 2: qa(ra - RA) ,
a

we get

The Fourier transform of (2.68) then gives

51

(2.67)

(2.68)

(2.69)

Such a simple result means that the charge distribution of a localized
system of charges can be expanded into a total charge QA localized in
RA, a polarization density PAer) corresponding to a dipole moment dA

localized in RA,

(2.70)

and so on ... ,

(2.71)

For the following ca1culations, it is useful to introduce the Fourier
transform of (2.70)

(2.72)

which can be used to transform (2.68) into

(2.73)

Remark. Strictly speaking, expansions (2.65) and (2.68) have a meaning
only if ka ~ 1. Consequently, the Fourier transform of (2.68), leading

* The delinition (2.67) of the dipole moment dA depends on the point of reference RA.
except if the total charge QA is equal to zero.
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to (2.69), should be limited to the corresponding values of k (ka q 1).
It follows that the 8(r - rA) functions appearing in (2.69), (2.70) and
(2.71) are not true delta functions but have actually a width of the
order of a. They can be, however, considered as true delta functions
for physical effects involving characteristic lengths much larger than a
(for example, the interaction of the atomic system with a radiation with
wavelength À ~ a).

Ali previous results can be generalized to several distinct systems of
charges YA, YB... localized near RA, RB ... with total charges QA,

QB ... and dipole moment dA, dB ... (with respect to RA, RB ... ). One
can show that

p(k) = PACk) + PB(k) + ... ,

(2.74)

(2.75)

where PAer) and PACk) are given by (2.71) and (2.73), PB(r) and PB(k) by
similar expressions with A replaced by B.

Electric induction in the presence of globally neutrallocalized systems of
charges. From now on, we suppose that the various systems of local­
ized charges YA, [lB ... are globally neutral

(2.76)

and we neglect aIl higher-order terms after the dipole one in (2.71) and
(2.73).

From the electric field E and the total polarization density

one can introduce the electric induction D

D(r) = EoE(r)+ P(r).

(2.77)

(2.78)

From Maxwell equation (1.1a), V· E = plEo, and from eq. (2.71) with
QA = 0 and the corresponding equation for [lB ... , one deduces that

V· D(r) = 0, (2.79)
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which means that D is a pure transverse field, so that we can also write

(2.80)

Remarks

(i) Equations (2.79) and (2.80) are actually valid only after an
averaging of the fields over a volume large compared to a3 (see remark
of the previous section).

(ii) Since the polarization density P(r) is localized near RA, RB .
[see (2.70) and (2.77)], it follows from (2.78) that, outside gA, gB .

the electric induction coincides with the total electric field E(r) [within
the multiplicative factor Eo],

D(r) = EoE(r) if r is outside gA, gB ... (2.81)

Using the equivalent expression (2.80) of D, we also deduce from
(2.81) that, outside gA, gB ... , PJ.(r) coincides with EoEII(r).

Electrostatic interaction between two globally neutrallocalized systems of
charges. The electrostatic energy of a charge distribution is given in
terms of the charge density p(k) by

(2.82)

[see also eq. (1.50) and its Fourier transform (1.51)].
If we replace P by PA + PB + ... in (2.82), and if we keep the crossed

terms in PÀPB (or PAPé), we obtain the electrostatic interaction energy
between the two localized systems g A and gB. Using the expression
(2.73) of PA (with QA = 0), and the corresponding expression for PB, we
get

V~ul = 2~0 f d3k [1(. 9JÂ(k)][l(· 9JB(k)] + A~B

= 1-f d3k 9JÂiI(k)· 9JBu(k).Eo
(2.83)

[From the reality condition of 9JA and 9JB, one can show that the
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A ~ B term of the first line of (2.83) is equal to the first term.] Using
the Parseval-Plancherel identity (1.21), we can also write

(2.84)

Actually, since the two dipole moments dA and dB are supposed to
be localized in two different points of space RA and RB, (with IRA­

RBI ;» a), we have

(2.85)

so that (2.84) can also be written

(2.86)

The electrostatic energy between two dipole moments is therefore
simply related to the scalar product of the corresponding longitudinal
or transverse polarization densities.

