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General introduction

This series of six lectures is intended to present a simple introduction
to quantum electrodynamics (Q.E.D.) Q.E.D. is actually a very broad
subject which, obviously, cannot be covered in six lectures, and it is
necessary to make some choices. We will focus here on physical
mechanisms, trying for example to give some simple physical pictures
for radiative processes, but we will not enter into problems related to
the formal structure of the theory, such as relativistic or gauge in-
variance.

In all lectures except the last one, we will restrict ourselves to
systems containing a fixed number of nonrelativistic particles (having a
velocity v much smaller than the speed of light ¢). We will therefore
introduce a Q.E.D. formalism where particles are described by
Schrodinger wave functions, and radiation by a quantized Maxwell
field. Such an approximation applies to most situations occurring in
atomic and molecular physics, where weakly bound electrons interact
with microwaves or optical fields. This also explains why we use the
Coulomb gauge throughout the whole course. The electrostatic inter-
action, which explicitly appears in such a gauge, is an excellent
approximation for the electromagnetic interaction between non-
relativistic charged particles, and corrections to this approximation,
such as retardation effects, or coupling with the transverse radiation
field, are easily handled by perturbation methods.

We start in lecture 1 by a brief review of classical electrodynamics.
By working in reciprocal space (i.e., by taking the spatial Fourier
transform of the fields), we easily identify the relevant dynamical
variables of the field and put the classical theory in a form suitable for
the quantization which is then performed in lecture 2. We give in this
lecture the basic commutation relations and the expression of the
Hamiltonian describing the interaction between nonrelativistic parti-
cles and the quantized radiation field. Lecture 3 is devoted to a
discussion of the physical content of such a theory. We review various
types of observables and various types of states of the quantized
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radiation field exhibiting corpuscular aspects (photons) or wave aspects
(interference phenomena) or both (wave—particle duality).

After this general presentation of Q.E.D., we consider in lecture 4
radiative processes such as spontaneous emission or radiative cor-
rections, antl we try to analyze the physical mechanisms responsible for
such processes. Starting from the coupled Heisenberg equations of the
electron-field system, we try to eliminate the field variables and to get
a dynamical equation for the electron. We discuss in detail the respec-
tive contributions of the interaction of the electron with the quantized
vacuum field (vacuum fluctuations) and with its own field (radiation
reaction).

Another possible approach to radiative corrections is the so-called
effective Hamiltonian method, discussed in lecture 5. One tries in such
an approach to derive a Hamiltonian describing how the slow motion
of a weakly bound electron is modified by virtual emissions and
reabsorptions of photons. We review in lecture 5 some results obtained
along these lines and which not only confirm those of lecture 4, but
extend them to higher orders in 1/c.

Finally, in lecture 6, we try to give an idea of a more symmetric
formulation of Q.E.D. where not only radiation but matter is described
by a quantized relativistic field (in this case, the quantized Dirac field
with elementary excitations corresponding to electrons and positrons).
We also show that the single-particle nonrelativistic Hamiltonian used
in the first part of this course for discussing the dynamics of a single
electron coupled to the quantized radiation field, can be considered as
an effective Hamiltonian in the one-particle subspace of the full
relativistic Q.E.D. Hamiltonian. The general results of lecture 6 will be
also useful for the discussion presented in the seminar [1] following this
course, describing a theoretical work done in collaboration with
Jacques Dupont-Roc and dealing with the contribution of relativistic
modes of the radiation field (hiw = mc?) to the electron spin anomaly
g-2.

The presentation of the first three lectures closely follows the one
used in a book on introductory Q.E.D. which is being written in
collaboration with Jacques Dupont-Roc and Gilbert Grynberg [2].
Lecture 4 is actually a reprint of a paper written in collaboration with
Jean Dalibard and Jacques Dupont-Roc and just published in Journal
de Physique [3]. Lecture 5 reviews the results derived in references [4]
and [5], and representing works done in collaboration with Jacques
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Dupont-Roc, Claude Fabre and Paul Avan. I am very grateful to all
these colleagues for their close collaboration and for their contribution
to this course. Finally, I would like to thank Mrs Catherine Marthouret
for the typing of such a long manuscript.

1. Classical electrodynamics
1.1. Introduction

In this chapter, we first introduce (section 1.2) the basic equations of
classical electrodynamics, the Maxwell-Lorentz equations, which des-
cribe the coupled evolution of the electromagnetic field and of a set of
charged particles.

In view of the quantization which will be performed in the sub-
sequent chapters, we then show (section 1.3) that classical elec-
trodynamics takes a simpler form when the basic equations are written
in reciprocal space through a spatial Fourier transform of the fields.
Such a transformation allows a simple splitting of the electromagnetic
field into its longitudinal and transverse parts. It also appears that the
longitudinal field, and its contribution to important physical observ-
ables, such as the total energy, can be reexpressed in terms of the
dynamical variables of the particles.

A further important step (section 1.4) is the introduction of some
simple linear combinations of the transverse electric and magnetic
fields in reciprocal space which evolve independently from each other
in absence of particles, and which therefore describe the normal modes
of vibration of the free field. These new dynamical variables for the
field, the so-called normal variables, play a central role in the theory
since they will become, after quantization, the creation and anni-
hilation operators for photons. We will end this chapter by giving the
expression of all important physical observables in terms of these
normal variables.

1.2. Basic equations in ordinary space

1.2.1. Maxwell-Lorentz equations (6,7, 8]

There are two sets of basic equations. First, Maxwell equations,
relating the electric field E(r, t) and the magnetic field B(r, 1) to the
charge density p(r, t) and current density j(r, t)
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V-E(r, :)=Siop(r, 0, (1.1a)
V-B(r,1)=0, (1.1b)
V x E(r, I)Z—%B(r, Iy, (1.1c)
VX B(r, 1) = 2 2 S B b i 2;(;-, . (1.1d)

Then, Newton-Lorentz equations describing the dynamics of each
particle a, with mass m,, charge q,, positions r,(t), velocity v,(t), under
the effect of the electric and magnetic forces exerted by the fields

Ma S 1ol) = QoL )+ 0,() X B(r,, )] (1.2)

Equations (1.2) are only valid for slow, nonrelativistic particles.
From (1.1a) and (1.1d), it follows that

o, 1)+ V-j(r, )= 0. (13)

Such a continuity equation expresses the local conservation of the total
electric charge

0= j Erpin): _ (1.4)

It is important to express p and j in terms of the variables of the
particles

p(r, 1) = q.8[r — ra(1)], (1.5a)
J(r 1) =2 qava(t)8[r — ra(1)] . (1.5b)

One can check that equations (1.5) are consistent with (1.3).
Equations (1.1) and (1.2) form two sets of coupled equations. The

evolution of the fields depends on the particles through p and j. The

motion of the particles depends on the fields E and B. Equations (1.1)
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are first-order partial differential equations, whereas eqs. (1.2) are
second-order differential equations. It follows that the “state” of the
total system field plus particles is determined, at a given time f,, by the
knowledge of the field E and B in all points r of space, and by the
knowledge of the position r, and velocity v, of each particle «

{E(r, 1), B(r, to), ra(to), va(t0)} . (1.6)

It is important to keep in mind that, in Maxwell equations (1.1), r is
not a dynamical variable (as r,), but a continuous parameter labelling
the field variables.

1.2.2. Some important constants of motion

From the basic equations (1.1) and (1.2), and from the expression
(1.5) of p and j, one can show that the following functions of E, B, r,,
Vg:

H=Eﬁmmﬂ0+%ffrwﬂn0+dmﬁnm, (1.7)
Pzznmu0+%fd¥Emﬂmeﬂ, (1.8)
J=Ehuﬂxmwdﬂ+mjd%rxﬂﬂn0XB&JH, (1.9)

are constants of motion, i.e., independent of f. See for example [8].
H is the total energy of the combined field plus particles system, P
the total momentum, J the total angular momentum.

1.2.3. Potentials — Gauge invariance
From (1.1b) and (1.1c) one can show that E and B can always be
written

B(r,n)=VXxA(r1), (1.10a)

mnn=—%amo—vumg, (1.10b)

where A is a vector field, called the vector potential, U a scalar field,
called the scalar potential. A first advantage of introducing A and U is
that two Maxwell equations are automatically satisfied. Other ad-
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vantages appear in the Lagrangian and Hamiltonian formulation of
electrodynamics.

Inserting (1.10) in the last two Maxwell equations gives the equa-
tions of motion of A and U

AUl D= —;!‘;p(r, t)—V-%A(r, 0 (1.11a)

(1 3:2 )A(r )= z)‘(r e v[v A )4 26: U, ‘)J
(1.11b)

We get second-order partial differential equations, instead of first-
order as in (1.1). Actually (1.11a) is not an equation of motion for U,
but rather relates U to dA/at. The state of the field is now determined
by the knowledge of A(r, fp) and (d/dt)A(r, to) for all r [provided that
relation (1.11a) remains valid for all f].

From (1.10), it follows that E and B remain invariant in the
following “‘gauge transformation”

Ar,t)>A'(r,1)=A(r, 1)+ VF(r, 1), (1.12a)

U(r,t)- U'(r, )= U(r, t)— 5‘} F(r,1). (1.12b)

There is therefore a certain redundancy in the potentials since the
same physical fields E and B can be described by several different
potentials A and U. Such a redundancy can be reduced by choosing a
gauge condition which fixes V-A[VX A is already determined by
(1.10a)].

The two most frequently used gauges are the Lorentz gauge and the
Coulomb gauge.

Lorentz gauge is defined by

VAR D+ = Ul )=0, (1.13)

c?at
One can check that it is always possible to choose in (1.12) a function F

such that condition (1.13) is fulfilled. In Lorentz gauge, equations (1.11)
take a more symmetric form

OUGr, 1) = El] o(r, 7) (1.14a)
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OA(r, t) = 2Jv(r 1) (1.14b)

where [0 = 4%/¢?dr> — A is the Dalembertian. This is due to the fact that
the Lorentz condition is relativistically invariant (it keeps the same
form in two different Lorentz frames). Using covariant notations,
equations (1.13) and (1.14) can be written

,A* =0,
sdla o 1) }
a”_{c 2 v}, A _{C,A ) (1.15)

1o
VAR — B
d,0"A e
j* ={cp, j}, (1.16)
where A* and j* are 4-vectors respectively associated with the poten-

tials and the current.
Coulomb gauge is defined by

V-A(r, 1)=0. (1.17)

Equations (1.11) then become
AU, z)=—£ip(r, 0, (1.18a)
o :
OA(r, t) = 2](1‘ = U(r, 1. (1.18b)

Equation (1.18a) is the Poisson equation for U. Manifest covariance
is lost, but other advantages of the Coulomb gauge will appear in the
subsequent chapters.

1.3. Electrodynamics in reciprocal space

1.3.1. Spatial Fourier transform — notations
We note &(k, t) the spatial Fourier transform of E(r, t). E and & are
linked by the following relations:

&k, t)= j &PrE(r, t)e ik, (1.19a)

(2 )3#2
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E(r, )= [ Pk E(k, ) et (1.19b)

iy
(27].)34'2 |

Table 1 gives the notations chosen for the Fourier transforms of a few
other physical quantities
Table 1

E(r,t)«—— &k, 1)
B(r, 1)« B(k, 1)
A(r,t)ye— (k1)
Ul(r, t)«<— ‘U(k, t)
p(r, 1) «<— p(k, 1)
jr 1) <—-—rJ (k, 1)

From the reality of E(r, t), we get
E*(k, )= &(—k, 1). (1.20)

In the following, we will frequently use the Parseval-Plancherel
identity

JLPrF*(r)G(r) - f Bl F (k)% (k) (1.21)

(where % and % are the Fourier transforms of F and G), and the fact
that the Fourier transform of a product is proportional to the con-
volution product of the Fourier transforms

F(k) (k) —> @—1?,—2 j Bt F(r)Gr=r). (1.22)

Finally, in order to simplify the notations, we will often write r,
instead of (d/df)r.(¢t), E instead of (d/0t)E(r,t), &€ instead of
(0*/3r)&(k, t) . . . when there is no risk of confusion.

1.3.2. Field equations in reciprocal space
Since the gradient operator V in r-space becomes the multiplication by
ik in k-space, Maxwell equations (1.1) become in k-space

=10 (1.23a)

£p
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ik-B=0, (1.23b)
ikXE=-3, (1.23c)
T

ik X B = g €+ i (1.23d)

It clearly appears on (1.23) that Z(k) and B(k) only depend on the
values of &(k), B(k), p(k), §(k) at the same k. Maxwell equations,
which are partial differential equations in r-space, become strictly local
equations in k-space, which is a great simplification.

The continuity equation (1.3) now reads

ik-j+p=0. (1.24)
The relations (1.10) between the fields and the potentials are now

B=ikxsf, (1.25a)

E=—o—ikU, (1.25b)
the gauge transformation (1.12),

A->oA'=od+ikF, (1.26a)
U>U =U-F, (1.26b)

and the potential equations (1.11),

k2 =ip+ik-s£f, (1.27a)
£9

é.&mzﬁ: j—ik(ik-&f+éﬂ?}f). (1.27b)

E{}C2

1.3.3. Longitudinal and transverse vector fields
By definition, a longitudinal vector field V|(r) is a vector field such that

Y=l (1.28a)
Such a relation becomes in k-space

ik X ¥y(k)=0. (1.28b)
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On the other hand, a transverse vector field V (r) satisfies

V-V.(r)=0, (1.29a)
ik-V.(k)=0. (1.29b)

Comparing (1.28a) and (1.28b), or (1.29a) and (1.29b) shows that the
denomination longitudinal or transverse has a proper geometrical
meaning in k-space. For a longitudinal vector field, ¥|(k) is parallel to
k for all k, for a transverse vector field, ¥, (k) is perpendicular to k for
all k.

It must be emphasized that a vector field is longitudinal (or trans-
verse), only if (1.28) [or (1.29)] is satisfied for all r, [or all k). For
example, in the presence of a point charged particle in r,, V-E is
according to (1.1a) equal to zero nearly everywhere, except at the
position r, of the particle. E cannot thus be considered as a transverse
field. This appears more clearly in k-space since k-& is then propor-
tional to exp(—ik-r,) which is obviously nonzero everywhere.

Working in k-space also allows a very simple decomposition of any
vector field ¥'(k) into its longitudinal and tranverse parts:

V(k)= Vy(k)+ V.(k). (1.30)

For each k, ¥(k) is obtained by projecting ¥'(k) along the unit vector
& in the k direction

x=kik. (1.31)
We have therefore

Vi(k) = x[x-V' (k)] , (1.32a)

Vik) = Y k) - Vi), (1.32b)

Vi(r) and V,(r) are then obtained from (1.32) by a spatial Fourier
transform.

Remarks

(i) In k-space, the relation which exists between a vector field ¥ (k)
and its longitudinal or transverse part is a local one. For example, from
(1.32), we have
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Vo= 3, (3 G0, (1.33)

where i, j = x, y, z. Each component of %,(k) in point k only depends
on the components of ¥ (k) for the same point k. If we take now the
Fourier transform of (1.33), we get, according to (1.22),

V()= f & 8i(r— r)\Vi(r), (134)
J
where
5= 5 )3fd3k cﬂtr(au - )
= 5,8(r) + 505 (W [ @k err
=) 8:?;51 (1.35)

[65(r) is also called the transverse 8-function]. Because of the last term
of (1.35), the relation between V,(r) and V(r) is not a local one. V,(r)
depends on the values V(r') of V in all other points r

(i1) The decomposition of a vector field (part of a 4-vector or of an
antisymmetric 4-tensor) into its longitudinal and transverse parts is not
relativistically invariant. A vector field which is transverse in a given
Lorentz frame is in general no longer transverse in another Lorentz
frame.

(i) The fact that the decomposition (1.30) introduces nonlocal effects
in r-space and is not relativistically invariant seems to indicate that
such a decomposition is not interesting for the electromagnetic field.
Actually this is not true. Considered as “dynamical” equations, i.e., as
equations giving the rate of variation of the fields, Maxwell equations
lead quite naturally to such a decomposition. As shown in the next
sections, two of the four Maxwell equations just fix the longitudinal
parts of the fields in terms of the charge distribution, whereas the other
two equations give the rate of variation of the transverse fields. Such a
point of view then allows the introduction of a convenient set of
normal variables for the field and leads to a quantization scheme (in
Coulomb gauge) where the main part of the interaction between
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nonrelativistic particles (electrostatic interaction) is singled out from
the beginning. It is of course possible to follow a different path and to
keep manifest covariance at every stage. This is important in Q.E.D.
for an unambiguous elimination of the infinities (renormalization). On
the other hand, this introduces some complications in the quantization
scheme and, for an introduction to Q.E.D., we have preferred to take
here a simpler approach.

1.3.4. Longitudinal electric and magnetic fields

Coming back to Maxwell equations, we see now that the two first
equations (1.23a) and (1.23b) actually give the longitudinal part of &
and 2. The second equation (1.23b) expresses that the magnetic field is
purely transverse

By=0= BH" (1.36)

The first equation (1.23a) connects the longitudinal electric field &(k) to
the charge distribution p(k),

&)=~ 2-p() 2. (1.37)

&|(k) appears as the product of two functions of k, the Fourier
transforms of which are

pk)<—p(r),
_ik_  Qutr
e k2 Ame, P 35
Applying relation (1.22) finally gives

el A tr

Ei(r,0) = g | &1 00, O 715
= 1 LA ra(t)
= Tre2 T e P e

The longitudinal electric field at time ¢ is therefore the Coulomb field
calculated as if the charge density p was static and equal to its actual
value at time ¢ (instantaneous Coulomb field).



Introduction to quantum electrodynamics 17

It must be emphasized that such a result is independent of any
choice of gauge since it has been derived directly from Maxwell
equations for the fields E and B without invoking any potential.

The fact that the longitudinal electric field follows instantaneously
the charge distribution does not mean that we have electric pertur-
bations travelling faster than light. Only the fotal electric field E =
E |+ E, has a physical meaning and we will see in a following section
(section 1.3.6) that the equation of motion of E, at a given time f and
at a given point r depends on the current j(r’, t) at the same time ¢ but
in all other points r'. It follows that E, also contains instantaneous
contributions from the charge distribution, which can be shown to
cancel exactly those of E;, so that the total electric field is purely
retarded.

Remarks
(i) From the expression (1.10b), or (1.25b), of the electric field in
terms of the potentials, it follows that
E =-A,, (1.40a)

E=-A-VU. (1.40b)
In Coulomb gauge, we have A= 0, so that

Aj=0- E=-VU. (1.41)
In Coulomb gauge, the longitudinal and transverse parts of E are
respectively associated with U and A. Comparing (1.41) with (1.39),

one deduces that, in Coulomb gauge, U is the Coulomb potential of the
charge distribution

1 ol
A= 0> UG 0= 5 j &r |"r('; r,)|_ (1.42)

Such a result can also be obtained directly from the potential equation
(1.18a) in Coulomb gauge. The solution of such a Poisson equation
(tending to zero when |r|— ) is the same as (1.42).

(i1) From (1.26a), it clearly appears that a gauge transformation
changes only Aj. Thus, the transverse vector potential A, is gauge
invariant.
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(iii) We decompose here Maxwell equations in two sets: (1.1a) and
(1.1b) giving the longitudinal fields, (1.1c) and (1.1d) giving the rate of
variation of the transverse fields (see section 1.3.6). Such a decom-
position is not the same as in relativity where (1.1b) and (1.1c) on one
hand, (1.1a) and (1.1d) on the other hand are combined in two
covariant equations

bt F, a3k, =0, pEVED, (1.43)
e
ER= ik, (1.44)
where
F;w =T aluAv b avAj.; (1.45)

is the electromagnetic field tensor. A, the potential 4-vector, j, the
current 4-vector.