2.5.2. Long wavelength approximation
Suppose we have two globally neutrallocalized systems of charges YA

and YB, for example two neutral atoms localized in RA and RB. The
index a labels the particles of Y A, the index (3 the particles of YB.

The total Hamiltonian H in Coulomb gauge can be written,

1 1
H = L 2m [Pa - qaA.L(ra)]2+ L 2m [P/3 - q~.L(r/3)]2a a /3 /3

+ V~l + V~ul + V~ul

+ L hWj(aiaj +~). (2.87)

The first sum represents the kinetic energy of the particles a of YA, the
second one the kinetic energy of the particles {3 of YB. The second line
of (2.87) is the total Coulomb energy of the system, which has been
divided in three terms, V~l which represents the Coulomb energy of
YA considered alone (sum of the Coulomb self-energies of each parti-
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cie a of YA and of the Coulomb interaction energy between different
partic1es of Y'A), V~ul which has the same meaning for Y'B, V~ul which
represents the Coulomb interaction energy between YA and YB.
Finally, the third line of (2.87) is the energy of the transverse field.

Suppose that the fields irradiating these systems of charges, or
radiated by them, have a wavelength À much larger than the spatial
extension a of YA and Y'B,

À~a. (2.88)

For the corresponding modes of the transverse field, we can write

(2.89)

The long wavelength approximation consists in replacing AJ.(ra) by
AJ.(RA) and AJ.(rJ3) by AJ.(RB) in the first line of (2.87) which thus becomes

(2.90)

Remark. Actually, one must not forget that the expansions of AJ.(ra)

and AJ.(rJ3) in plane waves also contain high-frequency modes for which
the approximations (2.89) are certainly not valid [even if we introduce
a eut-off kc as in the previous section (2.4.5), kc is generally larger than
lia. For example, the energy range between amc2 and mc2 in fig. 2
corresponds to modes which are not relativistic but which have a
wavelength shorter than the Bohr radius]. Of course, if Y'A and YB are
atomic or molecular systems, their typical internai Bohr frequencies Wo

are much smaller than cfa,

Wo~ cfa, (2.91)

so that the resonant interactions of Y'A and Y'B take place with modes
of the radiation field for which ka ~ 1 (see for example the energy
range between 0 and amc2 on fig. 2). Nonresonant interactions with
high-frequency modes cannot however be neglected since they give rise
to virtual processes contributing for example to radiative corrections
(atoms or molecules can virtually emit and reabsorb photons of any
frequency). If we are interested in a precise ca1culation of such effects,
we cannot use the approximate expression (2.90). We must come back
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to a more precise Hamiltonian, even more precise than the ones
considered in this chapter (see section 2.4), since it must also inc1ude
relativistic effects (see seminar following this course for example [1]).

2.5.3. Unitary transformation ([9] and references in [12])
The simple form of the kinetic energy term (2.90), after the long
wavelength approximation, suggests to make a unitary transformation
T translating ail Pa by an amount qaA.l(RA) and ail P{3 by an amount
q~.l(RB). Such a translation operator can be written

T = exp{ - * [L qara • A.l(RA) + L q{3r{3. A.l(RB)]}a {3

= exp{ - * [dA· A.l(RA) + dB . A.l(RB)] } .

and we have

TPaT+ = Pa + qaA.l(RA),

Tp{3T+ = P{3+ q~.l(RB) ,

(2.92)

(2.93)

so that the kinetic energy term (2.90) takes the much simpler form

,,12,,12
L... 2m Pa + L... 2m P{3·
a a {3 {3

(2.94)

We have used the fact that, because of (2.16), A.l(RA) and A.l(RB)
commute with T.

Remark. ln the derivation of (2.93), we have implicitly supposed that
RA and RB are two fixed points of space (c-numbers commuting with Pa

and p{3). ln other words, we neglect the translation al motion of [fA and
[lB. We could also consider that RA and RB are the centers of mass of
[lA and [lB. ln such a case, RA and RB wouId be functions of the ra's

and r{3 's, and new terms would appear in the right side of (2.93), which
can be shown to introduce corrections of the same order of magnitude
as the magnetic dipole and electric quadrupole couplings [which have
been neglected here by stopping the expansions (2.71) and (2.73) after
the dipole term].
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The unitary ope rat or T given in (2.92) can also be written

T = exp[ L (A ";ai- Àiat) ] '
1

with

It follows that T is also a translation operator for ai and ai,

TaiT+ = ai + À"; .

(See for example Glauber's lectures in [13].)
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(2.95)

(2.96)

(2.97)

(2.98)

2.5.4. Expression of the observables in the new representation
It is weil known that a given physical quantity is generally represented
by different mathematical operators in two different representations.
More precisely, we can obtain the "new" representation G' of a
physical quantity by applying T to its old representation G,

G'= TGT+, (2.99)

corresponding old operator G <c-physical quantity ~ corresponding
"new" operator G' = TGT+

A similar result holds for physical states: corresponding "old" ket
1«/1) <c-physical state~ corresponding "new" ketl«/1')= TI «/1).

We can, for instance, caJculate the operators associated with sever al
field quantities in the new representation. For the transverse electric
field, its new representation E~(r) = TE.l(r)T+ can be caJculated using
(2.98) and (2.72). We get
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The second line of (2.87) is a pure atomic operator -depending only on
the ra 's and r{3 's and which therefore remains unchanged in the trans­
formation T. Finally, the transformation of the third line of (2.87) leads
to

= L hWi[(at + A D(aj + Ai) +~]

(2.103)

ln addition to HR, we get a term linear in Ai or Ai, and a term bilinear
in Ai and Ai. Consider first the linear term. Using (2.96) and (2.97), we
can transform this term into

-dA· L i~ 2~~Ù(aiEi eiki"RA_ aiEj e-iki"RB)+ A~B.
1

(2.104)

We get the scalar product (with the minus sign) of dA (or dB) with a
field operator which, according to (2.101), is equal in the new
representation to (l/Eo)D'(RA) [or (l/Eo)D'(RB)]

(2.105)

Thus, the interaction term involves the electric induction rather th an
the electric field.

Consider now the last term of (2.103). We have first two "square"
terms in A 7AAiA and A 7BAiB' Using the expression (2.97) of AiA' we get

(2.106)

(2.107)

If we introduce a eut-off kM in the sum over Ikd (with kMa <2i 1) such a
term (and the corresponding one for A7BAiB) becomes

1 _ "Jo. A * A - k ~ d2
E A - L... rtWj jA iA - ~ A,i EO'Tr

EJ,. and EB are pure atomic opera tors related to !fA and YB and
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representing dipole self-energies. Finally we have a "crossed" term
between A and B

1
= 2soU L (10; • dA)(E; • dB) eik,-(RA-RB) + A ~ B .1

(2.108)

The A ~ B term of (2.108) doubles the first one. Replacing the discrete
sum by an integral and using (2.72), we transform (2.108) into

~l d3k L (10 • fJPÂ)(E • fJPB)= ~ l d3k fJPÂ.L(k)· fJPB.L(k)80 E 80

= ~ l d3, PA.L(r)· PB.L(r).80
(2.109)

According to (2.86) such a term is nothing but - V~ul and therefore
cancels the electrostatic interaction between A and B, appearing in the
second line of (2.87).