1.3.5. Contribution of the longitudinal electric field to the total energy
and total momentum

Before studying the last two Maxwell equations (1.23c¢) and (1.23d),

we use now the expression (1.27) of &(k) for evaluating the con-

tribution of the longitudinal electric field to a few important physical

observables.

Total energy. From the Parseval-Plancherel identity (1.21) it follows
that

= J FrE-E =15 j Pk g€ (1.46)
Now, replacing & by &+ &, and using &€, =0, we get
. f SrE=S, j &k |G+ Leo J P | Bk (1.47)

The first term of (1.47) is the contribution, H,,, of the longitudinal
electric field to the total energy H given in (1.7)
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L j Pk |E (k) = eo j &rENr), (1.48)

whereas the second one, added to the magnetic energy, gives the
contribution H,., of the transverse fields E and B,

Hous = $60 [ &k [.00P+ CIB®K)P]
s f &r [E2(r) + BY(r)] . (1.49)
Inserting the expression (1.37) of &(k) into (1.48) gives
s 2] J &k *(k)p(k)A (1.50)

Using relations (1.21) and (1.22), we finally transform (1.50) into

- ”dsr @y P0R(r) (1.51)
81reo lr—r

Hiong is nothing but the electrostatic Coulomb energy of the charge
distribution. With the expression (1.5a) of p, we can also write

Hing = Vieou = Z ot o > el (1.52)

8 EO a#pB |ra . rﬁ|

where £&,, 1s the energy of the Coulomb field of particle @ [actually an
infinite quantity unless a cut-off is introduced in the Fourier expansion
of Ej, see section 2.4.5] and the second term represents the electrostatic
interaction between different particles.

Finally, the total energy (1.7) can be written

= z %muf‘a i+ VCoul T Htrans E (1 53)

and appears as the sum of three energies: the kinetic energy of the
particles (first term), their Coulomb energy (second term), and the
energy of the transverse fields (third term).
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As for the previous section, all the previous results are independent
of any choice of gauge.

Total momentum. Replacing E by E;+ E, in the second term of (1.8)
shows that the total momentum of the field is the sum of two
contributions, Py, and Py, given by

Pong = £0 f &r Ey(r) X B(r) = & j &k B3 (k) X BK), (1.54a)
B J FrE.(r)x B(r)= £ J &k EH(k) X B(K) . (1.54b)

Using the expression (1.37) of &, the relation (1.25a) between % and
&, and the identity

ax(bxec)=(ac)b—(a-b)c (1.55)
we transform (1.54a) into
P aipt ks
long = €0 d’k ——oa X (]k X.Sf)
Ep k
z f &k p*[ A — se(ac-L)] . (1.56)

We recognize in the bracket of (1.56) the transverse part of &, so that
P, takes the simpler form

leg = jdsk prd, = J d’r p*A, = 2 quJ_(ra) (1.57)

[we have used the expression (1.5a) of p]. As above, such a result is
gauge independent.
Finally, the total momentum P given in (1.8) can be written

P =3 [Mafe + quA (r2)] + Pirans (1.58)

and appears as the sum of the “mechanical momenta” m,f, of the
particles, the momentum of the longitudinal field %, q,A,(r,), and the



Introduction to quantum electrodynamics 21

momentum of the transverse field. Expression (1.58) suggests to intro-
duce for the particle @ the quantity

pa s ma"‘a = QGA_L(ra) ] (’ .59)

so that P can be written

P=> po+ Pous.- (1.60)

Actually, in Coulomb gauge, p, can be shown to be the “canonical
momentum” of r, [2,9]. It therefore appears that, in Coulomb gauge,
the difference between the canonical momentum p, and the mechani-
cal momentum m,r, of particle « is the momentum associated with the
longitudinal field of particle a.

Remark. Using eq. (1.59), the total energy H given in (1.53) can be
written as

1
H = zm[pﬂ_QaAL(ra)]z—'— VCou]_I— HII‘at’IS‘ (16]}

It can be shown that H is the Hamiltonian of the system in Coulomb
gauge [2,9].

One could also split E in Ej+ E, in the last term of (1.9), and show
that the total angular momentum J is given by

J =73 ra X Pat Jocans (1.62)
where p, is defined in (1.59) and where
Foows= €0 | &rrx [E(r)x B()] (1.63)

is the angular momentum of the transverse fields

1.3.6. Maxwell equations for transverse fields

We come back now to the last two Maxwell equations (1.23¢) and
(1.23d) and we consider first the transverse parts of these two equa-
tions which can be written as
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B=-ikxE=—-ikx &, , (1.64a)

%",_=ic2k><%—glh. (1.64b)
=1}

The last two Maxwell equations therefore appear as dynamical equa-
tions giving the rate of variation of the transverse fields 8 and &,.

One can note that the source term appearing in the equation of
motion (1.64b) of &, is §, and not §. Since in r-space the relation
between j, and j is not local, the rate of variation of E (r, ) in point r
and at time ¢ depends on the current j(r’, t) in all other points r’ at the
same time f It follows that E, contains, as Ej, instantaneous con-
tributions from the charge distribution (which can be shown to cancel
each other, so that the total field E = E;+ E, is purely retarded).

It remains to consider the longitudinal part of {1.23c) and (1.23d).
The two members of (1.23c) are transverse. The longitudinal part of
(1.23d) reads

S )
&+t 41=0. (1.65)
0

Taking the scalar product of (1.65) with k, using (1.37) and the fact that
k-jy=k- #, one gets

p+ik-§=0. : (1.66)

This is just the charge conservation equation (1.24) and brings nothing
new.

As a conclusion of this section, it is useful to reconsider the
definition (1.6) of the ‘“‘state” of the total system field plus particles at
time f,. Since the longitudinal field can actually be expressed as a
function of the r,’s [see (1.39)], the state of the system is entirely
determined by

{E.(K, to), B(k, to), ra(to), Fulto)} (1.67)

for all k and all a.

We will show in the next section (1.4) that it is possible to introduce
a further improvement in the choice of the dynamical variables
characterizing the state of the field.
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Remark. In this section, we have only considered the field equations
(1.23). It is also possible to study the longitudinal and transverse parts
of the potential equations (1.27). Since the last term of (1.27b) is
longitudinal, the transverse part (1.27b) reads

g 1
S+l =4, (1.68)

oc?
which becomes in r-space

155
DAL =—j.. (1.69)

&) EoC

This looks like (1.14b) except that we have A, and j, instead of A and
Jj. If one takes the longitudinal part of (1.27b) and if one uses (1.27a)
for eliminating %, one gets, once more, the charge conservation
equation (1.24). As for (1.23d), the longitudinal part of (1.27b) brings
nothing new. We are therefore left with a single equation (1.27a),
which can be written as

k2 =£—p+ik-&-€u (1.70)
0

(since k-s, =0), and which is not sufficient for determining the
motion of &, and . Such .a result is actually not surprising since
potentials are redundant. In order to determine & and U, we need a

supplementary condition, i.e., a gauge condition. If we chose the
Coulomb gauge, we fix ;=0 and (1.70) gives U [see also (1.18a)]. If
we choose the Lorentz gauge, the supplementary condition (1.13) can
be written in k-space,

U = —ic’k - 4. (1.71)

Equations (1.70) and (1.71) now form a system of two first-order
equations describing the evolution of & and %. Other choices of gauge
conditions are of course possible.

1.4. Normal variables

1.4.1. General idea : )
In r-space, the rates of variation E(r) and B(r) of the fields E and B
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depend on the values of E and B in the neighbourhood of r. Maxwell
equations (1.1) are partial differential equations.

Going in k-space, we have first eliminated &(k), which is not
actually a new dynamical variable since it can be reexpressed in terms
of the rls, and we have then shown that &, (k) and % (k) only depend
on the values of &,(k) and (k) [and also j (k)] at the same point k.
Equations (1.64) form, for each point k, a set of two coupled differential
equations.

Looking at the linear differential system (1.64), we can now ask if it
is possible to introduce two linear combinations of &, and % which
evolve independently from each other, at least when j, =0, i.e. when
the field is free.

1.4.2. Definition of normal variables
We first rewrite equations (1.64) as

€, =itk x B —Ei 7 (1.72a)
0
kx B =ik?g, . (1.72b)

We are looking for the eigenfunction of such a linear system. When
§.=0, we have from (1.72)

%(a: acx B)=Tis(E T acX B), (1.73)

with
w=ck, Kk =kik. (1.74)

This leads us to define, even if §, # 0, two new variables a(k, t) and

B(k, t) by
ok )=~ % [%.(k, 1) cx X Bk, 1)], (1.75a)
Bk, 1) = M(k)[a(k £)+ ce x Bk, 1)), (1.75b)

where N (k) is a normalization coefficient which will be chosen later on
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in order to have for the total energy H an expression as simple and
suggestive as possible.

Before going further, it is important to note that &« and f are not
actually independent variables. From the reality of E, and B, which
gives rise to relations such as (1.20) for &€, and %, one deduces

Bk )= —a*(—k1). (1.76)

Inverting the linear system (1.75) and using (1.76) gives

8.k, 1) = iN (k) a(k, ) - a*(~k, )], (1.77)
Bk, 1) = %ﬂ e ) cieatE D] (1.77b)

The knowledge of a(k, t), for all values of k, is therefore equivalent to
the knowledge of &,(k,t) and %B(k, t). Furthermore, the a(k,!) are
truly independent variables since there are no reality constraints be-
tween e (k, f) and a*(—k, t), as for &, and B. We can therefore replace
the definition (1.67) of the state of the combined system by

{la(k, o), ra(t), Fa(to)} - (1.78)

1.4.3. Equation of evolution of normal variables
From the two Maxwell equations (1.72), and from the definition (1.75a)
of e, one deduces

T L m ik 1) ' (1.79)

It is important to note that, €, and @ being related to « by (1.77),
equation (1.79) is strictly equivalent to Maxwell equations. Equation
(1.79) is however more suggestive than Maxwell equations. It looks like
the equation of motion of a (fictitious) harmonic oscillator, having a
free evolution frequency w, and driven by a particle source term,
proportional to § ,(k, ).

When § = 0 (free field), the evolution of the normal variable e(k, r)
is completely decoupled from the others. The solution of (1.79) is then
a pure harmonic oscillation, describing the so-called normal modes of
vibration of the free field. This is why the a(k, f)’s are called normal
variables.
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If the sources are imposed from outside (independent of a), the a’s
corresponding to different k’s still evolve independently from each other,
driven by #,.

Finally, if the sources are particles interacting with the field, the
motion of §, depends on the a(k, t)’s, so that the evolutions of the
various a(k, t)’s are in general coupled through the current term
§.(k, t). One must add to (1.79) the equation of motion of (k)
[determined from the Newton-Lorentz equation (1.2) and from the
definition(1.5) of the current] and try to solve this set of coupled
equations.

Before ending this section, we will introduce a new notation. Since e
is (as &€, and @) a transverse vector field, we can, for each value of k,
expand a(k, t) along the two mutually perpendicular unit vectors £ and
€' in the plane perpendicular to k (Fig. 1)

ee=€g'"=Kk'k=1,

e-g'=g-k=¢€k=0. (1.80)
We thus have

a(k, t)=ea,(k, 1)+ €'a(k, 1)

= ea,(k 1), (1.81)
where
a(k,t)y=€-a(kt) . (1.82)
[
K
£

Fig. 1. Transverse polarization vectors £ and &',
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is the component of @ along &. The set {a.(k, t)} for all k and all &
forms a complete set of independent variables for the transverse field.
The equation of motion of a,(k, t) is

(k) e )= m e ik 1); (1.83)

we haveused e- j,=€- §.

1.4.4. Expression of the physical observables of the transverse field in
terms of the normal variables

Since in the following we will always use the normal variables a.(k, t)

(and the corresponding quantum operators) for characterizing the

transverse field, we give in this section the expression of the various

physical observables of the transverse field in terms of the a,’s.

Energy of the transverse field H,.... We insert in (1.49) the expressions
(1.77) of &€, and & in terms of & and e* [we use the shorter notation
a* for a*(—k, t)]. We also keep the order between @ and a* as it
appears in the calculation, even if @« and «* are commuting c-
numbers. The reason is that similar calculation have to be done in
Q.E.D. where @ and a* are replaced by non-commuting operators.
The results derived in this section can therefore be extended to the
quantum situation without modification.

From (1.77), we deduce

&1 € = N(a*—a)a—a’)
=N a* ata -a*-a*-a*-a_-a),
B* B =N (a*+ a)a+a¥)

=N(a* ata -a*+a*-a*ta -a), (1.84)

so that (1.49) becomes

T e sodekM[a*-a+a_-af]. (1.85)

Changing k into —k in the integral of the second term allows one to

replace a_+a* by a-'a*. If we now introduce the normalization
coefficient N'(k),
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N(k) = (hw/2e0)'?, (1.86)

which is chosen in quantum theory in order to have simple com-
mutation relations between the operators corresponding to «, and a7,
expression (1.85) takes the more suggestive form

Hians = Jd’k 2 > '[o:*(k Da,(k, 1)+ a.(k, Dai(k, 1)] . (1.87)

It appears as the sum of the energies of a set of fictitious harmonic os-
cillators, one oscillator with frequency w = ck being associated with each
ensemble of vectors k, € (with £ perpendicular to k). Such an ensemble
(k, €) defines a “mode” of the transverse field.

Momentum of the transverse field Py, Similar calculations give from
(1.54b)

Po= j &k Z X [k, Dk, 1)+ (k. sk, 1) (1.88)

Remark. For the angular momentum of the transverse field, given in
(1.63), the calculations are a little more tedious than for Him and Py
We just give here the result

Jlnms =

2 J’ &k [(1’ ki + ot Epea,
1 bed
— QaEapckpOc0t G — CpEapct] , (1.89)

where a, b, ¢, d=1x, y, or z, .= d/dk. and &4, is the completely
antisymmetric tensor.

Transverse electric and magnetic fields in r-space. The expansions of
E (r,t) and B(r,t) are obtained by taking the Fourier transform of
(1.77) [In the integral over k of the last term of (1.77), we also change k
into —k]. This gives

E (r,t)= iJ- &k D € [a.(k, e e*" — at(k, t)e e*7], (1.90)

B(r,t)=i I &Pk D Blac(k, ) X € X7 — ak(k, t) X € e7*7],
: (1.91)
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with
€, = [hoR2e@ny]?, B, =&.c. (1.92)

In the expansions (1.90) and (1.91) the reality of E, and B is manifest™.
For a free field, the solution of the equation of motion (1.83) of a, is

a.(k, 1) = a, (k) e (1.93)

Inserting (1.93) into (1.90) and (1.91) then gives for E, and B an
expansion in plane progressive waves € expli(k - r — wt)]. For example,

Etee(r, f) = i f @k S L.a.(k)e expli(k - r— b)) +c.c. (1.94)

We also check with (1.93) that, for a free field, Hys and Py, given in
(1.87) and (1.88) are constants of motion (independent of ¢).

It must be emphasized that the definition (1.75) of the normal
variables, and the expansions (1.87) to (1.91) which follow from this
definition, are valid in presence or in absence of sources. On the other
hand, the simple solution (1.93) for a.(k, t) only holds for a free field.
In the presence of sources, the solution of eq. (1.83) is more com-
plicated than (1.93) and the expansions (1.90) and (1.91) of E, and B
are no longer superpositions of plane progressive waves. Similarly, the
transverse energy given in (1.87) is no longer a constant of motion.
There are exchanges of energy between the transverse fields and the
particles, and only the total energy given in (1.53) is conserved. Similar
considerations hold for Pips.

It is usual to call “positive frequency part” of E,, and to denote
E%)(r, t), the part of the expansion (1.90) containing only the a,(k, t)
[and not a¥(k, 1)],

ES(r, £) =i J Fk S Ealk, e e+ ; (1.95)
the remaining part of (1.90) being called the “negative frequency part”
and denoted EQ(r, 1),

EQ(r, t)=[EV(r, 1)]* . (1.96)
* The polarization vector £ is real. It would be possible to introduce complex polariza-

tion vectors for describing circularly or elliptically polarized modes of the transverse
field. In such a case the second & in (1.90) and (1.91) has to be replaced by £*.
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Such a denomination is due to the fact that, for a free field, E¢” is a
superposition of waves in e,
Transverse vector potential A,(r, t). For the following, it will be also
useful to give the expansion of the transverse part A, of the vector
potential A in terms of the normal variables.

We first note that the transverse fields E, and B are related only to
A,. From (1.10a) and (1.40a), we have

E(r,t)=— %Al(r, Iy, (1.97a)

B(r,t)=VXxXA/(r1) (1.97b)

(since VX Aj=0). Relations (1.97) are of course independent of any
choice of gauge.
We show now that A ,(r, f) can be expressed as

A (r, )= I &Fk D A e,k t)e e +c.c.], (1.98)
with
A, =Bk =¥, Jow. (1.99)

Since £ is perpendicular to k, the vector field written in (1.98) is
transverse. If we calculate the curl of the expansion (1.98), we find the
expansion (1.91) of B, so that (1.98) satisfies (1.97b). We finally apply
—8/dt to the expansion (1.98), using eq. (1.83) for reexpressing the time
derivative of the two functions e, (k, ) and a%(k, t) appearing in (1.98).
The first term, iwea.(k,t), appearing in —a.(k, t), and its complex
conjugate, give, when inserted in (1.98), a contribution which coincides
with the expansion (1.90) of E,(r, t), since we have chosen in (1.99)
A, = €,/o. The contribution of the last term of (1.83) (and its complex
conjugate) vanishes [the two terms k, £ and —k, € cancel each other in
the integral over k]. It follows that (1.98) also satisfies (1.97a) and can
therefore be considered as the transverse vector potential expansion.

We can also calculate the Fourier transform &, (k, 1) of A(r,1).
Changing k into —k in the second integral of (1.98) gives
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Ayl 1) = \/2—:@ [an(k, 1)+ at(~k, 1)], (1.100)
with
A.=e-HA,.

Combining (1.100) and (1.77a), we can finally express «, in terms of
oA,, and €., [instead of &,, and B, as in (1.75a)]

aull, 1)= \ 52 [t (k, )= 16,0k 1) (1.101)

1.4.5. Analogies and differences between the normal variables and the
wave function of a spin 1 particle in k-space
Consider first the case of a free field. Equation (1.79) can be written as

iha(k, 1) = hoa(k, 1), (1.102)

and then looks like the Schriodinger equation for a ‘‘vector wave
function” a(k, t), the corresponding “Hamiltonian” being diagonal in
k-space with matrix elements fwd(k — k). Equation (1.87) can be also
interpreted as the average value of such an Hamiltonian in the trans-
verse wave function a(k, r). Similarly, since in quantum mechanics, the
momentum operator of a particle is diagonal in k-space with matrix
elements hk&(k — k'), eq. (1.88) can be interpreted as the average value
of the momentum operator in the wave function a(k, t). Finally, one
can show that expression (1.89), giving the angular momentum of the
transverse field, coincides with the average value of J = L + S, where L
and § are the usual quantum mechanical orbital and spin angular
momentum in the transverse wave function a(k, ¢) [the first term of the
bracket of (1.89) corresponds to L, the second one to S].

All these results would suggest to interpret a(k,t) as the wave
function in k-space of a spin 1 particle®, which would be the photon
([10] chapter I). Such an analogy however cannot be pushed too far.
First, one can show that the spatial Fourier transform of a/(k, t) cannot
be interpreted as a wave function for the photon in r-space, and more

* The value 1 of the spin is related to the vector character of a.
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generally that one cannot construct a position operator for the photon
[11]. Secondly, the equation of evolution (1.79) of « in the presence of
sources has not the structure of a Schrédinger equation. It is not
homogeneous. Such a result is actually not surprising. Schrédinger
equation conserves the norm of the wave function, and therefore the
number of particles. But, it is well known that, in the presence of
sources, photons can be absorbed or emitted. It is therefore impossible
to introduce a Schrodinger equation for a single photon in the presence
of sources. Actually, the quantization must concern the electromag-
netic field itself, photons then appearing as elementary excitations of
the quantized field. We will see in the subsequent chapters that the
“wave function”, more precisely the “‘state vector” of the quantized
field is a vector of a Fock space where the number of photons can vary
from zero (vacuum) to infinity.

The previous analogy can however be useful. It suggests for example
to study the transverse eigenfunctions of J? and J, in k-space. This
leads to the multipolar expansion of the transverse field which is more
convenient than the expansion in plane waves given in the previous
section for studying problems where the angular momentum plays an
important role [10].

Periodic boundary conditions — introduction of simpler notations
One sometimes considers that the fields are contained in a cube with
volume L? and that they satisfy periodic boundary conditions on the
faces of the cube. At the end of the calculation, one lets L tend to
infinity. All physical predictions (cross sections, transition
probabilities. . .) must of course be independent of L.

The advantage of such a procedure is to replace Fourier transforms
by Fourier series. In other words, integrals over k are replaced by
discrete summations over

kyy.=2mn,, /L, (1.103)

where n.,. are integers (positive, negative or zero). The notation
a.(k, t) is replaced by

a.(k, 1) a(2). (1.104)

One can use even shorter notations
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akr.e,. > o, (1.105)
where the index i labels mode k;e;.

As a recapitulation of this section, we give now the expansion of
Htransa Plran.s-s AJ_s EJ_\ B in o and ﬂ'ﬂ;

Hirans = 2 sho(ate; + aa’), (1.106)

P = 3 ki@t e + i), (1.107)

A= oo (o e + alg eih), (1.108)

E =i Z Eui(aig; €57 — g ey (1.109)

B=i z Bo(ape; X €; %7 — a'fae; X g e-i.*--r) : (1.110)
with

&., = (hwi/2e,L)7?, B, = €. /c, A, =8, o, (1111)

In these expressions, 2; means sum over modes kig;. Note also that,
when going from Fourier integrals to Fourier series, 1/(27)*? in equa-
tions (1.19) is replaced by 1/L*2. This explains why &, contains L3
instead of (27)* [compare (1.92) and (1.111)).

Finally, the equation of evolution of «; is

d.’,' + lw[ﬂ', =

Vet e
0 i

with

o .
7 =Wjd3r elirr g2 3(r). (1.113)

2. Quantum electrodynamics in Coulomb gauge — general framework
2.1. Introduction

After the brief survey of classical electrodynamics presented in the
previous chapter, the problem is now to quantize such a theory. We
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first review in this introduction a few possible approaches to such a
problem.

(i) Elementary approach

We have shown in section 1 that the total system electromagnetic field
plus particles is formally equivalent to a set of interacting particles and
harmonic oscillators. The simplest possible idea for quantizing such a
system is therefore to quantize the corresponding particles and oscil-
lators. For the particles, the position r, and the momentum p, of
particle @ become, as usual, operators (with a commutator equal to
if). For the field, the normal variables «; and a*% of oscillator i are
replaced by the annihilation and creation operators a; and a;, well
known for a quantum harmonic oscillator (and with a commutator
equal to 1). All physical observables which, as shown in section 1, can
be expressed in terms of r,, p., @; a7, thus become operators acting in
the Hilbert space of the whole system.

Actually, what is lacking in such an approach is a proof of the fact
that r, and p, can be considered as canonically conjugate variables, as
well as @; and a; [more precisely (a; + a})/V2 and i(af — @;)/V2]. An
explicit expression of the Hamiltonian in terms of these variables is
also needed. We have indeed given in section 1 the expression of the
total energy of the system but we have not shown under what con-
ditions such an expression can be considered as the Hamiltonian.

A possible solution to this difficulty is to postulate the expression of
the Hamiltonian [actually eq. (1.61) in Coulomb gauge, with H ..
replaced by (1.106)] and to check a posteriori that the Heisenberg
equations deduced from such an Hamiltonian, and from the basic
commutation relations, are correct [Maxwell-Lorentz equations be-
tween operators].

(ii) Lagrangian and Hamiltonian approach

Rather than postulating the expression of the Hamiltonian and the
basic commutation relations and checking afterwards that they lead to
the correct equations of motion, the usual procedure is to start from a
Lagrangian formulation of classical electrodynamics.

From the Lagrangian leading to the Maxwell-Lorentz equations
(which thus appear as Lagrange equations deduced from a variational
principle), it is first possible to define clearly the generalized coor-
dinates of the system and their conjugate momenta (derivatives of the
Lagrangian with respect to the generalized velocities). This leads to a
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clear identification of the pairs of conjugate physical observables,
which, in the canonical quantization, will become operators with a
commutator equal to ifi. The expression of the Hamiltonian also
follows directly from the expressions of the Lagrangian and from the
definition of the conjugate momenta.

It turns out that the standard Lagrangian of classical electrodynamics
is a function of the potentials A and U, and not of the fields.
Furthermore, U does not appear in this Lagrangian, so that U has no
conjugate momentum. This raises some difficulties for the quan-
tization. One possible solution is to eliminate U from the Lagrangian
and all other redundant variables (such a redundancy is in particular
due to the presence of the potentials in the Lagrangian, rather than the
fields). In this perspective, the choice of the Coulomb gauge appears to
be particularly convenient. A second advantage of the Lagrangian
approach is therefore to provide a better understanding of gauge
problems in both classical and quantum electrodynamics.

(iii) Full relativistic approach

The two previous approaches treat matter and radiation in a quite
asymmetrical way. Radiation is described by a relativistic field, matter
by a fixed number of nonrelativistic particles. It is clear however that
particles, such as electrons, can become relativistic and that their
number can vary (creation of pairs). A satisfactory approach to Q.E.D.
must therefore start from a more symmetrical description of radiation
and matter where both systems are described by a relativistic field.

Such a program is achieved by starting from a Lagrangian for the
coupled Dirac and Maxwell fields considered as classical fields, and
giving Maxwell equations in the presence of the Dirac current on the
one hand, and Dirac equations in the presence of Maxwell fields on the
other hand. Such a theory is then quantized by using commutators for
the Maxwell field, anticommutators for the Dirac field. Photons, elec-
trons and positrons appear in such an approach as elementary excita-
tions of the quantized Maxwell and Dirac fields.

In this course, because of lack of time, we will follow mainly the
elementary approach described in (i). The Lagrangian and Hamil-
tonian approach is presented elsewhere [2,9]. It can be shown that it
leads to the same expression for the Hamiltonian in Coulomb gauge,
as the one derived here in a heuristic way, and to the same quantum
theory. In the last lecture (section 6), we will introduce by heuristic
arguments the full Q.E.D. Hamiltonian describing the interacting
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quantized Dirac and Maxwell fields and we will consider to what extent
the single electron nonrelativistic Q.E.D. Hamiltonian derived from
the elementary approach (i) can be related to such a many-particle
relativistic Hamiltonian.

In the next subsection (section 2.2), we present the main lines of the
quantization in Coulomb gauge. We then consider the problem of the
evolution in time in both Heisenberg and Schroédinger pictures (section
2.3). Section 2.4 is devoted to a detailed analysis of the structure of the
Hamiltonian. Finally we discuss in section 2.5 the electric dipole
approximation for localized systems of charges.

2.2. Quantization in Coulomb gauge — elementary approach

2.2.1. Basic dynamical variables — commutation relations
Each particle « is described by two conjugate operators r, and p,
satisfying

[rﬂ'i? rBf] = [pm" Pﬁf] =0 3 [rrri: p.BJ"] = ihaﬂfﬁai}' s f.., } =X ¥ Zz.
(2.1)

The 8,5 expresses that the variables of two different particles commute.

For quantizing the field, we replace the normal variables «; and o®
by the well-known annihilation and creation operators a; and a}
satisfying

[a; 4] = [af, aj]1=0, la; aj]=8;. (2.2)

The 6; expresses that the variables of two different modes of the
transverse field commute.

Remark. We implicitly suppose here that we are working in a
Schrédinger picture where operators are time independent. The basic
commutation relations (2.1) and (2.2) remain however valid in the
Heisenberg picture provided that the two operators appearing in the
commutator are taken at the same time (equal time commutators).

2.2.2. Space of states
The space of states & is the tensor product of &p, space of states of the
particles, by &g space of states of the transverse field
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€= gp@ g,q (23)

&g itself is the tensor product of the spaces of states &; of the various
oscillators i

%R:%]®%2...®Eg;®.... (2‘4)

A possible orthonormal basis of % is {{n;)} where n,=0,1,2,3...
labels the energy levels of oscillator i. If {|s)} is an orthonormal basis of
&ép, we can therefore take for the whole space & the following basis:

{MNndln ... my .. F={ls; ny, ny .. ;i ) 2.5)

2.2.3. Expression of the various field observables

The transverse fields E.(r), B(r), A,(r) in each point r of space
become operators obtained by replacing the normal variables «; and
a’ of the classical expansions by the corresponding operators a; and
a/. We get in this way,

E(r)=2 i¢,(a€ 5" —ate etry), (2.6)
B(r) = iB.,(ax; X € €% — afx; X £ ek7), 2.7
A(r)= 2 A, (a€; ¥ +aje ey (2.8)
with
hwl_ 12
7, = (280 Ls) ey e Caaia .9)

The total electric field E is given by
E(r)= E/(r)+ E(r), (2.10)
with

Fa
Pt

1 r—
E||(]") = 4‘?]'80 z Ga |.I“ a5 (211)

The position r, of particle & is now an operator in (2.11).
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Since we have kept the order between «; and a¥ in the calculations
leading to (1.87) and (1.88), it is not necessary to do such calculations
again in the quantum case and we can write for the quantum operators
leans and PII‘AI‘IS

Hiuws= €0 | & [E3(r) + B(r)]
-z R (ata + aat) = S holata +4], 2.12)
[we have used (2.2) to replace a;ai by afa; + 1]
Pirans = €9 J d&rE (r)X B(r)

= E > % [ata + aat] = 2 fikaia, @.13)

[we have used Z,; fik;/2 = 0].
Since we are in Coulomb gauge, we can finally write

A=0, (2.14)

U= @.15)

darey <

U is simply the electrostatic potential of the charge distribution
Remark. From the expansions of the various field observables in a; and
a? [(2.6) to (2.8)], and from the basic commutation relations (2.2), one
can derive the following field commutators:

[AL(r), Ay(r)] =0, (2.16)

[AL(r), Ejj(r)] = Sj(r —iph) . 2.17)

where i, j = x, y, z and 8j; is the “transverse delta function” defined in
(1.35),

(Evclr), By(r)] = - 52 5= 7). @18)
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Since Ej(r) can be reexpressed in terms of the r,’s [see eq. (2.11)]
which commute with g; and a7, egs. (2.17) and (2.18) remain valid if E,
is replaced by the total electric field E(r). All these field commutators
are taken in the Schrédinger picture. They also remain valid as equal
time field commutators in the Heisenberg picture (see the remark at
the end of section 2.2.1)

2.2.4. Hamiltonian and total momentum in Coulomb gauge
We postulate for the Hamiltonian of the total system the following
expression in Coulomb gauge:

FL Z '[P GoA 1 (ra))?

+ 2 Sgbul 2 '_q_qL_'!' Z hw][a a; + %] . (219)

8‘?780 arp |r,, == ]"ﬂl

The choice of such an expression is actually suggested by the form
(1.61) of the classical energy of the total system. Taking the Hamil-
tonian (2.19) and using the basic commutation rules of section 2.2.1, we
will demonstrate in section 2.3 that m,r, and p, are linked by relation
(1.59). Such a relation therefore appears here as an equation of motion
(as well as the relation E, = —AL between E, and A,). We will also
show in section 2.3 that the basic equations of classical electrodynamics
(Maxwell-Lorentz equations) remain valid between operators and can
be deduced as Heisenberg equations from the Hamiltonian (2.19). This
will validate the elementary approach followed here and the choice
(2.19) made for H.

Finally from (1.60) and (2.13), we get for the total momentum in
Coulomb gauge

P=3p.+3 hkaia;. (2.20)

2.3. Evolution in time

2.3.1. Heisenberg picture; the quantum Maxwell-Lorentz equations
In the Heisenberg picture, the state vector |¢) is time independent and
the various observable G(f) evolve according to Heisenberg equations
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4 Gty = = [G(t), H() 221)
5o =g o) ) @.

where H(t) is the Hamiltonian

Heisenberg equations for the particles. Consider first the Heisenberg
equation for r,

b= 1l H1 = i [ o 3 (b~ ()Y
= [P AL e22)

Such an equation is nothing but the well-known relation (1.59) between
the mechanical momentum 7, = m,r, and the canonical momentum

Pa-

For the following calculations, it will be useful to evaluate the
commutator between the two components 7, and 7, of @, (j,[=
%Y, 2)

[T-raj-s 'Tru.i] Sierdly ['Paj: Alt’(rcl)] ~ fa [AJJ(ra )'! paf]
= ihqa[dA L(ra) — BA 1(ra)]

= ifiqa >, &uBi(ra) . (2.23)
k
We consider now the Heisenberg equation for
: i 1
Traj = Malaj = i_E[Tr“f’ H], (2.24)

and calculate the contributions of the four terms appearing in the
expression (2.19) of H. The contribution of the first term of H (kinetic
energy) is, according to (2.23),

1 1
h [7701" 2 ﬂ'i;/Zm,,] = m ; U ey Tt + Tt Tajy Tt}

= E% z 2 Ejlk {?TajBk (ra) + B, (ra)q'raj} . (225)
e ]
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and can be considered as the j-component of the symmetrized Lorentz
magnetic force

3Gaira X B(r)— B(r.) X f.} . (2.26)
The second and third terms of H (Coulomb energy) give

1 1 d
77 [Ty Vieou] = ry [Pejs Vicou] = — oy Veou s 2.27)

i.e., the j-component of the longitudinal electric force ¢,E(r,). Finally,
we have for the last term of H (energy of the transverse field)

% [m,,-, > hoiata;+ %)] =iga S wi[AL(r.), atai] . (2.28)

i

Using [a;, afa;] = a, and the expansions (2.6) and (2.8), one can
transform (2.28) into the j-component of the transverse electric force
GoE (1)

Combining all the previous results, we finally get

Mafy = GuBE(ry) + 5qu[Fo X B(r)— B(r) X f4], (2.29)

where E is the total electric field. Equation (2.29) is the quantum form
of the Newton-Lorentz equation.

Heisenberg equations for the fields. The same linear relations exist
between the classical transverse fields and {a;, «*} on the one hand, the
quantum transverse fields and {a;, a{} on the other hand. If we show
that &; and q; satisfy similar equations, this will prove that all field
equations are the same in classical and quantum theories. Instead of
writing Heisenberg equations for E,, B, A,, it is therefore simpler to
consider such an equation for a;,

i, =-la, H]. (2.30)

As for m,, we calculate now the contributions of the four terms of
H. The last term gives —iw;a;. The second and third terms of H commute
with a@; and do not contribute to 4;. Finally, the first term gives
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1 w2l 1 dm, | 97,
it [“*” Z 2mﬂ] i E 2ihm, | ™ " a? = ar '““}
-3 ﬁ‘,‘.s{% exp(ik; - r.) + exp(=ik; - 1) %] L Aspa

We have used [a;, f(a?)] = 8flda} which follows from (2.2). Introducing
the symmetrized current

j(r) =12 qu[Fad(r —ra) + 8(r — ra)fa], (232)

we transform (2.31) into

(Zsoﬁiw,-)m 7is &)
where

e \/lfs J Fr e+ g+ j(r) (2.34)
is the Fourier component of j. Finally, we get

a; +iwa; = (2—50?11_@)1_” Fi (2.35)

The quantum equation of motion of a; in (2.35) has therefore exactly
the same form as the classical equation of motion of «; [see eq.
(1.112)]. We conclude that Maxwell equations remain valid between
field operators. ,

All basic equations of classical electrodynamics can therefore be
extended to Q.E.D. (with a proper symmetrization of the products of
non-commuting Hermitian operators, such as the magnetic Lorentz
force, or the charge current).

Advantages of the Heisenberg picture. A first advantage of the Heisen-
berg picture is that it provides a convenient framework for a discussion
of the analogies and differences between classical and quantum
theories. It leads to similar equations of motion, but for operators
instead of c-numbers.



Introduction to quantum electrodynamics 43

A second advantage of such a picture is that it gives the possibility of
defining ‘““2-time averages”, i.e., the average value in the time in-
dependent state vector |¢) of products of two operators F(t) and G(t')
taken at two different times

WIFOG@)v) . (2.36)

Important examples of 2-time averages are statistical functions such as
correlation functions or linear susceptibilities which can be introduced
for a quantum system and which respectively describe the dynamics of
the fluctuations taking place in such a system, or the linear response of
the system to small perturbations. We will consider these statistical
functions in more detail in section 4, in connection with a discussion of
the physical mechanisms responsible for radiative corrections.

2.3.2. Schriodinger picture

In such a picture, the observables G are time independent and the
state vector |y(¢)) evolves according to Schridinger equation

it Sy (e) = ). 2.37)

If [(2)) is expanded on the orthonormal basis (2.5),

|‘ff(‘)) = z leuz- ' (t)tsa My, M, . . ) ) (238)

snyng...

and if the expansion (2.38) is introduced in (2.37), one gets a set of
linear differential equations for the coefficients G p,. . .(2).

The Schrodinger picture is very convenient for introducing transition
amplitudes

(S!; n;) ni} S .|U(f)l$', ny, R, .. ) s (2'39)
where
U(t) = e it (2.40)

is the evolution operator. From a physical point of view, (2.39)
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represents the amplitude that the combined system field plus particles,
starting from the initial state |s; n,, n,, ...), ends up, after a time ¢ in
the final state [s’; ni, n3, .. .). Perturbation techniques are usually used
for calculating such amplitudes, which can be introduced for various
important processes where photons are emitted, absorbed or scattered
by systems of charged particles.

2.4. Structure of the Hamiltonian

2.4.1. Hamiltonian in the presence of static fields

We first slightly generalize the expressions (2.19) of H to situations
where an external static field, described by the potentials A,, U, is
applied to the particles (such a static field is not considered as a
dynamical system and the values of A, and U, in a given point r are
fixed c-numbers). We must now take

=S ﬁ [Pe — 4L (ra) — quAo(ra)?

+ VCnuI + 2 anl](ru) + z ﬁwi(a?ai + JZ') - (241)

The justification for such an expression is that Heisenberg equations
for the particles give the Newton-Lorentz equations in the fields
E+ E; and B+ By, where E and B are the quantum field operators
already introduced, and where E,=-VU, and By=V X A, are the
static electric and magnetic fields.

Note that the gauge used for Ay, U, is not necessarily the Coulomb
gauge.