Combining ail the previous results, we get for H' = THT+

(2.110)

ln the new representation, the Hamiltonian has a very simple struc­
ture. We have first two atomic Hamiltonians, for [lA and [lB,
representing for each system, the sum of the kinetic energy, the
Coulomb energy (inside [lA or [lB), the dipole self-energy (8;' or 8B)'
Then we have the field energy HR and finally the interaction Hamil­
tonian representing the coupling of dA (and dB) with the electric
induction in RA (and RB)'

Two advantages of the new representation clearly appear on (2.110).
First, the interaction Hamiltonian is linear in field operators and not
quadratic as it was the case for H. Second, the instantaneous Coulomb
interaction between A and B has disappeared.

This last result has a simple interpretation: the new Hamiltonian
contains the coupling of the electric dipole dA with the total induction
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in RA, in particular the induction produced by :J'B. But, the induction
produced in RA by :J'B coincides with the total electric field produced
by :J'B, since the polarization density PB(r) associated with :J'B is
localized in RB and since RA is outside YB (see remark (ii) on page 53). It
follows that the new interaction Hamiltonian contains the coupling of dA

with both the transverse and longitudinal electric field produced by YB.

This also explains why the new Hamiltonian (2.110) is more suitable than
the old one (2.87) for studying retardation effects in the electromagnetic
interaction between two neutral atoms.

3. Quantum electrodynamics in Coulomb gauge - physical discussion

3.1. Introduction

The purpose of this lecture is to discuss sorne important features of the
quantum theory of radiation introduced in the previous section 2.

We first review (section 3.2) sorne observables of the quantized field.
Most experiments actually correspond to photoelectric measurements
and we give the expression of the field observables which are measured
in these experiments.

We then analyze (section 3.3) the eigenstates of the observables
corresponding to the total energy and total momentum of the field,
which clearly exhibit the corpuscular features of the field. These states
can be analyzed in terms of elementary excitations of the field, or
photons, having a well-defined energy hw and momentum hk. By
superposing one-photon states, with different energies, it is possible to
construct nonstationary states, which propagate with the speed of Iight.
The ground state of the quantized free field, i.e., the vacuum of
photons, exhibits important quantum features, which are analyzed in
section 3.4.

The wave aspects of the field are also very important. We introduce
in section 3.5 the quasiclassical states, or coherent states, which realize
the best compromise between the complementary photon and wave
aspects. The last section 3.6 is devoted to detailed discussion of
interference phenomena. We show how the quantum theory of radia­
tion provides a very convenient framework for analyzing these effects,
and how the notion of interference càn be extended to processes
involving more than one photon.
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3.2. Free field observables
ln order to focus the discussion on the field observables, we will

con sider hxre the free field, in absence of sources.

3.2.1. Energy and momentum

We have already given in section 2 the expression of the cor­
responding observables HR and PR,

PR = L likiat ai· (3.2)

HR and PR are "global" observables, since they are related to
integrals of the electric and magnetic fields over the whole space.

3.2.2. Fields in a given point r
Contrarily to HR and PR, these observables are "local". The expression
of E(r), B(r), A(r) is given in (2.6), (2.7), (2.8)*.

If we consider the contribution of mode i to A(r = 0), we find
something proportion al to aj + at. Similarly, the contribution of mode
i to E(r = 0) is proportion al to i(aj - an. This gives a physical meaning
to the "position" Xi = (ai + anrv"2 and to the momentum Pi =
i(at - ai)tv'"2 of the fictitious harmonie oscillator associated with mode
i and to its wave functions. For example, it is weil known that the
ground state of an harmonie oscillator has a Gaussian wave function in
x-space and p-space. It follows that the distribution of the possible
values of the contribution of mode i to E(O) is given by a Gaussian
curve in the ground state of this oscillator (no photon in mode i).

3.2.3. Observables corresponding to photoelectric measurements
ln the optical domain, most local measurements of the field are based
on the photoelectric effect. One puts an atom in the field at point rand
one records the photoelectron produced by the photoionization of this
atom. Su ch measurements are destructive, sin ce the photon giving rise
to the photoelectric effect disappears.