We will frequently use the notations

7o = Pa — GuAo(Ta) , (2.42a)
Ta = Pa— QGAIJ(ru) = ani.(rn) - (242]3)
2.4.2. Hamiltonian of the particles— Hamiltonian of the radiation field

Interaction Hamiltonian

It is interesting to divide the Hamiltonian H given in (2.19) into three
parts

H=Hp+ HR+H], (2.43)
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where Hp only depends on the particle observables r, and p, (Hamil-
tonian of the particles), Hg only depends on the field operators a; and
a; (Hamiltonian of the radiation field), H; depends on both r,, p, and
a;, ai (interaction Hamiltonian). From (2.19) one derives

2
Hp= 3 25t Voo, (2.44)
HR = z ﬁw,—(a,*a; = %) : (245)
H,= Hu+ Hp, (2.46)

where Hj, is linear in the fields

Hy=-3 2 p, .4, (2.47)

[we have used the transversality of A, which implies p,: A, (r,)=
A, (r,)* p.], and Hy, quadratic

Ho= 3 225 (4GP 2.48)

In the presence of static fields, one must start from (2.41) and Hp and
Hy, are replaced by

02
Hp=3 55+ Veou+ 3 quUin(rs), (2.49)
Hy=-3 8 58.4,(r), (2.50)

m, defined in (2.42a), is a pure atomic operator.

Up to now, we have considered charged particles without internal
degrees of freedom. We can remove this restriction by adding to be
observables r, and p, of particle « the spin operator S,. Because of the
magnetic moment associated with such a spin,

M3=g. 5k, (251)

where g is the g-factor, new terms must be added to the Hamiltonian.
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The magnetic coupling of §, with the static field B,
—> M3 By(r.) (2.52)

must be added to Hp, and a new interaction Hamiltonian H7yy, linear in
the field operator B, appears

Hy=-3 M§- B(r.). 2.53)

Note that, since %, = &,/c [see (2.9)], the coupling of the spin S, with
B is of order 1/c in comparison with the electric coupling of the charge
Ga-

All these spin-dependent terms have been introduced here in a
heuristic way. For electrons, they can be derived directly from Dirac
equation (see section 6).

2.4.3. Relative magnitude of the various interaction terms for bound
particles

Consider first the ratio Hp/Hy. The order of magnitude of A and p is

taken equal to the square root of their mean-square value in the state

considered.

Hy _q?A’m _ gAp/m _ Hy (2.54)
Hy gAp/m pm Hp- ;

If Hy < Hp, which is always the case for small radiation intensities
(since Hy ~ A), Hy, is smaller than Hj;. At very high intensities (when
the incident field becomes of the order of the intra-atomic field), Hyp
can become larger than Hy;.

Note however that in some scattering processes, such as Rayleigh
scattering, Hyp, can play a role at order 1 in perturbation theory (Hy
can destroy the incoming photon and create the outgoing one, so that a
single matrix element of Hy, is needed), whereas Hy, only appears at
order 2 (Hy can only create or destroy one photon at a time, so that
two matrix elements of Hj, are needed). Even if Hp, is smaller than
H,y, the contribution of Hy, to order 1 can be of the same order as the
one of Hy; at order 2.

Remark. For a free particle, or for a weakly bound particle, Hy, (more
precisely the diagonal elements of Hp) can be interpreted as a kinetic
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energy of vibration of the electron in the radiation field. We will come
back on this physical picture in section 4.,

We consider now the ratio Hy,/Hy;. Using (2.51), (2.53) and the fact
that B ~ kA (since B =V x A), we get

Hiy_ ghBlm _fikA _ hk e
Hy, gAp/m pA D .
i.e., the ratio between the photon momentum #ik and the particle
momentum p. For low-energy radiation, i.e., for optical or microwave
radiation, such a ratio is much smaller than 1.

2.4.4. Selection rules

From the basic commutation relations (2.1), (2.2), one can show that, in
absence of static fields (or in presence of static fields invariant in a
space translation)

[P, H] =0=[P, H (2.56)

where P is the total momentum given in (2.20).
It follows that the total momentum is, as in classical theory, a
constant of motion (in Heisenberg picture)

d piy—
5 P®O=0. (2.57)

From (2.56), it also follows that Hj can only induce transitions
between states of the combined field plus particles system having the
same total momentum. As a consequence of this momentum con-
servation (combined with energy conservation) one can derive well-
known effects in emission and absorption processes, such as the
Doppler effect or the recoil shift.

2.4.5. Introduction of a cut off

The Hamiltonians (2.19) or (2.41) are of course only valid for slow
(nonrelativistic) particles. They cannot therefore describe correctly the
interaction of the particle with relativistic modes of the radiation field
(for which #iw = mc?), since such interactions would give high velocities
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to the particles, or create new particles (such as electron—positron
pairs).

We prefer therefore to eliminate the coupling with relativistic
modes, which is present in the interaction Hamiltonian H;, and which
is certainly inaccurate. Such an elimination is achieved by introducing a
cut off in the expansions of the field operators appearing in H;. All
summations over k; are limited to

kil = ki < ke, (2.58)
where
fick. = fiw. < myc? . (2.59)

The cut-off frequency w. is however chosen large compared to the
characteristic frequencies wy of the particles

Wy < W < macz,‘!ﬁ 2 (2.60)

so that a broad spectral range is kept in H, for describing the important
electromagnetic interactions of the particles, in particular the resonant
interactions which give rise to real emission and absorption processes.
Actually, with the cut off (2.58), we renounce describing the effect on
the particles of virtual emission and reabsorption of high-frequency
photons.*

Remarks

(i) For consistency, the same cut-off k. must be also introduced in
the interaction with the longitudinal electric field which gives rise to
the Coulomb interaction term. If the longitudinal electric field created
by particle « is expanded into longitudinal modes, and if a cut-off k. is
introduced in this expansion, the energy e, of the Coulomb field
associated with particle @ becomes finite and equal to

£&ou = qakc/dmie, . (2.61)

The electrostatic interaction between different particles is also

* In the subsequent seminar [1], the effect of such virtual processes on the electron-spin
anomaly g — 2 is evaluated to order 1 in the fine structure constant «. The calculations
are based on the full relativistic Q.E.D. Hamiltonian.



Introduction to quantum electrodynamics 49
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Fig. 2. Some important photon energies and wavelengths for the hydrogen atom (figure
not at scale).

modified, but such a modification can be neglected if the average
distance between two different particles is larger than 1/k. (a cut off at
k. in k-space is equivalent to an averaging over a length 1/k. in
r-space). For fiw,= mc? (where m is the electron mass), the charac-
teristic length is fifmc, i.e., the Compton wavelength which is much
smaller than the atomic dimensions.

(it) The modes which are selected by (2.58) have their wave vectors
inside a sphere in k-space. For a different observer, moving with a
velocity v, these modes will be Doppler shifted and will no longer form
a sphere. It follows that the cut off introduced in this section is not
relativistically invariant.

(iii) We can consider some important photon energies fiw and the
corresponding wavelengths A = fic/hiw for the simplest atomic system,
the hydrogen atom (see fig. 2 which is not at scale). A first important
energy is the electron rest mass energy mc? the corresponding
wavelength being the Compton wavelength .= fi/mc. The cut-off
energy fiw. must be smaller than mc?. The characteristic atomic ener-
gies (noted hw, above) are of the order of the ionization energy of the
atom, i.e., of the order of a?mc?, where « is the fine structure constant.
Since « = 1/137, such an energy is at least four orders of magnitude
smaller than mec?2. It is therefore easy to find a cut-off frequency w,
fulfilling condition (2.60). Finally, we can note that the Bohr radius a,
is equal to A./a, so that a wavelength of the order of a, corresponds to
photon energies of the order of amc?, much smaller than mc?, but also
much larger than a?mc? (see fig. 2). For an atom such as hydrogen, the
energy range between 0 and amc?, which contains all important atomic
frequencies, corresponds therefore to wavelengths large compared to
atomic dimensions. This leads us to introduce now the electric dipole
approximation.

2.5. Electric dipole approximation

When the charged particles interacting with the radiation field form
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one (or several) localized systems such as atoms or molecules, with
spatial extensions a smaller than the wavelengths A of the field, one
can neglect the spatial variation of the field over each localized system
of charges. Such a long wavelength approximation allows one to
transform the Hamiltonian H studied in the previous section into a
more suggestive one involving electric dipole couplings. We analyze in
this section such an electric dipole approximation.

2.5.1. A few results concerning dipole moments

For the following discussion, it will be useful to review first a few
simple results of electromagnetism.

Charge density for a system of localized charges. Consider a set of
charges q., with positions r, localized near a point R4, in a volume
with linear spatial extension a

lr.—Rasa Va. (2.62)

The corresponding charge density in r-space and k-space can be
written,

Pa(r) =2 q8(r—ra), (2.63)
pa)= (35) S e, 2.64)

The localization assumption can be used to transform (2.63) or
(2.64). 1t is simpler to work in k-space. For all wave vectors k such that
ka <1, we can write

RnYPpa(k) = ga e *Ba gik®a-ro)
=Y que FPA[1+ik(Ry—r)+...). (2.65)

Introducing the “total charge” Qa,

OA = z qa 1 (2-66)
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and the ‘““dipole moment*” d, with respect to Ra,

d!\ = E Qa (ra = RA) s (267)
we get
QY 2pa(k)= Qae*RA—ik -dy e Rat .. | 2.68)

The Fourier transform of (2.68) then gives
p,\(r)= OAS(r—RA)—V'dAS(r~RA)+. S (2.69)

Such a simple result means that the charge distribution of a localized
system of charges can be expanded into a total charge Qa localized in
R,, a polarization density P,(r) corresponding to a dipole moment d
localized in Ra4,

Pu(r)=da8(r—R,), (2.70)
andsoon...,
PA(r) = Qa8(r —RA)—V-Pr(r)+... . 2.71)

For the following calculations, it is useful to introduce the Fourier
transform of (2.70)

1 \32 .
a0 (L) tres, -

which can be used to transform (2.68) into
1 \32 : ]
pa(k) = (2—7;) Qae R —ik-Pa(k)+. .. . 2.73)

Remark. Strictly speaking, expansions (2.65) and (2.68) have a meaning
only if ka <1. Consequently, the Fourier transform of (2.68), leading

* The definition (2.67) of the dipole moment d4 depends on the point of reference Ra,
except if the total charge Q4 is equal to zero.
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to (2.69), should be limited to the corresponding values of k (ka <1).
It follows that the 8(r — ra) functions appearing in (2.69), (2.70) and
(2.71) are not true delta functions but have actually a width of the
order of a. They can be, however, considered as true delta functions
for physical effects involving characteristic lengths much larger than a
(for example, the interaction of the atomic system with a radiation with
wavelength A > a).

All previous results can be generalized to several distinct systems of
charges ¥, I3... localized near Ra, Rp... with total charges Q,,
Qs . .. and dipole moment d,, dg . .. (with respect to R, Rg...). One
can show that

p(r) = pa(r)+pp(r)+..., (2.74)
p(k) = palk)+ pa(k)+. . ., (2.75)

where pa(r) and pa(k) are given by (2.71) and (2.73), ps(r) and pg(k) by
similar expressions with A replaced by B.

Electric induction in the presence of globally neutral localized systems of

charges. From now on, we suppose that the various systems of local-
ized charges #x, ¥ . .. are globally neutral

Qr=0=Qg=..., (2.76)
and we neglect all higher-order terms after the dipole one in (2.71) and
(2.?31)5}0111 the electric field E and the total polarization density

P(r)=Pa(r)+ Pg(r)+... (2.77)
one can introduce the electric induction D

D(r) = &,E(r)+ P(r). (2.78)

From Maxwell equation (1.1a), V- E = p/eo, and from eq. (2.71) with
Q=0 and the corresponding equation for %..., one deduces that

V-D(r)=0, (2.79)
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which means that D is a pure transverse field, so that we can also write
D(r)= goE,(r)+ Py(r). (2.80)

Remarks

(i) Equations (2.79) and (2.80) are actually valid only after an
averaging of the fields over a volume large compared to a® (see remark
of the previous section).

(i1) Since the polarization density P(r) is localized near Ra, Rj ...
[see (2.70) and (2.77)], it follows from (2.78) that, outside F, ¥5. ..
the electric induction coincides with the ftotal electric field E(r) [within
the multiplicative factor &),

D(r)= goE(r) if ris outside F5, F5... . (2.81)

Using the equivalent expression (2.80) of D, we also deduce from
(2.81) that, outside Fa, 5. .., P,(r) coincides with gEj(r).

Electrostatic interaction between two globally neutral localized systems of
charges. The electrostatic energy of a charge distribution is given in
terms of the charge density p(k) by

1 *(k)p(k
Ve = 5¢- f Pk ﬂ—klzﬂ—) 2.82)

[see also eq. (1.50) and its Fourier transform (1.51)].

If we replace p by pa+pp+...in (2.82), and if we keep the crossed
terms in pips (Or paps), we obtain the electrostatic interaction energy
between the two localized systems ¥, and . Using the expression
(2.73) of pa (with Q4 = 0), and the corresponding expression for pg, we
get

VAR, = zisu j &k [ic - PLK)][e - Po(k)] + A =B
= [ Pk P2k - Pulh). .83

[From the reality condition of 2, and s, one can show that the
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A =B term of the first line of (2.83) is equal to the first term.] Using
the Parseval-Plancherel identity (1.21), we can also write

V&. = Siuj Fr PA"(F') = PB||(T) . (284)

Actually, since the two dipole moments d, and dg are supposed to
be localized in two different points of space R, and Rg, (with |[Ra—
Rg| > a), we have

f PrPa(r)- Po(r) = da- d f Fro(r-Ry)S(r—Rg)=0, (2.85)
so that (2.84) can also be written
Vei= - | PrPa(r)- Puutr). (2.86)

The electrostatic energy between two dipole moments is therefore
simply related to the scalar product of the corresponding longitudinal
or transverse polarization densities.

2.5.2. Long wavelength approximation

Suppose we have two globally neutral localized systems of charges Fa

and g, for example two neutral atoms localized in R and Rs. The

index a labels the particles of %, the index B the particles of .
The total Hamiltonian H in Coulomb gauge can be written,

1

2mg

1
Hh= Z [Pe — GuAL(r))+ E . [ps— gpA (1)
@ B g
+ Veat+ VEat VEu

+ > hwatai+3). (2.87)

The first sum represents the kinetic energy of the particles a of %4, the
second one the kinetic energy of the particles B of ¥g. The second line
of (2.87) is the total Coulomb energy of the system, which has been
divided in three terms, VA2, which represents the Coulomb energy of
%, considered alone (sum of the Coulomb self-energies of each parti-
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cle @ of ¥4 and of the Coulomb interaction energy between different
particles of #,), VB8, which has the same meaning for ¥, V25, which
represents the Coulomb interaction energy between %, and .
Finally, the third line of (2.87) is the energy of the transverse field.

Suppose that the fields irradiating these systems of charges, or
radiated by them, have a wavelength A much larger than the spatial
extension a of ¥ and ¥,

A>a. (2.88)
For the corresponding modes of the transverse field, we can write
ek ra = gik'Ra_ eikrs — gik'Ry _ (2.89)

The long wavelength approximation consists in replacing A ,(r,) by
A, (R,)and A (rs) by A (Rg) in the first line of (2.87) which thus becomes

S, 5o [P~ GeALRAF + gz—,},‘;[pﬁ - oA R)P . 2.90)

Remark. Actually, one must not forget that the expansions of A,(r,)
and A (rp) in plane waves also contain high-frequency modes for which
the approximations (2.89) are certainly not valid [even if we introduce
a cut-off k. as in the previous section (2.4.5), k. is generally larger than
1/a. For example, the energy range between amc? and mc? in fig. 2
corresponds to modes which are not relativistic but which have a
wavelength shorter than the Bohr radius]. Of course, if ¥4 and ¥ are
atomic or molecular systems, their typical internal Bohr frequencies w,
are much smaller than c/a,

wy<cla, (2.91)

so that the resonant interactions of ¥, and ¥ take place with modes
of the radiation field for which ka <1 (see for example the energy
range between 0 and amc? on fig. 2). Nonresonant interactions with
high-frequency modes cannot however be neglected since they give rise
to virtual processes contributing for example to radiative corrections
(atoms or molecules can virtually emit and reabsorb photons of any
frequency). If we are interested in a precise calculation of such effects,
we cannot use the approximate expression (2.90). We must come back
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to a more precise Hamiltonian, even more precise than the ones
considered in this chapter (see section 2.4), since it must also include
relativistic effects (see seminar following this course for example [1]).

2.5.3. Unitary transformation ([9] and references in [12])
The simple form of the kinetic energy term (2.90), after the long
wavelength approximation, suggests to make a unitary transformation

T translating all p, by an amount g,4 ,(R,) and all ps by an amount
gpA 1 (Rp). Such a translation operator can be written

7= el 4 [Zan AR+ S ARy}
= exp{ -~ [da- Au(RW) + dy - A,(Re)]}. (2.92)

and we have

Tpn:T+ = P«x it qg*AJ_(RA) 3

TpgT™ = pg + qgA (Rs), (2.93)
so that the kinetic energy term (2.90) takes the much simpler form

1 1
2 om Pt 2 Ph- (2.94)
@ £L B

We have used the fact that, because of (2.16), A,(Ra) and A,(Rg)
commute with T.

Remark. In the derivation of (2.93), we have implicitly supposed that
R and Ry are two fixed points of space (c-numbers commuting with p,
and pg). In other words, we neglect the translational motion of ¥, and
5. We could also consider that R, and Ry are the centers of mass of
s and Fp. In such a case, R, and Ry would be functions of the r,’s
and rg’s, and new terms would appear in the right side of (2.93), which
can be shown to introduce corrections of the same order of magnitude
as the magnetic dipole and electric quadrupole couplings [which have
been neglected here by stopping the expansions (2.71) and (2.73) after
the dipole term].



Introduction to quantum electrodynamics a7

The unitary operator T given in (2.92) can also be written

T= exp[z Ot ,\.-a:)] : (2.95)
with

Ai=Aia+ Aig, (2.96)

M= Doy (- ) e,

e Q«ETSUW (& dp) R0 (2.97)

It follows that T is also a translation operator for @; and a;,

TQ;T+ =gq;+ Aj 5
TaiT* = at +A%. (2.98)

(See for example Glauber’s lectures in [13].)

2.5.4. Expression of the observables in the new representation
It is well known that a given physical quantity is generally represented
by different mathematical operators in two different representations.
More precisely, we can obtain the “new” representation G’ of a
physical quantity by applying T to its old representation G,

G' = TGT*, (2.99)

corresponding old operator G <« physical quantity — corresponding
“new” operator G'= TGT*

A similar result holds for physical states: corresponding ‘“old” ket
|s) < physical state — corresponding “new” ket|¢) = T|i).

We can, for instance, calculate the operators associated with several
field quantities in the new representation. For the transverse electric
field, its new representation E|(r)= TE,(r)T* can be calculated using
(2.98) and (2.72). We get
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E((r)=i2 &,[(ai+ A)e; €% — (ai + A%)e; e *r]
Eall A 1 - ik (r—Rp) —
=E\(r) é [2—'50;23 (g:-da)e + c.c.] +A=B
= E(r)- - P.(0). (2.100)

We can also evaluate the operator describing the electric induction in
the new representation. The electric induction D(r) is equal to
&FE (r)+ P.(r) [see (2.80)]. Since P,(r) commutes with T, we obtain,
using (2.100), the new representation D'(r)= TD(r)T* of the electric
induction

D'(r) = eiE(r)

=& 2 (2 L3) [gia; €% — gaf e7itir] . (2.101)

It therefore appears that the mathematical operator written in (2.6),
and noted in the old representation E,(r), is now in the new represen-
tation associated with the electric induction in r.

Remark. A similar discussion could be done for atomic quantities. For
example, the velocity of a particle « is a physical quantity which is
represented in the old representation by the operator |[p,-—
qa.A,(r,)|/m,, approximated by [p,—q.A.(Ras)]l/m, in the long
wavelength limit. Using (2.93) we find that such a velocity is represen-
ted in the new representation by

e Al 4o Pa
0= T (p - g A RIIT = 2 2.102)

This explains the simple form (2.94) of the kinetic energy in the new
representation.

2.5.5. Expression of the Hamiltonian in the new representation
We can evaluate the Hamiltonian H' in the new representation by
applying to H the same unitary transformation.

The transformation of the kinetic energy term (2.90) has already
been done in section 2.5.3 and leads to the simple expression (2.94).
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The second line of (2.87) is a pure atomic operator depending only on
the r,’s and rg’s and which therefore remains unchanged in the trans-
formation T. Finally, the transformation of the third line of (2.87) leads
to

THRT* = T 3, [hiwi(ata; +3)]T*
= > hal(at + 1)@+ A)+3]
= Hp+ >, hwi(Aaf + A%a;) + 2 hod A, (2.103)
In addition to Hg, we get a term linear in A; or A%, and a term bilinear

in A; and A*%. Consider first the linear term. Using (2.96) and (2.97), we
can transform this term into

—dp- D, i\{ hey s (aig; €5 R’a— gfg et + ASB. (2.104)
; 25[}L

We get the scalar product (with the minus sign) of da (or dg) with a
field operator which, according to (2.101), is equal in the new
representation to (1/eq)D'(R,) [or (1/&0)D'(Rg)]

—d, - DR _, DRs) (2.105)

Ep Ep

Thus, the interaction term involves the electric induction rather than
the electric field.

Consider now the last term of (2.103). We have first two “square”
terms in AjaA;a and AjgA;s. Using the expression (2.97) of A;x, we get

* 1
Rwd iakin = —— (& - da). :
2. adia %2%{3(5 ) (2.106)

If we introduce a cut-off ky in the sum over |k;| (with kya <1) such a
term (and the corresponding one for )l.?:B)L,'B) becomes

k4
5 d2 (2.107)

EAS Z hwi)l;km\m=m 5

es and ep are pure atomic operators related to ¥, and ¥ and
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representing dipole self-energies. Finally we have a “‘crossed” term
between A and B

2 fra(A iAia + )l;kA)\iB)

= 2_.91_[,5 D (& da)(&i - dp) e ®aFe) + A2 B. (2.108)
s

The A =B term of (2.108) doubles the first one. Replacing the discrete
sum by an integral and using (2.72), we transform (2.108) into

1 Jd3k S (e 23 Po)= . I Pk PL (k) - Py (k)
= -EI—J &r Py (r)- Pou(r). (2.109)

According to (2.86) such a term is nothing but — V&, and therefore
cancels the electrostatic interaction between A and B, appearing in the
second line of (2.87).

Combining all the previous results, we get for H' = THT*

H'= ZL+ VAA + eA+ Z—%Jr VBB, +£h

D®,)_,;, D)

£y

+ Hr—da- (2.110)

In the new representation, the Hamiltonian has a very simple struc-
ture. We have first two atomic Hamiltonians, for %, and %,
representing for each system, the sum of the kinetic energy, the
Coulomb energy (inside ¥ or ), the dipole self-energy (g4 or £g).
Then we have the field energy Hy and finally the interaction Hamil-
tonian representing the coupling of d, (and dg) with the electric
induction in R, (and Rp).

Two advantages of the new representation clearly appear on (2.110).
First, the interaction Hamiltonian is linear in field operators and not
quadratic as it was the case for H. Second, the instantaneous Coulomb
interaction between A and B has disappeared.

This last result has a simple interpretation: the new Hamiltonian
contains the coupling of the electric dipole d, with the total induction
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in R,, in particular the induction produced by ¥g. But, the induction
produced in R4 by % coincides with the total electric field produced
by s, since the polarization density Pg(r) associated with % is
localized in Ry and since R4 is outside #g (see remark (ii) on page 53). It
follows that the new interaction Hamiltonian contains the coupling of d,
with both the transverse and longitudinal electric field produced by .
This also explains why the new Hamiltonian (2.110) is more suitable than
the old one (2.87) for studying retardation effects in the electromagnetic
interaction between two neutral atoms.

3. Quantum electrodynamics in Coulomb gauge - physical discussion
3.1. Introduction

The purpose of this lecture is to discuss some important features of the
quantum theory of radiation introduced in the previous section 2.

We first review (section 3.2) some observables of the quantized field.
Most experiments actually correspond to photoelectric measurements
and we give the expression of the field observables which are measured
in these experiments,

We then analyze (section 3.3) the eigenstates of the observables
corresponding to the total energy and total momentum of the field,
which clearly exhibit the corpuscular features of the field. These states
can be analyzed in terms of elementary excitations of the field, or
photons, having a well-defined energy fiw and momentum #k. By
superposing one-photon states, with different energies, it is possible to
construct nonstationary states, which propagate with the speed of light.
The ground state of the quantized free field, i.e., the vacuum of
photons, exhibits important quantum features, which are analyzed in
section 3.4.

The wave aspects of the field are also very important. We introduce
in section 3.5 the quasiclassical states, or coherent states, which realize
the best compromise between the complementary photon and wave
aspects. The last section 3.6 is devoted to detailed discussion of
interference phenomena. We show how the quantum theory of radia-
tion provides a very convenient framework for analyzing these effects,
and how the notion of interference can be extended to processes
involving more than one photon.
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3.2. Free field observables
In order to focus the discussion on the field observables, we will
consider here the free field, in absence of sources.

3.2.1. Energy and momentum
We have already given in section 2 the expression of the cor-
responding observables Hy and Pg,

Hy = 2 hoi(ata; +3), (3.1)

PR: zﬁk;a:a;. (32)

Hy and Py are “global” observables, since they are related to
integrals of the electric and magnetic fields over the whole space.

3.2.2. Fields in a given point r
Contrarily to Hg and Py, these observables are “local”. The expression
of E(r), B(r), A(r) is given in (2.6), (2.7), (2.8)*.

If we consider the contribution of mode i to A(r=0), we find
something proportional to g; + a}. Similarly, the contribution of mode
i to E(r = 0) is proportional to i(a; — a{). This gives a physical meaning
to the “position” x;=(a;+ a}’)j’\/Z and to the momentum p; =
i(at — a;)/V'2 of the fictitious harmonic oscillator associated with mode
i and to its wave functions. For example, it is well known that the
ground state of an harmonic oscillator has a Gaussian wave function in
x-space and p-space. It follows that the distribution of the possible
values of the contribution of mode i to E(0) is given by a Gaussian
curve in the ground state of this oscillator (no photon in mode i).

3.2.3. Observables corresponding to photoelectric measurements

In the optical domain, most local measurements of the field are based
on the photoelectric effect. One puts an atom in the field at point r and
one records the photoelectron produced by the photoionization of this
atom. Such measurements are destructive, since the photon giving rise
to the photoelectric effect disappears.

* The free field considered in this chapter is transverse so that we can write E(r) and
A(r) instead of E (r) and A, (r).
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Single countings signals. Suppose that a broad band photodetector is
put at point r in a radiation field. It can be shown (see for example
Glauber’s lectures in [13]) that the probability of observing a pho-
toionization in this detector between t and ¢+ dt is proportional to
wi(r, t)dt where

wi(rt) = (Y| EO(rt) - EXro)ly) (3.3)

E®) and E©) are the positive and negative frequency components of
the electric field defined in (1.95) and (1.96). The observation time is
supposed sufficiently short so that perturbation theory can be applied.

The “single counting rate” wy is the average in the state |) of the
field observable (in the Heisenberg picture)

I(rt) = EO(rt)- E¥)(rt), (3.4)

I(r, 1) is an Hermitian operator, normally ordered (annihilation opera-
tors at right, creation operators at left) which can be called the light
intensity in r at time .

Remark. It is also possible to give a semiclassical treatment of the
photoelectric effect, where only the detector is quantized but not the
field (see for example [14, 15]). For the single counting rate, one finds
instead of (3.3)

wil(rt) = E§)(rt) - E§(rt) = Io(rt), @.5)

where E{’ and E{’ are the positive and negative frequency com-
ponents of the classical electric field and I,=|E{]* the classical
intensity.

Double counting signals. We consider now two photodetectors in r and
r'. The probability to have a photoionization in r’ between t' and
t'+dt' and another one in r between f and ¢ + dt can be shown [13] to
be proportional to wy(rt, r't') dt dt’ where

wi(rt, r't") = D (WEQ (' YES(r) ES(rt) ES(r' )W) (3.6)

m,n

with m, n = x, y, z. The “double counting rate” wy, is the average of
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the normally ordered observable

> EGNr't)ESNrt)ES(rt)ESXr't) . (3.7)
Since EC)(rt) and E®)(rt) do not commute, such an observable cannot
be written as I(rt)I(r't"), i.e., as the product of the two light intensities
in rt and r't’.

Remark. The semiclassical expression of the double counting rate is
equal to

wil(rt, r't’)y = Ig(rt)I(r't) . (3.8)

For a fluctuating classical field, the average of (3.8) must be taken over
all possible realizations of the field. In such a case, the double counting
rate is given by the correlation function of the light intensity.

3.3. Elementary excitations of the quantized free field — photons

3.3.1. Eigenstates of Hr and Py
Consider first the ith oscillator (mode i). We have the well-known
results

a?ai|ni):ni|ni>y HI':(}’ 1323-'-v (3'9)

atlny=Vn+1ln+1), (3.10a)

alm)=Vnln—1), (3.10b)

a;[0;)=0, (3.10¢)
_ (ab)

|n:) = ¥ 10:) . (3.11)

Since afa; commutes with aja;, the eigenstates of Hy and Py are
(tensorial) products of the eigenstates |n;) of ata;,

HR|H1 nmm T o .)= 2 (n,- +é)flr.u,—1n| _— T .), (3.123)

PR|n1...n,—...)=2n.~ﬁk,-|n1...n,-...). (312b)
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The ground state of the field corresponds to all n; equal to zero and
will be noted |0) (vacuum state),

0)=10,...0;...). (3.13)
From (3.11) it follows that the eigenstates |mny...n;...) can be

obtained by applying on the vacuum a certain number of creation
operators,

(@) (ad)

Hi o = el N 3.14
| : ) \/ﬂq! \/n,-! I ( )
3.3.2. Interpretation in terms of photons

With respect to the vacuum, the state |n,...n;...) has an energy
> nfiw; and a momentum Z; nfik,. It behaves as an ensemble of n,
particles with an energy fiw, and a momentum #k, . ..and n; particles

with an energy fiw; and a momentum fik;. . ..

These particles are called “photons”. They describe the elementary
excitations of the various modes of the quantized field.

From (3.10), it follows that af creates a photon i, whereas q;
annihilates a photon i. The total number of photons is described by the
operator

N=3ata. (3.15)

Finally, since the field has been quantized with commutators, pho-
tons are bosons. Actually, the number of photons i, n;, can be larger than
il

3.3.3. One photon states — propagation

The creation operator aj acting upon the vacuum |0) gives a state a;|0)
with one photon k. These states can be linearly superposed to give

) = > cail0) . (3.16)

Such a linear combination is an eigenstate of the operator N given in
'(3.15),

Nlp) = [y), (3.17)
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but not of Hg and Py (since several values of k appear in (3.16)). It
follows that, in general, !a,{f} describes a nonstationary one-photon state.

In order to discuss the propagation of such a state, we will consider a
simple bne-dimensional problem. All the modes appearing in the
expansion (3.16) are supposed to have their wave vectors parallel to
the x-axis and the same polarization, so that E®)(rt) will be simply
noted E™(xt),

E®)Y(xt)= \/2 2 Vkay eit==on (3.18)
The single counting rate wy(xt) in the state (3.16) is then given by

wi(xt) =

e L3 2\/ ke, kel (3.19)

It clearly appears on (3.19) that w(x, r), which only depends on x — ct,
propagates without deformation with a speed c.

Remarks

(i) A measurement of Pr on the field in the state (3.16) gives the
value fik with the probability |c,[> [we suppose (W) = = |2 = 1]. |ei]?
can therefore be considered as the probability distribution for Pg.

(ii) wi(xt) represents the probability of obtaining a photoelectron at
the point x. It could be tempting to consider wy(xt), in the one-photon
subspace, as the probability for the photon to be at point x. This would
introduce the idea of the “position” of the photon. To support such an
interpretation, it would be necessary to show that it is possible to
construct a complete set of localized states for the photon, i.e., a
complete set of states for which wi(rt) is zero everywhere except in one
point. This is actually impossible because of the transverse character of
the photon field. For example, to localize a photon with a polarization
parallel to the z-axis, the transversality imposes to use only plane
waves with their wave vectors in the xy-plane, and wy(rt) would be
completely delocalized in the z direction. In fact, it has been shown by
general arguments, that it is impossible to define a position operator
for the photon [11].
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3.4. Some properties of the vacuum

3.4.1. Qualitative discussion

For a real harmonic oscillator, it is well known that the basic com-
mutation relation [x, p] = ik prevents the simultaneous cancellation of
the potential energy x> and the kinetic energy p®. The lowest energy
level results from a “compromise” between these two energies which
cannot be made both equal to zero. This explains why the ground state
has a non-zero energy (zero-point energy fiw/2), and why in this
ground state (x2) # 0 and {p? # 0.

A similar situation occurs for the quantized field. The basic com-
mutation relation [a;, af]=8; [see also (2.18)] prevents the simul-
taneous cancellation of E?> and B2 i.e., the electric and magnetic
energies. It follows that the ground state of the field, i.e., the vacuum
|0), has a nonzero energy (Ey = =, fiw/2) and that, in this state, (E2) # 0
and (B?%) # 0. This is a pure quantum effect.

3.4.2. Vacuum fluctuations
Using the expansion of E in g; and a} and
al0)=0;  (Olaaf|0)=5;, (3.20)

one derives

(OE(@r)|0)=0, (3.21)

OI(E(rt)f0y = 1< Lkm k3dk. (3.22)

2eq7r?

The average value of E*(r) in the vacuum is proportional to #i (pure
quantum effect) and diverges if the upper bound ky of the integral
tends to infinity.

It follows that, even in the vacuum of photons, there is an electric
field everywhere in space, with a zero average value, but with a
non-zero variance.

The dynamics of these vacuum fluctuations is described by the
symmetric correlation function
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Con(r: t+ 7, 0) = KO|E,.(r, t + 7)E,(r, t) + E,(r, )En(r, t + 7)|0),
(3.23)

where m,>n = x, y, z. Using the expansion of the free field Heisenberg
operators, one derives

ﬁ

ke I k3 ek dk . (3.24)

The correlation function C,, is real and only depends on 7 (this is due
to the fact that the vacuum is a stationary state). The width in 7 of
C,x(7) is of the order of 1/cky. This means that vacuum fluctuations
have a very short correlation time. It also appears in (3.24) that the
spectral power density of vacuum fluctuations is proportional to @?.

An atomic electron in the vacuum of photons interacts with vacuum
fluctuations. Can spontaneous emission by an excited atom be con-
sidered as an emission ‘‘triggered” by vacuum fluctuations? We will
come back to this problem in the next lecture devoted to a physical
discussion of radiative processes. We will see that vacuum fluctuations
play an important role in spontaneous emission of radiation and in
radiative corrections, but that another physical mechanism is also
present, the interaction of the electron with its own field (radiation
reaction).

3.5. Quasiclassical states

3.5.1. General idea

Consider a classical free field. Its state is, according to the results of
section 1, characterized by the set {a;} of normal variables. Once the
set {a;} is known, all field quantities are known. For example,

Hi({a}) = 2 hwo*a;, (3.25)
Pg({a;}) = 2 hka’;a;, (3.26)
Aq({a}, rt)=> A, aiE; &0 e, (3.27)

and so on.
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For a quantum free field, the situation is more complex. Since the
various quantum field observables (reviewed in section 3.2) do not
commute, it is impossible to find common eigenstates of these observ-
ables with eigenvalues equal to the values of the corresponding classi-
cal observables.

In this section, we try to find the quantum state [{e;}) which
“reproduces” in the best possible way the properties of the classical
state {a;}. The general idea is to look for a quantum state [{;}) such
that, for all important observables, the quantum average values in this
state |{a;}) coincide with the corresponding classical values. More
precisely we want to have

({ai}|Hrl{a;}) — Evac = Hi({as}) . (3.28)

(We have substracted the energy E,,. of the vacuum because all
energies are measured with respect to the vacuum.)

(el Pri{a}) = PR({es}) , (3.29)
(atA){ed) = Aa(ai}, r1), (3.30)

for all r and ¢, plus similar equations for E, B.

3.5.2. Characterization of quasiclassical states

If the expansions of Hg, Pr, A(r, t) in a; and af are inserted in the left
part of (3.28), (3.29), (3.30), and if the expressions (3.25), (3.26), (3.27)
of Hi({ay}), PE({e;}), Au({a;}, rt) are used, one finds that conditions
(3.28), (3.29), (3.30) are equivalent to

({ai}lafl{ai}> =a; Vi. (3.31)
({allafalle}) = afa; Vi. (3:32)

If we then introduce
b= a;— a;1 (3.33)
where 1 is the unit operator, we transform (3.31) and (3.32) into

<{ﬂ:‘}|bi|{&i}) =0 Vi, (334)
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({a}|bibil{e) =0 Vi, (3.35)

Equation (3.35) expresses that the norm of b;/{a;}) is equal to zero. The
solution of (3.34) and (3.5) is therefore

bil{a:}) =0, (3.36)
e

al{ai}y = al{as}) . (3.37)
It follows that

Hﬂ-’i}) 2 |al)laz>A ‘. [a;) s (3.38)
with

a;‘i“;‘) = Ofi|ai) - (3.39)
The quasiclassical, or coherent, state |{e;}) is thus the product of the
eigenstates of the various annihilation operators a;, the eigenvalues «;
being just the corresponding classical normal variables.

From (3.39) it follows that
(oz,—|a,- = a’?<ai| s (3.40)

and also that

EO(rt){ai}) = EP (e}, rt){al}) , (3:41)
{aHE(rt) = EP(ai}, ri){a}| - (342)
More generally, all normally ordered observables have an average

value in |{@;}) equal to the corresponding classical value in the classical
state a;.

3.5.3. Some properties of quasiclassical states [13], [16]
Projecting (3.39) on the bra (n — 1| gives the following relation

Vainla)= aln—1a), (3.43)
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(we consider a single mode of the radiation field and we skip the index
i) from which it follows that

lay =2 5" (a"/V/n)n). (3.44)

n=0

The probability ?(n) for having n photons in the quasiclassical state
|a) is therefore given by a Poisson law

P(n)= e |al™/n!, (3.45)
with a mean value
(n)=laf, (3.46)
and a variance
Ant={(n)=|af. (3.47)
From (3.44), one can also derive the following normalization relation
[(Bla)? = e7le-2F, (3.48)

and closure relation
18l 4
= | dal|aXa|=1, (3.49)
T

where d’a = d Re(a) d Im(a).

Finally, it can be shown that, in the x-representation, a quasi-
classical state is represented by a minimum Gaussian wave packet
which oscillates without deformation.

Remark. 1t is possible to use the quasiclassical states |a) as an (over-

complete) basis for expanding the density operator p of the mode. A
particularly interesting situation occurs when p can be written as

p= [ PaP@laXel, (3.50)

P(a) is then the “P-representation” of the density operator p [13].