* The free field considered in this chapter is transverse sa that we can write E(r) and
A(r) instead of El.(r) and Al.(r).
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Single countings signais. Suppose that a broad band photodetector is
put at point r in a radiation field. It can be shown (see for example
Glauber's lectures in [13]) that the probability of observing a pho­
toionization in this detector between t and t + dt is proportion al to
wI(r, t) dt where

(3.3)

E(+) and EH are the positive and negative frequency components of
the electric field defined in (1.95) and (1.96). The observation time is
supposed sufficiently short so that perturbation theory can be applied.

The "single counting rate" WI is the average in the state 1"'> of the
field observable (in the Heisenberg picture)

I(rt) = EH(rt)· E(+)(rt) , (3.4)

I(r, t) is an Hermitian operator, normally ordered (annihilation opera­
tors at right, creation operators at left) which can be called the light
intensity in r at time t.

Remark. It is also possible to give a semiclassical treatment of the
photoelectric effect, where only the detector is quantized but not the
field (see for example [14, 15]). For the single counting rate, one finds
instead of (3.3)

(3.5)

where E~t) and E~l) are the positive and negative frequency com­
ponents of the classical electric field and Ici = IE~t)12 the classical
intensity.

Double counting signais. We consider now two photodetectors in rand
r'. The probability to have a photoionization in r' between t' and
t' + dt' and another one in r between t and t + dt can be shown [13] to
be proportion al to wn(rt, r't') dt dt' where

m,n

with m, n = x, y, z. The "double counting rate" Wn is the average of
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the normally ordered observable

(3.7)
m,n

Since E(-)(rt) and E(+)(rt) do not commute, such an observable cannot
be written as l(rt)l(r't'), Ï.e., as the product of the two light intensities
in rt and r't'.

Remark. The semic1assical expression of the double counting rate is
equal to

w~l(rt, r't') = IcJ(rt)lcJ(r't'). (3.8)

For a fluctuating c1assical field, the average of (3.8) must be taken over
ail possible realizations of the field. ln such a case, the double counting
rate is given by the correlation function of the light intensity.

3.3. Elementary excitations of the quantized free field - photons

3.3.1. Eigenstates of BR and PR
Consider first the ith oscillator (mode i). We have the well-known
results

ni = 0, 1,2, ... ,

ailn;) = y ni + 11ni+ 1) ,

ailni) = y nilni - 1) ,

a 10.) = °1 1 ,

_ (ann;
Ini) - Y- 10;) .n·!l'

(3.9)

(3.lOa)

(3. lOb)

(3.lOc)

(3.11)

Since ai a; commutes with ajaj, the eigenstates of HR and PR are
(tensonai) products of the eigenstates ln;) of aia;,

HRlni ... ni· .. ) = L (ni + !)hWilni ... n; ... ) ,
i

(3.12a)

(3.12b)
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The ground state of the field corresponds to ail nj equal to zero and
wi\l be noted 10) (vacuum state),

10) = lOI ... Oi ... ) . (3.13)

From (3.11) it follows that the eigenstates Inlnz ... nj ... ) can be
obtained by applying on the vacuum a certain number of creation
operators,

_ (an"1 (an"' ... 10) .
Inl ... ni· .. ) - V ni! ... V ni!

(3.14)

3.3.2. Interpretation in terms of photons
With respect to the vacuum, the state [ni ... nj ... ) has an energy
Lj n/IWj and a momentum Lj n;likj. It behaves as an ensemble of ni

particles with an energy liwi and a momentum Iik1 ••• and nj particles
with an energy liwj and a momentum liki ....

These particles are called "photons". They describe the elementary
excitations of the various modes of the quantized field.

From (3.10), it follows that ai crea tes a photon i, whereas aj
annihila tes a photon i. The total number of photons is described by the
operator

(3.15)

Finally, since the field has been quantized with commutators, pho­
tons are bosons. Actually, the number of photons i, ni, can be larger than
1.