72 Claude Cohen-Tannoudji

P(a) is real and normalized (this follows from p*=p and from
Tr p = 1). Furthermore, from (3.39) and (3.40), one can show that

(a*yaly= j $a P(a)a*a!. (3.51)

For all normally ordered products of a* and a, P(a) appears as a
density of probability for a. Actually P(«) is not a true probability, but
rather a quasiprobability, since one can show that it can take negative
values. The P-representation provides a clear discussion of pure quan-
tum effects. Such quantum effects appear for exampie for states of the
quantum field leading to violation of semiclassical inequalities
established with positive definite classical densities ?(a). Also, the
master equation describing the damping of p due to relaxation proces-
ses often becomes a Fokker—Planck equation for P(a) (see for example
[17] §8 or [18] §17.1).

3.6. Analysis of interference phenomena

3.6.1. Motivations of a Q.E.D. approach

The wave—particle duality has been first introduced in physics for light.
As soon as in 1909, Einstein introduced the idea that the wave aspect
and the particle aspect of light were inseparable. The wave—particle
duality was then extended to matter and led to the spectacular
development of quantum mechanics.

In nonrelativistic quantum mechanics, the connection between the
wave aspect and the particle aspect is well known. The wave function
¥ (r) (which contains the wave aspect) gives the probability |(r)? to
find the particle in r.

If we come back to light, we are faced with the problem that there is
no wave function in r-space for the photon. It is not correct (as this is
usually done in elementary introductions to quantum physics) to con-
sider classical Maxwell waves as wave functions for the photon.

It is therefore interesting to try to understand how Q.E.D. can
explain interference fringes observed with photoelectric devices
without using any wave function for the photon. What are the
“objects’ which interfere? Is it possible to observe interference effects
on double counting signals? With two independent laser beams? With
photons arriving one by one?
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3.6.2. A simple model
In order to keep the calculations as simple as possible, we will use a
very simple model.

We consider a free field in a state |¢f) such that only two modes 1
and 2 are non-empty, all other modes i being in the lowest state |0,).

[9) =9 ® TT 109 (3.52)

Examples of such situations can be realized, by reflecting a parallel

beam on two mirrors (Fresnel mirrors) or by using two independent

laser beams. The two modes are taken with the same polarization so

that the vector character of the field can be ignored in the following.
The most general form of the state vector |¢,) in (3.52) is

[Y12) = 2 Copmli, n2) . (3.53)

nyny

It may happen that |¢,) is factorized (this is the case for two
independent laser beams)

|12 = [l e) . (3.54)

A quasiclassical state is a particular case of (3.54),
i) = |ex)]es) . (3.55)
It will be also useful to consider single-photon states for which
1) = €1]110,) + €201, . (3.56)

The single photon has an amplitude ¢, to be in mode 1, ¢; to be in
mode 2.

In the following, we will discuss single and double counting rates.
Since w; and wy are average values of normally ordered products of
field operators, and since all modes i # 1, 2 are empty, we can write

E®(rt) = ESO(rt) + ES(rt)
= & a, explik; - r — w 1) + Eay explilky - r — wyt)] . (3.57)

(The contribution of modes i # 1, 2 in the expansion of E® vanishes
for wy and wy in the state (3.52).)
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3.6.3. Interference effects observable on single counting signals
General case. Inserting (3.57) into the expression (3.3) of w;, we get

Wi = Wpl(EY + ES)E + ES)|¢n2)
= (Y EVEY o) + (o ESES i)
+ (Yl EQES ) + (Y EOEP|yna) (3.58)

which can be also written,

wi(rt) = |&[XYulaiaiy) + 122+ 2Re €1¢,
X{W| at aslprn) expli[(ky— ki) - ¥ — (w2 — w1)t]} . (3.59)

If (Yz|laialny #0, we see on (3.59) that there is a sinusoidal r
dependence in wi(rf). The single counting rate exhibits interference
fringes.

Quasiclassical states. Suppose that |¢r,) is a quasiclassical state (3.55).
Using (3.57), (3.41) and (3.42), we obtain

wi(rt) = |[EfQ({ea}, rt)l? + |ES({aat, ro)f. (3.60)

For a quasiclassical state, w(rt) therefore appears as the square of the
sum of two classical Maxwell waves. In this particular case, it is not
incorrect to consider the interference between two classical elec-
tromagnetic waves for calculating the probability that the photon
manifests its presence in rt.

Factorized states. If |i5) is given by (3.54), wi(rt) becomes

wi(rt) = |€iXlaiailgn) + 122+ 2Re € Exi|at|n)
X (] ar| ) expli[(ka— ki) - r — (02— w)t]} . (3.61)
Fringes exist only if {yr|ai|yn) and (yn|as)y) do not vanish, i.e., if (E,)

and {E,) are different from zero.
In particular, if

i) = [n)|na) (3.62)
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i.e., if the number of photons in each mode is well defined, there are
no fringes since (nj|a;ln,) = (nylaslny) = 0. A state |n) is the quantum
analogue of a classical monomode field with a given energy but a
random phase.

Finally, one can note that, since in general

(laiailyn) # (Wnlatln)ynlailyn) (3.63)
we have
wi(rt) # (E)) + (E)?, (3.64)

w; cannot therefore be considered as resulting from the interference
between two classical. waves given by (E,;) and (E,).

Single-photon states. We finally consider the single-photon states given
in (3.56). E{)(rt) operating on this state gives

E )¢ = 1 explitky - r = @11)]|0,0) . (3.65)

Destroying a photon in a single-photon state gives the vacuum. A
similar expression can be written for E{(rt), so that we finally get

W](rf) = |C|%1 exp[i(kl LEY e L!.l]f)] T ngz exp[i(kz = wzt]]F ' (3.66)

Fringes appear on wi(rt). Actually, since the single photon is destroyed
in the measurement, the experiment must be repeated several times
with the same initial conditions, in order to observe the fringes.

Remarks
(i) For the single-photon states (3.56), one can show that

(W Edlgrno) = (Yol Exlpio) = 0 . (3.67)

It follows that the wave ¢, %, expli(k,* r — wt)] appearing in (3.66) is
not the average electric field in mode 1 which is equal to zero (and
similarly for the other term of (3.66)). The two waves which interfere in
(3.66) are therefore not related to average electric fields.

(i) Fringes would not appear for a statistical mixture of |1,0,) and
[0,1,) with weights |c;/*> and |c,>. The phase relation which exists
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between the two states appearing in (3.56), and which is related to
ce,, is crucial for the appearance of fringes.

3.6.1. Interference effects observable on double counting signals

General case. If one replaces the four operators E® appearing in the
expression (3.6) of wy by Ef9+ Ef), one gets 2*=16 terms with
various sinusoidal dependences with respect to the variables (r, 1),
(r,t"), (r+r', t+1t), (r—r', t—1t). We conclude that interference
effects are also observable on double counting signals.

Quasiclassical state. Using (3.41) and (3.42) we can write for such states
wi = La(aiaa}, ri)laasast, r't'), : (3.68)
where I ({a,as}, rt) is the classical intensity
Li({enaz}, rt) = |[Ef@({aa}, r) + |[ESQ{az}, ro)? . (3.69)

We get the same result as in the semiclassical theory: wy; is the product
of the two classical intensities in r¢ and r't'.

Single-photon states. In such states, one finds that
wu(rt, r'tY=0 VY ri, r't". (3.70)

Such a result is easy to understand. The first E® at the right of
expression (3.6) acting upon the single-photon state (3.56) gives the
vacuum [0,0,). The second E® acting upon the vacuum gives 0. In
other words, it is impossible to detect two photons in a state which
contains only one.

The quantized field in the single-photon state (3.56), gives single
counting rates w; which are different from zero (see next subsection),
but the double counting rates wy; are identical to zero for all rt and r't’.
Such a result can never occur with a classical field. It is impossible to
find a classical field E’ such that w{' # 0 and w$} = 0 for all rf and r't’.

Another example of a typical quantum situation can be given (fig. 3).
A single photon emitted by an excited atom is sent towards a beam
splitter and the signals given by two photodetectors A and B put
behind the beam splitter are recorded. One can get a photoelectron in
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Fig. 3. Example of a typical quantum situation.

A or B, but never in A and B. A semiclassical theory would predict
possible coincidences between A and B.

Two-photon states. We will consider here a very simple example of a
two-photon state,

[ = |10)]12) (3.71)

i.e., a state where there is one photon in mode 1 and another one in
mode 2.
When (3.71) is inserted in the expressions (3.3) and (3.6) of w; and
wy, we find that
wi(rt) = |&[* +| &, (3.72)
wi(rt, r't) = 2| &€, &,
X [1+ Re expli[(k;— ky) - (r — r') = (w, — w2)(t — t)]}] . (3.73)

Such a result shows that it is posible to observe interference effects on
double counting rates (associated with the last term of (3.73)) in
conditions where they are not observable on single counting rates (as
shown in the previous subsection, this is due to the fact that, in the
state (3.71), (E;) and (E,) vanish because of the random character of
the phase).

Interference effects on double counting rates (or higher-order
counting rates) are very useful from an experimental point of view.
They give the possibility of exploring the space time coherence pro-
perties of various types of fields. For example, in radioastronomy,
intensity correlations are less sensitive than field correlations to the
phase fluctuations introduced by the atmosphere [19]. To observe the
interferences between two independent laser beams [20], it is also
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simpler to use wy than wy. The relative phase of the two lasers cannot
be easily reproduced from one run to another when the data are
averaged. w is sensitive to the relative phase whereas wy is not.

3.6.5. Interpretation in terms of interferences between transition
amplitudes

We first write w; in a different way. Inserting the closure relation

Ef: [y Xyl =1 (3.74)

over a complete set of field states between the two operators E©) and
E®) appearing in the expression (3.3) of wy, one gets

wi(rt) = 2, (WIEC(rt)| Xy EC)(rt)| )
f
= ; K| EO (o))
= > KWAES(rt) + ES(r0)]|)P . (3.75)
.

It is then possible to interpret expression (3.75) in the following way.
There are two different paths for going from the “initial” state |¢) of
the field to the “final” one (fig. 4). The first path corresponds to the
absorption of one photon of the mode 1 in rf, the second path to the
absorption of one photon of the mode 2 in rt.

E 0 ES (7 1)

Fig. 4. Two different paths for going from the initial state |¢) to the final state |J) in a
single counting experiment.
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Fig. 5. Four different paths for going from the initial state |} to the final state |¢s) in a
double counting experiment.

Two amplitudes are associated with these two paths, (s E{"(rt)|tf)
and (Y| ES(rt)|b). The total amplitude for going from [¢) to [yy) is the
sum of these two amplitudes

W ESUrn)l ) + (Wl ES(ro)| ) - (3.76)

The transition probability |¢)— |y;) is obtained by squaring the modu-
lus of the amplitude (3.76). Since we do not observe the final state of
the field, we must sum the probabilities over the nonobserved final
states® [¢y).

The same discussion also applies to wy. By inserting the closure
relation (3.74) between the two E©) and the two E) appearing in the
expression (3.6) of wy, we can show that the amplitude [¢)— [¢), in a
double counting process, is the sum of four different amplitudes
corresponding to the four different paths represented in fig. 5. Each of
these paths involves two photons of the same mode 1 or 2, or of two
different modes 1 and 2, one of them being absorbed in r't’, the other
one in rt. These amplitudes interfere when the total amplitude is

* Eventually, if the initial state is not a pure state |¢), but a statistical mixture of states, we
must average (3.75) over the possible initial states.
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squared, in order to obtain the probability |¢) — |y ), and summed over
nonobserved final states.

As a conclusion of this section, we can summarize a few results
concerning the description given by Q.E.D. of the wave-particle
duality.

(i) The wave aspect is related to the fact that the operators of the
various modes are linearly superposable and have a sinusoidal depen-
dence in r and r It is because E™ = E{7+ Ef{) that we get in
w; = (EOE®) “square” terms and “crossed” terms. The calculations
are formally very similar to the corresponding classical ones, but now
E{® and E§” are noncommuting operators and not c-numbers.

(ii) The particle aspect is contained in the state vector |¢) which
describes the excitation of the field, i.e., the number of photons in the
various modes.

(iii) State vectors are also linearly superposable, and this also is
important for interference effects since a linear superposition of states
has not the same physical content as a statistical mixture.

4. Vacuum fluctuations and radiation reaction:
identification of their respective contributions

This section presents the results discussed in the following reprint of
Journal de Physique 43 (1982) 1617, an article by J. Dalibard, J.
Dupont-Roc and C. Cohen-Tannoudji.

4.1. Introduction

Understanding the physical mechanisms responsible for spontaneous
emission of radiation by an excited atom, or for radiative corrections
such as radiative line shifts, electron’s self-energy or magnetic
moment . .. is a very stimulating problem which has received a lot of
attention [1, 2]*.

The quantitative results for these corrections are of course well
established. The physical interpretations remain however more con-
troversial. Two extreme points of view have been investigated. In the
first one, the interaction of the electron with the quantum fluctuations
of the vacuum field, the so-called “vacuum fluctuations”, is considered

* For references in this section please consult the reference list at the end of this section on p.
124,
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as playing the central role. One tries to interpret spontaneous emission
as an emission ‘‘triggered” by vacuum fluctuations. The most famous
example of such an approach is the interpretation of the Lamb shift as
being due to the averaging of the Coulomb potential of the nucleus by
the electron vibrating in vacuum fluctuations [3]. One must not forget
however that such a picture leads to the wrong sign for the electron’s
spin anomaly g —2: the vibration of the electron’s spin in vacuum
fluctuations does not increase the effective magnetic moment but reduces
it [3, 4]. In the second point of view, the basic physical mechanism is
identified as the interaction of the electron with its own field, the
so-called “‘radiation reaction” although it would be proper to call it the
electromagnetic self-interaction since it includes the interaction of the
electron with its Coulomb field as well as with its radiation field [5-8]. We
will use in the following the shorter denomination “‘self-reaction’ for this
process. In such an approach, one tries to interpret Q.E.D. radiative
corrections along the same lines as the radiative damping and the
radiative shift of an oscillating classical dipole moment. We should note
however that the vacuum field cannot be completely forgotten in the
interpretation of finer details of spontaneous emission, such as fluores-
cence spectrum or intensity correlations, which are related to higher-
order correlation functions [9, 10].

Actually, it is now generally accepted that vacuum fluctuations and
self-reaction are “two sides of the same quantum mechanical coin”
[11], and that their respective contributions to each physical process
cannot be unambiguously determined [11-14]. Such an opinion is
based on the following analysis, carried out in the Heisenberg picture
which provides a very convenient theoretical framework since it leads,
for the relevant dynamical variables, to equations of motion very
similar to the corresponding classical ones. The calculations [11-14]
can be summarized by the general scheme of fig. 6.

Heisenberg’s equations of motion for field and atomic variables are
derived from the Hamiltonian of the combined atom + field system.
The equation for the field looks like the equation of motion of an
harmonic oscillator driven by an atomic source term and is readily
integrated. This leads to an expression for the total field E which is a
sum of two terms:

E=E+E,. @.1)

The “free field” E; corresponds to the solution of the homogeneous
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Atom + field hamiltonian

- N

Heisenberg equations Heisenberg equations
for the field. for the atom.

Integration
E=Efree +E

g Atomic dynamical

equation

Fig. 6. Principle of the derivation of the atomic dynamical equation.

field equation (without atomic source term), and coincides with the
“vacuum field” when no photons are initially present. The “source
field” E; is the field generated by the atomic source (solution of the
inhomogeneous field equation). Consider now the atomic equation.
The rate of variation, dG(t)/dt, of a given atomic observable G(¢)
appears to be proportional to the product of atomic and field opera-
tors, N(t) and E(t), taken at the same time:

460 N Ew. @2)
The final step of the calculation consists in inserting in (4.2) the
solution (4.1) obtained for E(t), which leads to a dynamical equation
for the atomic system (fig. 6). The contributions of E; and E to dG/dt
can be interpreted as rates of variation

(‘L—?)ﬂ ~ N() B0, (4.3a)
(%)ﬂ« N(t) E1), (4.3b)

respectively due to vacuum fluctuations and self-reaction. This inter-
pretation directly follows from the physical origin of E; and E,. The
ambiguity mentioned above for this separation comes from the fact
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that the two atomic and field operators N(f) and E(f) appearing in
(4.2) commute [they commute at the initial time ¢ = #, when they act in
different spaces, and the Hamiltonian evolution between f, and ¢
preserves this commutation]. They can therefore be taken in any order,
N(t) E(t) as in (4.2), or E(t) N(t). However, E{t) and E(t) do not
commute separately with N(f), as their sum does. Consequently,
N(t) E(t) and E(t) N(t) generally differ. The two rates of variation
(4.3a) and (4.3b) therefore depend on the initial order between the two
commuting operators N(r) and E(t), the total rate (4.2) being of course
independent of this order. In particular, if the normal order has been
chosen in (4.2) [with all field annihilation operators at right, all field
creation operators at left], the contribution of vacuum fluctuations
vanishes when the average is taken over the vacuum state of the field,
and all radiative corrections appear to come from self-reaction.
Different orders taken in (4.2) would lead to different conclusions.
Thus, it seems that the relative contributions of vacuum fluctuations
and self-reaction cannot be unambiguously identified.

Motivations of this paper. In this paper, we would like to present some
arguments supporting the choice of a particular order in (4.2) leading,
in our opinion, to a physically well-defined separation between the
contributions of vacuum fluctuations and self-reaction. We do not
question of course the mathematical equivalence of all possible initial
orders in (4.2). Our argument rather concerns the physical inter-
pretation of the two rates of variation appearing when (4.1) is inserted
in (4.2). If G is an atomic observable (Hermitian operator), the two
rates of variation contributing to (d/d¢) G(¢), which is also Hermitian,
must be separately Hermitian, if we want them to have a physical
meaning. Furthermore, the field and atomic operators appearing in the
different rates of variation must also be Hermitian if we want to be
able to analyse these rates in terms of well defined physical quantities.
We show in this paper that these hermiticity requirements restrict the
possible initial orders in (4.2) to only one, the completely symmetrical
order.

A second motivation of this paper is to point out that, with such a
symmetrical order, a clear connection can be made with a statistical
mechanics point of view which appears to be in complete agreement
with the usual physical pictures associated with vacuum fluctuations
and self-reaction. For example, the radiative corrections can be
expressed as products of correlation functions by linear susceptibilities.
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For the vacuum fluctuations part of these corrections, one gets the
correlation function of the field multiplied by the linear susceptibility
of the atom, which supports the picture of a fluctuating vacuum field
polarizing the atomic system and interacting with this induced
polarization, whereas for the self-reaction part, the reverse result is
obtained: product of the correlation function of the atomic system by
the linear “susceptibility” of the field which corresponds to the picture
of a fluctuating dipole moment ““polarizing” the field, i.e., producing a
field, and interacting with this field.

Organization of the paper. In section 4.2 we introduce our notations
and the basic concepts (vacuum field, source field, radiation
reaction, . . .) by applying the general theoretical scheme of fig. 6 to the
derivation of the quantum generalization of the Abraham-Lorentz
equation [17] describing the dynamics of an atomic electron interacting
with a static potential and with the quantized radiation field. We
discuss the physical content of this equation and the difficulties asso-
ciated with the quantum nature of field variables. We explain also why
it is necessary to extend the calculations of section 4.2 (dealing with the
position r and the momentum p of the electron) to more general
atomic observables G.

The calculation of dG/dt, which is presented in section 4.3, raises the
problem of the order between commuting observables, mentioned
above in connection with eq. (4.2) (such a difficulty does not appear for
r and p). We show how it is possible, by the physical considerations
mentioned above, to single out the completely symmetrical order in
(4.2). We then extend in section 4.4 the discussion to the more general
case of a “small system” & (playing the role of the atomic system)
interacting with a “large reservoir”. # (playing the role of the elec-
tromagnetic field with its infinite number of degrees of freedom). The
advantage of such a generalization is to provide a deeper insight in the
problem. We point out in particular that the expressions giving
{((dG/dt)y) and {(dG/dt),), averaged in the vacuum state of the field
and calculated to first order in the fine structure constant «, can be
expressed in terms of simple statistical functions of the two interacting
systems (correlation functions and linear susceptibilities). We discuss
the mathematical structure of these expressions and their physical

© content.

Finally, the general results of sections 4.3 and 4.4 are applied in
section 4.5 to the physical discussion of the relative contributions of
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vacuum fluctuations and self-reaction to the dynamics of an atomic
electron. Two types of effects are considered: the shift of atomic
energy levels, described by the Hamiltonian part of ((dG/dr),) and
{(dG/dt)), and the dissipative effects associated with the exchange of
energy between the electron and the radiation field.

4.2. The quantum form of the Abraham—Lorentz equation

A few basic concepts are introduced in this section, by considering a
very simple system formed by an electron bound near the origin by an
external potential and interacting with the electromagnetic field.

We first introduce the Hamiltonian of the combined system “bound
electron + electromagnetic field” (subsection 4.2.1). We then establish,
in the Heisenberg representation, the quantum dynamical equation for
the electron (subsection 4.2.2). This equation appears to be very similar
to the corresponding classical one, known as the Abraham-Lorentz
equation. This close analogy is however misleading and we will try to
explain the difficulties hidden in the quantum equation (subsection
423).

4.2.1. Basic Hamiltonian in Coulomb gauge

Field variables. The electric field is divided into two parts: the lon-
gitudinal field Ej and the transverse field E,. The longitudinal field at
point R is the instantaneous Coulomb field created by the electron at
this point. It is expressed as a function of the electron position
operator r,

E(R)= (4.4)

e

T dmreolR—r|”
The transverse field E, (R), the vector potential A(R) and the magnetic
field B(R) are expanded in a set of transverse plane waves, normalized
in a cube of volume L*:

E (R)=> (&ee*®) g, +hc, (4.52)

ke
A(R) = z (.ﬁks eikﬂ) ah_- o hC ) (45'3)
ke

B(R)= 2, (Bux X € €*®) g, + hc, (4.5¢)
ke
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with

. | hw wsdy

h 1
BV A= \gmpgr  Boife, o

K =kik, 4.7)

a.. and a;, are the annihilation and creation operators for a photon
with wave vector k and polarization £. The summation concerns all the
wave vectors k with components multiple of 2#/L and, for a given k,
two transverse orthogonal polarizations £, and &,.

In classical theory, expansions similar to (4.5) can be written, the
operators a;, and a being replaced by c-numbers a;. () and a},.(?)
which are actually “‘normal’ variables for the field.

In order to calculate the energy of the Coulomb field of the particle,
it is also convenient to take the Fourier transform of the longitudinal
field (4.4) (for a given value of r):

e .
E||(R)=2-'lmk e ®-n 4 he , (4.8)
k

Electron variables. The electron motion is described by the position
operator r and the conjugate momentum p:

P Y (4.9)

The velocity operator, v, is given by
mv = p— eA(r), (4.10)

where m is the electron mass. Note that v is not an electronic operator
since it includes field variables through A(r). The electron is bound
near the origin by an external static potential Vy(R). If spin is taken
into account, the electron variables are supplemented by the spin
operator §. Magnetic and spin effects will be briefly discussed in
subsection 4.5.2. They are neglected elsewhere.

The Hamiltonian. In the nonrelativistic approximation, the Hamil-
tonian is the sum of five terms: the rest mass energy of the electron, its
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kinetic energy, its potential energy in Vy(R), the energy of the lon-
gitudinal field and the energy of the transverse fields:

- mc2+L [p— eA()P+ Vlr)+ %Jdm E(R)

+Z > (@it + avai,). @.11)

The energy of the longitudinal field appears to be a constant.
representing the energy of the electrostatic field associated with the
charge. This constant can be written as

zsgj-d‘RE (R) = om,c?, 4.12)

dm, can be considered as a correction to the mechanical rest mass m of
the electron. The same correction appears in classical theory.

Introduction of a cut off. It is well known that divergences appear in the
computation of various physical quantities (such as energy,
momentum, . ..) associated with a charged point particle interacting
with the electromagnetic field. These divergences are due to the
contribution of the modes with large wave vectors. In order to deal
with finite expressions, we will consider only the coupling of the
electron with modes k such that

k| < kw . (4.13)

This cut-off ky is chosen not too large so that the nonrelativistic
approximation is correct for all the modes which are taken into
account (fiwy < mc? with wy = cky). On the other hand, wy must be
large compared to the characteristic resonance frequencies w, of the
bound electron. This gives two bounds for ky:

W, _mc
0 k< (4.14)

It is well known that theories using such a cut off are no longer
relativistic invariant [15]. The modes selected by condition (4.13) are
not the same in two different reference frames, because of the Doppler
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effect. It is possible to restore relativistic invariance, by using some
more sophisticated cut-off procedures [16]. However, we are not
concerned here with the relativistic aspects of radiative problems and
we will ignore these difficulties. To summarize, all the sums over k
appearing here after must be understood as limited by condition (4.13).
The same restriction also applies to the expansion (4.8) of the lon-
gitudinal field. The energy of the longitudinal field is then finite and
equal to

S =Sl € ethii (4.15)
: = 20k 4mey’ :

which can be written as (a/w)hwy, where a is the fine structure
constant.

Electric dipole approximation. We also suppose in this paper that the
binding potential localizes the electron in a volume centred on the
origin, with a linear dimension @ much smaller than the wavelength of
the modes interacting with the particle. (The cut-off ky introduced
above is supposed to satisfy ky a <1.) Such an assumption which is
justified for an atomic electron, allows us to neglect the spatial varia-
tion of the fields interacting with the electron. We will then replace the
fields at the electron position E(r), A(r) by the fields at the origin E(0),
A(0).

The electric dipole approximation is not essential for the derivation
of the results presented in this paper. But the calculations are much
simpler and the physical conclusions remain unchanged®*.

To summarize the previous discussion, we will use hereafter the
following Hamiltonian:

Hep = (m + 8m)) ¢+ 51— (p — cA@)F + Vo(r)
+ 2 ﬁT‘”(aLauﬂLakaL), (4.16)

ke
[fel<kpg

* Corrections to the electric dipole approximation are of higher order in 1/c. They have
to be considered when relativistic corrections are included in the Hamiltonian (see for
example [4]).
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with

A@0)= > e a +he. (4.17)
mfkm

4.2.2. Dynamics of the electron interacting with the electromagnetic field.
Principle of the calculation. The rate of variation of electron and
field variables can be determined from the Hamiltonian (4.16). The cor-
responding two sets of equations are of course coupled; the field
evolution depends on the charge motion and, conversely, the electron
experiences a force due to the field.

The derivation of a dynamical equation for the electron from these
two sets of coupled equations is well known [8, 13, 14] and follows the
general scheme of fig. 6. One first integrates the field equations in
presence of the particle. The solution obtained for the field is then
inserted in the electron equation. This leads to a quantum dynamical
equation describing the motion of the electron interacting with the free
field as well as with its own field.

The electromagnetic field in presence of the particle. Since all field
operators are expressed in terms of a, and aj, we start with the
Heisenberg equation for a.(f):

a(t) = -;? [H(1), ar. ()] = —iway (1) + % Aye® - (1), (4.18)
where
am(t)=mo(t)=p(t)— eA0,1). (4.19)

Equation (4.18) is then formally integrated and gives
A (1) = ape (1) e ‘u’+—&€k J di e g all). (4.20)

The evolution of a(r) appears to be the superposition of a free
evolution [first term of (4.20)] and a forced evolution driven by the
motion of the charge [second term of (4.20)]. We finally insert (4.20) in
the expansions (4.5) of the transverse field. The contributions of the
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two terms of (4.20) correspond respectively to the free fields (Ay, E,y)
and to the source fields (A, E;). Actually, we need only for the
following to know the fields for R = 0 (because of the electric dipole
approximation). From (4.5) and (4.20), one easily derives (see appendix
A for the details of the calculation):

A0, 1) = A0, 1)+ A0, 1), @.21)

with
A0, 1) = 2 (e et~ g,,(to) + he, (4.22a)

_A8s A€
A0, )= 5 w(t)—3 Aregics (1) ; (4.22b)
similarly,

E (0,1)=E. (0, )+ E.(0,1), (4.23)

with
E(0, 1) =Y, (§e e “0) ay, (1) + hc, (4.24a)

ke
i 3

E . (0,1)= () + 3 4178 o3 (1) (4.24b)

The quantum Abraham—Lorentz equation. The Heisenberg equations
for the operators r and 7 are

mr(t)— " H, r]= =), 4.25)

)= % [H, w] =~V Vi(r) + eE,(0, 1)

e
iave (mxB(0,t)— B, t)x ). (4.26)
The last term of the right member of eq. (4.26) is smaller than the

second one by a factor v/c [see eq. (4.6)]. It will be neglected hereafter.
On the other hand, we notice that E,(0, ¢) is not multiplied by any
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electronic operator so that the problem of order raised in the intro-
duction does not appear here. Replacing in (4.26) the total transverse
electric field by the sum (4.23) of the free field and the source field and
using (4.25) to eliminate , one gets:

mi(t) = =V Vy(r)+ eE (0, t) + eE (0, t)

- _VVi(r) - iom, r(t)+2 e’ SIS F) B0, ). (@27)
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This equation is very similar to the classical Abraham-Lorentz equa-
tion [17]. This is not surprising since the classical Hamiltonian is similar
to (4.16). The general scheme of fig. 6 is valid for both quantum and
classical theories, and the Hamilton—Jacobi equations have the same
structure as the quantum Heisenberg ones. Since there is no problem
of order, the physical interpretation of this equation is clear. Apart
from the external potential Vy(r), two fields act on the electron: its
own field and the free field. The coupling of the electron with its own
field is described by two terms: the first one, proportional to ¥,
corresponds to a mass renormalization from m to m +36m;*. The
second one proportional to r, is the quantum analogue of the force
which produces the radiative damping of the classical particle. The last
term of (4.27) describes the coupling of the electron with the free field,

e., the field which would exist if the particle was not there. This free
field may include an incident radiation field. Classically, the description
of the electron free motion is obtained by taking E «(0,1)=0. In
quantum mechanics on the contrary, E; is an operator. Although its
average value can be zero (in the vacuum state for example), its
quadratic average value is always strictly positive. The modifications of
the electron dynamics originating from this term correspond to the
effect of vacuum fluctuations.

To summarize, it is possible to derive a quantum form of the
Abraham-Lorentz equation. The self-reaction terms appear in a
natural and unambiguous way and are formally identical in quantum
and classical theories. In the quantum equation, the term describing
the interaction of the particle with the free field operator cannot be

* As in classical theory, the fact that the mass correction in the Abraham-Lorentz
equation and the mass correction in the rest mass energy (4.12) differ by a factor % is due
to the lack of covariance of the cut-off procedure.
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considered as a c-number equal to zero in the vacuum. We discuss now
some consequences of the quantum nature of this last term.

4.2.3. The difficulties of the quantum dynamical equation

In its traditional form, the classical Abraham-Lorentz equation suffers
from a well-known defect: the existence of preacceleration and self-
accelerated solutions. The discussion of the same problem in quantum
theory is undoubtedly interesting [18]. We prefer here to focus on some
more fundamental difficulties inherent in the quantum formalism and
which are hidden behind the formal analogy between the classical and the
quantum dynamical equations.

First, it is worth noting that eq. (4.27) relates noncommuting opera-
tors. This of course complicates the resolution of the equation, but is
unavoidable in a quantum theory of the electron dynamics.

Another difficulty lies in the fact that such an equation includes both
particle and field operators, respectively r, p and E;. This problem does
not appear in the classical treatment where the free field, taken equal
to zero, does not contribute to the Abraham-Lorentz equation. In
quantum mechanics, E; cannot be cancelled in the same way: physic-
ally, this means that the electron cannot escape the vacuum fluctua-
tions. To estimate the two contributions of vacuum fluctuations and
self-reaction, we then have to integrate the quantum Abraham-
Lorentz equation with a source term; this introduces further com-
plications. To avoid this problem, one may try to deal only with
electron operators averaged over the state of the field. Suppose that
the radiation field is in the vacuum state at the initial time f: Let
(S(1))r be the average in this radiation state of the particle operator
S(1). (S(1)r is still an operator, acting only in the electron Hilbert
space. The average of equation (4.27) gives

m(Fe = ~(TVelrn = 5mi(P + - (P @.28)

We have used the fact that the average value of E; is zero in the
vacuum state. It seems in this last equation that vacuum fluctuations
have disappeared and do not play any role in the evolution of {r)g.
Actually, the simplicity of eq. (4.28) is misleading; the averaged
operators (r)z, (p)rx do not have the same properties as the original
operators r, p. For example, their commutation relations are not the
canonical ones ([{r)r, (p)r] # i#1) and their evolution is not unitary. So,
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we are no longer able to draw a parallel between the classical Abra-
ham-Lorentz equation and the evolution of {r)g given by (4.28).

Furthermore, all the dynamical aspects of the electron motion can-
not be described only by the two operators {r)z and {p)r. The value of
the product (r - p)g, for example, cannot be calculated as a function of
(r)x and {p)g. Similarly, equation (4.28) is not a true differential
equation since (V Vy(r))r cannot be expressed in terms of (r)z and (p)x.
This equation is then not “closed’: it links {r)z and its derivatives to
another operator (VVy(r))z for which we have to find the evolution
equation (the vacuum fluctuations will probably contribute to this
equation, which proves that their disappearance in (4.28) was only
superficial).

The previous discussion clearly shows that we cannot avoid to study
now the evolution of electron observables other than r and p and to
ask about their rate of variation the same type of questions concerning
the respective contributions of vacuum fluctuations and self-reaction.
This problem will be dealt with in the next section. Note that the
simplifications which occurred above for the evolution of r (no order
problem in (4.27) and nullity of the vacuum average of E; in (4.28)) will
not occur for the evolution of a general particle observable.

There is a supplementary reason for studying the evolution of
operators other than r and p. Very few experiments are dealing with
the position or the momentum of an atomic electron. One rather
measures the population of an energy level, the frequency or the
damping of some atomic oscillations associated with off-diagonal ele-
ments of the density matrix. This suggests that operators such as |i)(i|
or |i)j| (where |i) and |j) are eigenstates of the electron in the
potential Vj) are more directly connected to experiment than r and p.

4.3. Identification of the contributions of vacuum fluctuations and self-
reaction to the rate of variation of an arbitrary atomic observable

In this section, we first evaluate the contributions of the various
terms of the interaction Hamiltonian to the rate of variation, dG/dt, of
an arbitrary atomic observable G (subsection 4.3.1). We then discuss
the problem of order which arises when the total field appearing in this
rate is split into its free part and its source part (subsection 4.3.2). We
solve this problem by introducing hermiticity conditions associated
with the requirement of physical meaning (subsections 4.3.3 and 4.3.4).
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Finally, we discuss the problem of the vacuum average of the various
rates which requires a perturbative calculation (subsection 4.3.5).

4.3.1. Contribution of the various terms of the interaction Hamiltonian
It will be convenient to divide the total Hamiltonian (4.16) into three
parts, the Hamiltonian

H,= £+ Vi) @29)

of the electron in the static potential V(r), the Hamiltonian

Hg = Z hew(aka + :]'2) . (4.30)

ke

of the transverse radiation field, and the Hamiltonian

2 2
V=—Zp-A0)+5— A0)+ 1 — LY 4.31)

m TEY T

of the electron-field coupling, characterized by the electric charge e
and including the energy of the longitudinal field of the electron (4.15).

The rate of variation of an atomic observable G can then be written
as

%G= %[Hs, G]+%[V, G]. 4.32)
We discuss now the contributions of the three terms of V to the second
commutator (to order 2 in e).

(i) The last term of V is a ¢c-number which commutes with G and
which therefore does not produce any dynamical evolution. This term
corresponds to an overall displacement of electronic energy levels
which we have already interpreted in section 4.2 as due to the
contribution ém,c? of the Coulomb field of the electron to the electron
rest mass energy. This effect must obviously be associated with self-
reaction since it originates from the longitudinal field created by the
electron itself. The same situation exists in classical theory.

(i1) The second term of V does not depend on atomic variables and
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thus commutes with G. It has no dynamical consequences. It neverthe-
less contributes to the total energy. Let us calculate its average value.
Since we limit the calculation to order 2 in e, we can replace A(0) by
the free field A{0). The term then becomes independent of the atomic
state and can be interpreted as an overall shift of the electron energy
levels. The value of this shift for the vacuum state of the field is given
by

24 2412
< |2 A"(ﬂ)I > >< m"2="—kL=am2c2. (4.33)

8megmc

This shift can be interpreted as a new contribution, 8mac?, to the
electron rest mass energy. It is proportional to the vacuum average of
the square of the free field and thus is clearly a vacuum fluctuation
effect, the interpretation of which is well known [19]: it is the kinetic
energy associated with the electron vibrations produced by the vacuum
fluctuations of the electric field.

(iii) Finally, only the first term of (4.31) contributes to the dynamical
evolution of G. The corresponding term of (4.32) can be written as

(dd_?)ooupling = % [p i A(O)’ Gl e A(O) > (434)

where N is an atomic operator given by

N=-3-[pGl. (4.35)

If G coincides with p or r, N is equal to 0 or to a constant and (4.34)
reduces to 0 or to A(0). We find again that the evolution of r and p is
very simple.

Finally, combining (4.32) and (4.34) and reintroducing the time
explicitly in the operators, we get

% G(t)= % [Hy1), G()]+ eN(1)- A, 1) . (4.36)
4.3.2. The problem of order

In expression (4.36), we split, as in section 4.2, the field A(0, ¢) in two
parts, A¢0, t) representing the free field and A((0, t) representing the
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source field. If the atomic operator N(¢) does not reduce to 0 or to a

constant (as it is the case for r and p), we are immediately faced with

the problem of order mentioned in the introduction. Since N(f) and

A(0, 1) commute, we can start in eq. (4.36) with any order,
N(t)-A(0,1), or A(0,1)-N(1).

More generally, we can write the last term of (4.36) as

eAN(1)- A0, )+ e(1— A)A(0, 1) - N (1), 4.37)

with A arbitrary. Replacing A by A;+ A, leads to

(%)mplingz (‘:_if_)ﬁ+ (gd_?_)sr’ (B3

where the two rates

(%)‘,, = eAN(1) A0, 1) + e(1- A)A(0, 1) N(1), (4.39)
(%) = eAN(0)- A0, 1) + e(1 - M)A0,1)- N (1), (4.40)

depend on A since A; and A, do not commute separately with N(r).
A being arbitrary, the splitting (4.38) of the total rate is not uniquely
defined [11-13].

4.3.3. Physical interpretation and hermiticity conditions
In order to remove this indetermination, we introduce now some
simple physical considerations.