3.3.3. One photon states - propagation
The creation operator a~ acting upon the vacuum 10) gives a state a~IO)

with one photon k. These states can be linearly superposed to give

11/1) = L cka~IO) .
k

(3.16)

(3.17)

Such a linear combination is an eigenstate of the operator N given in
'(3.15),

NI1/1) = 11/1) ,
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but not of HR and PR (since several values of k appear in (3.16)). It
follows that, in general, 11/1>describes a nonstationary one-photon state.

ln order to discuss the propagation of such astate, we will consider a
simple one-dimension al problem. All the modes appearing in the
expansion (3.16) are supposed to have their wave vectors parallel to
the x-axis and the same polarization, so that E(+)(rt) will be simply
noted E(+)(xt),

E(+)(xt) = I~ '" VIa ei(kx-wt)\j 2E V L. k •
o k

(3.18)

The single counting rate wbt) in the state (3.16) is then given by

WI(Xt) = 2 hc 312: VI Ck eik(x-ct) 12EoL k
(3.19)

It c1early appears on (3.19) that wJ(x, t), which only depends on x - ct,
propagates without deformation with a speed c.

Remarks

(i) A measurement of PR on the field in the state (3.16) gives the
value hk with the probability ICkl2 [we suppose <1/111/1>= 2.k Ickl2 = 1]'lck12

can therefore be considered as the probability distribution for PRo

(ii) wJ(xt) represents the probability of obtaining a photoelectron at
the point x. It could be tempting to consider wJ(xt), in the one-photon
subspace, as the probability for the photon to be at point X. This would
introduce the idea of the "position" of the photon. To support such an
interpretation, it would be necessary to show that it is possible to
construct a complete set of localized states for the photon, i.e., a
complete set of states for which wJ(rt) is zero everywhere except in one
point. This is actually impossible because of the transverse character of
the photon field. For example, to localize a photon with a polarization
parallel to the z-axis, the transversality imposes to use only plane
waves with their wave vectors in the xy-plane, and wJ(rt) would be
completely delocalized in the z direction. ln fact, it has been shown by
general arguments, that it is impossible to define a position operator
for the photon [111.
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3.4. Some properties of the vacuum

67

3.4.1. Qualitative discussion

For a real harmonic oscillator, it is well known that the basic com­
mutation relation [x, p] = ili prevents the simultaneous cancellation of
the potential energy x2 and the kinetic energy p2. The lowest energy
level results from a "compromise" between these two energies which
cannot be made both equal to zero. This explains why the ground state
has a non-zero energy (zero-point energy Iiw/2), and why in this
ground state (x2) ci- 0 and (p2) ci- O.

A similar situation occurs for the quantized field. The basic com­
mutation relation [ai, an = 8ij [see also (2.18)] prevents the simul­
taneous cancellation of E2 and B2, i.e., the electric and magnetic
energies. It follows that the ground state of the field, Ï.e., the vacuum
10), has a nonzero energy (Eo = Li Iiw;!2) and that, in this state, (E2) ci- 0

and (B2) ci- O. This is a pure quantum effect.

3.4.2. Vacuum fluctuations
Using the expansion of E in ai and ai and

(OlajaiIO) = 8ij, (3.20)

one derives

(OIE(rt)IO) = 0 , (3.21)

(3.22)

The average value of E2(r) in the vacuum is proportion al to Ii (pure
quantum effect) and diverges if the upper bound kM of the integral
tends to infinity.

It follows that, even in the vacuum of photons, there is an electric
field everywhere in space, with a zero average value, but with a
non-zero variance.

The dynamics of these vacuum fluctuations is described by the
symmetric correlation function
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Cmn(r; t + r, t) = !<OIEm(r, t + r)En(r, t) + En(r, t)Em(r, t + r)IO) ,

(3.23)

where m,"n = x, y, z. Using the expansion of the free field Heisenberg
operators, one derives

Ile fkMCmn(r; t + r, t) = Dmn62Re k3 eickT dk.Eo1T 0
(3.24)

The correlation function Cmn is real and only depends on r (this is due
to the fact that the vacuum is a stationary state). The width in r of
Cmn(r) is of the order of 1/ekM• This means that vacuum fluctuations
have a very short correlation time. It also appears in (3.24) that the
spectral power density of vacuum fluctuations is proportion al to w3•

An atomic electron in the vacuum of photons interacts with vacuum
fluctuations. Can spontaneous emission by an excited atom be con­
sidered as an emission "triggered" by vacuum fluctuations? We will
come back to this problem in the next lecture devoted to a physical
discussion of radiative processes. We will see that vacuum fluctuations
play an important role in spontaneous emission of radiation and in
radiative corrections, but that another physical mechanism is also
present, the interaction of the electron with its own field (radiation
reaction ).

3.5. Quasiclassieal states

3.5.1. General idea

Consider a classieal free field. Its state is, according to the results of
section 1, characterized by the set {aJ of normal variables. Once the
set {aJ is known, aIl field quantities are known. For example,

A ({ } t) - '" --/1 i(k-r-wt) +el ai , r - L..J .Y:t-w/XjEi e / 1 C.C. ,

and so on.

(3.25)

(3.26)

(3.27)
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For a quantum free field, the situation is more complex. Since the
various quantum field observables (reviewed in section 3.2) do not
commute, it is impossible to find common eigenstates of these observ­
ables with eigenvalues equal to the values of the corresponding classi­
cal observables.

ln this section, we try to find the quantum state l{aJ) which
"reproduces" in the best possible way the properties of the classical
state {aJ. The general idea is to look for a quantum state l{aJ) such
that, for ail important observables, the quantum average values in this
state I{ai}) coincide with the corresponding classical values. More
precisely we want to have

(3.28)

(We have substracted the energy Evac of the vacuum because ail
energies are measured with respect to the vacuum.)

({aJIPRI{ai}) = P~({aJ) ,

({ai}IA(rt)l{aJ) = AcI({ai}, rt) ,

for ail r and t, plus similar equations for E, B.

(3.29)

(3.30)

3.5.2. Characterization of quasiclassical states
If the expansions of HR, PR, A(r, t) in ai and ai are inserted in the left
part of (3.28), (3.29), (3.30), and if the expressions (3.25), (3.26), (3.27)
of H~({ai})' P~({ai})' AcI({ai}, rt) are used, one finds that conditions
(3.28), (3.29), (3.30) are equivalent to

({aJlail{aJ) = ai Vi.

({aJlaiad{aJ) = a";ai Vi.

If we then introduce

where ] is the unit operator, we transform (3.31) and (3.32) into

(3.31)

(3.32)

(3.33)

(3.34)
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({a;}lbtbil{a';}) = 0 Vi, (3.35)

Equation (3.35) expresses that the norm of b;j{a;}) is equal to zero. The
solution of (3.34) and (3.5) is therefore

(3.36)

l.e.,

(3.37)

It follows that

with

ala) = 0'10')1 1 1 1 •

(3.38)

(3.39)

The quasiclassical, or coherent, state I{a;}) is thus the product of the
eigenstates of the various annihilation operators ai, the eigenvalues ai

being just the corresponding classical normal variables.
From (3.39) it follows that

(ala+ = 0'*(0'·1t 1 1 "

and also that

E<+)(rt)l{a;}) = E~t)({a;}, rt)l{a;}) ,

({a;}IEH(rt) = E~I)({a;}, rt)({a;}1 .

(3.40)

(3.41 )

(3.42)

More generally, ail normally ordered observables have an average
value in I{a;}) equal to the corresponding classical value in the classical
state aj.

3.5.3. Sorne properties of quasiclassical states [13], [16]
Projecting (3.39) on the bra (n - 11gives the following relation

\/~(nla) = a(n - 110'), (3.43)
















































































































































