Suppose that G is a physical observable, represented by a Hermitian
operator. The rate of variation of G due to the coupling is also a
Hermitian operator [this clearly appears on (4.36) since N(t) and
A(0, t) are commuting Hermitian operators]. Our purpose is to split
this rate of variation in two rates, involving A; and A, respectively, and
having separately a well-defined physical interpretation in terms of
vacuum fluctuations and self-reaction. This interpretation requires that
(4.39) and (4.40) should have separately a physical meaning, and
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consequently should be separately Hermitian. This condition deter-
mines A which must be equal to 1/2. Thus the splitting of dG/d¢ is
unique and given by

(%)ﬁ = e3[N(1)- A0, 1) + A0, 1) N(1)], (4.41)
(%)y = elN(1)- A0, )+ A0, - N(1)] . (4.42)

This could have been obtained by choosing the completely symmetrical
order in (4.37).

4.3.4. Generalization to more complicated situations

It may happen that the total rate of variation of G does not appear as
simple as in (4.34), i.e., as the product of an atomic observable by a
field observable. For example, if we had not made the electric dipole
approximation, the electron position operator r would appear in A.
Another example is the appearance of non-Hermitian operators in
(4.34) when the total field A is decomposed into its positive and
negative frequency components which are not Hermitian. We extend
now the previous treatment to these more complex situations.

We first note that, in the most general case, the total rate of
variation of a physical observable G (due to the coupling with the
field) can always be written as
(ﬁ) —SAN AN (4.43)

d'[ coupling i
where the A; are field operators and the N; atomic operators which
commute, but which are not necessarily Hermitian. For example, in
simple models dealing with two-level atoms and using the “‘rotating
wave approximation”, the coupling Hamiltonian is taken of the form

V=—(E¥D*+E®D"), (4.44)

where D* and D~ are the raising and lowering components of the
dipole moment operator, and E™ and E® the positive and negative
frequency components of the field [20].

In such a case, we get
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E = FHIE+ G} =

( & )mpl_ms EWF* + EOF- (4.45)
with

Ft=»[G, D', (4.46)

(4.45) has a structure similar to (4.43).

G being Hermitian, the right side of (4.43) is of course also Her-
mitian, but since the atomic and field operators commute, it could be
written as well as

> (NAi+ NFAD) or D (NA+ AN},

or

or any combination of these forms. When A; is replaced by A;+ A, it
is easy to see that the hermiticity condition imposed on (dG/dt),; and
(dG/dr) is no longer sufficient for removing the indetermination. For
example

> (AuN;+ N7A)) and D (NAg+ AiNY)

are two Hermitian rates of variation which could be attributed to
vacuum fluctuations and which generally do not coincide since A; and

it do not commute with N; and N. For the simple model considered
above [see (4.44) and (4.45)] these two rates respectively correspond to
the anti normal and normal orders. So, when the A; and the N; are not
Hermitian, we must introduce a new requirement.

Coming back to the expression (4.43) of the total rate, we first
re-express this rate in terms of physically well-defined atomic and field
quantities, i.e., in terms of Hermitian operators. The physical
justification for such a transformation is that we want to be able to
analyse the total physical rate in terms of physical quantities. For
example, it would be difficult to elaborate a physical picture from an
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expression involving only the positive frequency part of the field which
is not observable. Introducing the real and the imaginary part of the
various operators appearing in (4.43), and using the fact that field and
atomic operators commute, we transform (4.43) into the strictly
equivalent expression

(%)mpm_ez(;x + A} )(N+N*)+e2 (A A+)

(N N +) (4.47)

But now the total rate appears as a sum of products of observables of
the field by observables of the particle as in (4.34) and the procedure of
the previous section can be applied to each of these products and
singles out the completely symmetric order

(%)mﬂg 5 z (234D + N+ v N (A3AD))

(ALY CAZ] e

when A; is replaced by A;+ A in (4.47)

To summarize the previous discussion, a unique well-defined order is
singled out by the following two conditions:

(i) The two rates (dG/dt)y; and (dG/dr), must have separately a
physical meaning.

(ii) Before replacing A; by A+ A, the total rate must be expressed
in terms of physical field and particle quantities.

4.3.5. Vacuum average of the various rates

To progress further, we must now take the average of the two rates
(4.41) and (4.42) over the vacuum state of the field. The calculation of
such an average is not trivial (as it was the case in the previous section
for r and p). This is due to the presence of products of field and atomic
operators in the right side of the equations. For example, when we
average the product eA(0, 1)+ N(r), we must not forget that these two
operators are correlated since the atomic operator N(¢) depends on the
free field which has perturbed its evolution from the initial time ¢, to ¢
Consequently, before taking the vacuum average, we have first to
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calculate, to a given order in e, N(t) as a function of unperturbed (free)
atomic and field operators. Since we limit our calculation to order 2 in
e (i.e., to order 1 in the fine structure constant «), we must solve the
Heisenberg equation for N(¢) up to order e [e already appears in (4.41)
and A; is of order ¢°]. When we insert the perturbative expansion of
N(t), which contains zero or one field operator taken at a time ¢’ such
that #,<t'<t, in the product A(0,)-N(t), and when we take the
vacuum average, we get one-time averages (0|A(¢)|0) which are equal
to zero, and two-time averages such as

(0l A0, 1) Ag;(0, 1)|0)

(with i,j=x,y, z), i.e., vacuum averages of products of two com-
ponents of free field operators taken at two different times. Similar
considerations can be made about the other products of (4.41) and
(4.42).

Actually, such perturbative calculations are not specific of our choice
of the symmetrical order in (4.37) and they can be found in other
papers where other choices are investigated [11,13]. Rather than
duplicating these calculations, we prefer in the next section to recon-
sider our problem of the separation between vacuum fluctuations and
self-reaction from a more general point of view where one asks the
same type of questions for a small system & (generalizing the atom)
interacting with a large reservoir & (generalizing the field). The
extension of the previous treatment to this more general situation is
straightforward. It leads to mathematical expressions which, because of
their generality, have a more transparent structure. In particular, since
we don’t use, in the intermediate steps of the calculation, sim-
plifications specific to a particular choice of & and R, we find that
some important statistical functions of & and & appear explicitly in the
final expressions and this provides a deeper physical insight in the
problem.

4.4. Extension of the previous treatment to a system & interacting with a
large reservoir R

4.4.1. Introduction — outline of the calculation
It is well known that spontaneous emission, and all associated effects
such as radiative corrections or radiative damping, can be considered
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as a problem which can be studied in the general framework of the
quantum theory of relaxation in the motional narrowing limit [21, 22].
Such a theory deals with the damping and energy shifts of a small
system & coupled to a large reservoir &. Large means that & has
many degrees of freedom so that the correlation time 7. of the
observables of % is very short, allowing a perturbative treatment of the
effect of the % coupling during a time 7.. For spontaneous emission,
the atom plays the role of &, the vacuum field, with its infinite number
of modes, plays the role of &, and the correlation time of vacuum
fluctuations is short enough for having the motional narrowing con-
dition well fulfilled.

This point of view suggests that we can extend to any ¥-% system
the same type of questions we have asked about the atom field system.
Is it possible to understand the evolution of & as being due to the
effect of the reservoir fluctuations acting upon &, or should we invoke
a kind of self-reaction, & perturbing 2 which reacts back on #? Is it
possible to make a clear and unambiguous separation between the
contributions of these two effects?

The extension of the treatment of section 4.3 to this more general
case is straightforward. We first note that, although most presentations
of the quantum theory of relaxation use the Schrodinger picture (one
derives a master equation for the reduced density operator of &), we
have to work here in the Heisenberg picture. Actually, the Heisenberg
picture is also used in the derivation of the Langevin—Mori equations
describing the evolution of the observables of & as being driven by a
Langevin force (having a zero reservoir average) and a friction force
(producing not only a damping but also a shift of energy levels)
[21,23,24]. Our problem here is to identify in the friction force the
contribution of reservoir fluctuations and self-reaction. Following the
general scheme of fig. 6, we start with the Hamiltonian of the ¥-%
system

H=H,+Hyg+V, (4.49)
where
v=-3 RS, (4.50)

is the interaction Hamiltonian, and R; and S; are Hermitian observ-
ables of & and & [we can always suppose that V has been put in this
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form, eventually after a transformation analogous to the one changing
(4.43) into (4.47)]. We then write the Heisenberg equation for the
reservoir observable R; appearing in (4.50). The solution of this
equation can be written as the sum of a free unperturbed part Rj
(solution to order 0 in V), and of a ““source part” R; due to the presence
of & (solution to order 1 and higher in V)

R;=Ri+R;. (4.51)

Expression (4.51) is finally inserted in the last term of the Heisenberg
equation for an arbitrary system observable G,

aty 1 1ls -5 rs
4 _ (G H+ [G, gR,s,], (4.52)

in order to indentify the contribution of reservoir fluctuations and
self-reaction. The problem of order between the commuting observ-
ables R; and

N.==1[G,S) (4.53)

in the last term of (4.52) arises in the same way as in section 4.3 and is
solved by the same physical considerations which impose the com-
pletely symmetric order. We thus get

dG -
(E)x{ =3 2, (NiRis + RiN;) (4.54a)
dG

(G7). =1 (NRi+ RN). (4.54b)

It remains to perform the average of (dG/dt); and (dG/dt) in the
reservoir state (reservoir average). As explained in subsection 4.3.5,
this requires a perturbative calculation leading, to order 2 in V, to two
time operator averages which can be expressed in terms of correlation
functions and linear susceptibilities. This is precisely where the ad-
vantage of working with a general $-% system appears. As already
explained in subsection 4.3.5, the intermediate steps of the calculation
remain general. For example, when we solve perturbatively the
Heisenberg equation for R, we get for the source part, R;, a
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perturbative expansion where, at the lowest order, the linear suscep-
tibility of the reservoir appears. In the particular case of the atom field
system, the calculation of the source field has been done exactly and
the result expressed in terms of atomic operators and time derivatives
of these operators (see eq. (4.24)). In such an intermediate calculation,
the fact that the susceptibility of the electromagnetic field is involved
remains hidden, and thus this important function does not appear
explicitly in the final result for ((dG/dt),).

In order not to increase too much the length of this paper, we will
not give here the detailed calculations of ((dG/dt)s) and {((dG/dt)s)
following the general scheme outlined above. These calculations will
be presented in a forthcoming paper [25], together with a discussion of
the various approximations used in the derivation. We just give in this
section the results of these calculations which will be useful for the
discussion of section 4.5. We first give the expression of the correlation
functions and linear susceptibilities in terms of which we then discuss
the structure of the terms describing the effect of reservoir fluctuations
and self-reaction.

4.4.2. Correlation functions and linear susceptibilities [26]
When the reservoir average is calculated up to order 2 in V, the reservoir
only appears in the final result through two statistical functions.

The first one

CP(r) = l({Rif(t)ij(t — 1)+ Rj(t — 7)Ri(t)}r (4.55)

is the symmetric correlation function of the two free reservoir observ-
ables R;;and Rj;. The average is taken over the initial state of the reservoir
which is supposed to be stationary, so that C{® only depends on 7. C{(7)
is a real function of 7 which describes the dynamics of the fluctuations of
R;; and Ry in the reservoir state.

The second statistical function

X = 1 (Rl0), Ryt = 7)) (4.56)

where 6(7) is the Heaviside function, is the linear susceptibility of the
reservoir. It generally depends on the reservoir state. )(f.f’('r) is also a real
function of 7, which describes the linear response of the averaged
observable (R;(t))x when the reservoir is acted upon by a perturbation
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proportional to R;. Note that both C and x have a classicai limit (if this is
case for &): this is obvious for C, and for y, the commutator divided by i#
becomes the Poisson bracket.

Similar functions can of course be introduced for the small system % in
an energy level |a), with energy E,. We will denote them by

CE?'aJ(T) = Xa|Si(1)Sie(t — 7) + St — T)Su()\ @) , (4.57)

X39(r) = 1-al[Sl), St~ )6, (4.58)

where the upper indices (S, a) mean that & is in |a), and where the lower
index f on S;; and Sj; means that these operators are unperturbed system
operators evolving only under the effect of H; (as for R;; and R;; which
evolve only under the effect of Hg).

Finally, we will note C"E‘.“(w), XP(w), C‘f.f-“’(m), X$?(w) the Fourier
transforms of (4.55)—(4.583, the Fourier transform f(w) of f(7) being
defined by

f@)=5z [ faye ar. (459

4.4.3. Structure of the results describing the effect of reservoir fluctuations
The first important result concerning the reservoir averaged rate of
variation {(dG/d1))r is that only C}}"('r) appears in its expression, and
not x{¥(r). Furthermore, the corresponding relaxation equations have
exactly the same structure as the ones which would be obtained if the
reservoir observables R; were replaced in the interaction Hamiltonian
(4.50) by fluctuating c¢-numbers r;(¢) having the same correlation func-
tions C};"(‘r),

n(n(t—1)= C®(r). (4.60)

We conclude that, with our choice of the symmetric order in (4.54), the
effect of reservoir fluctuations is the same as the one of a classical
random field having the same symmetric correlation function as the
quantum one.

We show also in reference [25] that the average rate of variation
((dG/dr)g)r, and also {((dG/dt)y)r, can be decomposed into a Hamil-
tonian part and a non-Hamiltonian part. The Hamiltonian part des-
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cribes (in the so-called secular approximation) a shift of the energy
levels of & due to the ¥-% coupling. The non-Hamiltonian part
describes, among other things, the exchange of energy between & and
R.

The shift, (8E, )y, of the level |a) of & due to reservoir fluctuations is
found to be

@EJ=—43 [ drCREX ). @.61)

Such a result has a very simple structure and a very clear physical
meaning (fig. 7a). One can consider that the fluctuations of %, charac-
terized by C}}‘)(-r), polarize ¥ which responds to this perturbation in a
way characterized by x (7). The interaction of the fluctuations of %
with the polarization to which they give rise in % has a nonzero value
because of the correlations which exist between the fluctuations of %
and the induced polarization in &. The factor 1/2 in (4.61) is even
somewhat similar to the factor 1/2 appearing in the polarization energy
of a dielectric. Finally, it is shown in [25] (by parity arguments) that
only the reactive part of XL.S"”(T) contributes to the integral (4.61). To
summarize this discussion, we can say that the energy shift (8E, )y can
be interpreted as resulting from the polarization of & by the fluctua-
tions of %.

Reservoir System

Fig. 7. Physical pictures for the effect of reservoir fluctuations and self-reaction. (a)

Reservoir fluctuations: the reservoir fluctuates and interacts with the polarization in-

duced in the small system. (b) Self-reaction: the small system fluctuates and polarizes the
reservoir which reacts back on the small system.



106 Claude Cohen-Tannoudji

We now turn to the discussion of the non-Hamiltonian part of
((dG/dt)g)r. A very suggestive result concerns the absorption of energy
by & when & is in |a). The effect is described by ((dH/df))r. (G is
replaced by H; and the average is taken over both the state of the
reservoir and the state |a) of #). One finds

<(d£ ’)JR,,, =t f do CfP(@) 0¥ (@)= X))

(4.62)

This result is identical with the one which would be obtained if a
classical random perturbation with a spectral power density C‘E}"(m)
was acting upon & (see reference [27], §124; see also [28]). The term
inside the brackets is actually the dissipative part of the susceptibility
of & at frequency w. This dissipative part is multiplied by the spectral
power density of the perturbation produced by %. Here again we get a
result in agreement with the picture of & responding to the fluctuations
of R.

4.4.4. Structure of the terms describing the effect of self-reaction
As expected, the reservoir appears in {(dG/dt),)rx only through the
linear susceptibility x (7). Thus, it appears that % is now polarized by
%. We can interpret the rate of variation ((dG/dr))r as being due to
the reaction back on & of the polarization of # by ¥ (fig. 7b).

As in the previous section, it will be interesting now to discuss the
shift (8E, ). of |a) due to self-reaction. This shift is found to be

GEN= 43 [ drxPmc . (4.63)

The same comments can be made as for (4.61), the roles of & and &
being interchanged. Here also, only the reactive part of Xf.:{)(‘i') con-
tributes to (4.63).

Finally, we can study the equation corresponding to (4.62) for
self-reaction

((G8) =S [ dw Eo@) ke @)= iPw). - @60

Here also the same comments can be made, the roles of & and
being interchanged. Note however the difference of sign between (4.62)
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and (4.64). This is due to the fact that (4.62) describes a transfer of
energy from # to & (gain for &), whereas (4.64) describes a transfer
from & to R (loss for ¥). Actually (4.62) can also describe a loss for %,
and (4.64) a gain, if there are adequate population inversions in % for
(4.62), in R for (4.64), responsible for an amplifying behaviour of the
susceptibility (instead of a dissipative one).

It must be emphasized that all the results derived in this section
follow from the choice of the symmetric order in the total rate dG/d¢
before replacing R; by R+ R;,. They can be all interpreted in terms of
two simple physical pictures: 2 fluctuates and polarizes &, & fluctuates
and polarizes . The clear physical structure of the results which have
been obtained in this way, and the coherence of the physical inter-
pretation can be considered as a confirmation a posteriori of the
pertinence of the method of separation we propose in this paper. The
privileged character of the symmetric order for physical interpretation
is thus confirmed.

Remark. The previous treatment allows an easy and clear discussion of
the consequences of the fluctuation dissipation theorem [26]. Note first
that this theorem holds only for systems in thermal equilibrium (popu-
lations of the various levels varying according to the Boltzmann factor
corresponding to a given temperature). The above treatment is more
general, and is valid for an arbitrary stationary state of the reservoir
(the energy levels may have any population). For a reservoir at thermal
equilibrium which is the case for the electromagnetic field in the vacuum
state, the fluctuation dissipation theorem states that the correlation
function C' qm)(“’) is proportional to the dissipative part of the correspond-
ing reservoir susceptibility. Thus, in this case, one could formally replace
in (4.61) and (4.62) the correlation function of the reservoir by the
dissipative part of the reservoir susceptibility and make the reservoir
fluctuations to apparently disappear from formulae (4.61) and (4.62). But
it is also clear that, after such a formal transformation, these two
expressions have lost their physical meaning since they appear as the
product of two susceptibilities.

4.5. Physical discussion. Contributions of vacuum fluctuations and self-
reaction to the radiative corrections and radiative damping of an

atomic electron

We now come back to our initial problem concerning the respective
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contributions of vacuum fluctuations and self-reaction for an atomic
electron.

We have given in the previous section very simple and general
expressions for important physical effects such as the shifts of the
energy levels of &, or the energy exchanges between % and A, these
expressions involving only correlation functions or linear suscep-
tibilities of & and %.

What we have to do now is to calculate first these correlation
functions and linear susceptibilities in the case where & is an atom and
9 the vacuum electromagnetic field (subsection 4.5.1). We will then be
able, using (4.61)-(4.64), to discuss the respective contributions of
vacuum fluctuations and self-reaction to the radiative corrections for
an atomic electron (subsection 4.5.2) and the rate of exchange of
energy between the atom and the field (subsection 4.5.3).

4.5.1. Correlation functions and linear susceptibilities for the vacuum
field and for an atomic electron

Comparing (4.50) and the first term of (4.31) (which is the only one to

produce a dynamical evolution of atomic observables, see subsection

4.3.1), we get, for the atom field problem

Ri(1)= Ai(0, 1),

4.65
Si()=—p(0), e

withi=x, y, z.
According to (4.55) and (4.56), the relevant statistical functions for
the field are:

Cff)(T) = X0|Ai(0, 1) Aj(0, t — T)+ A;(0, t — ) A0, 1)0), (4.66)

XP) = 5 OLA, 6, A0, 1= D1I0) 6(7) @.67)

where |0) is the vacuum state of the field and the index f means a free
evolution for the operators. The calculation of these two functions is
straightforward and given in the appendix B. One gets:

78y oM 3
(R) A L | iwT
C7) 12265 J_w |w| e dw, (4.68)
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XP() = 372 (ond () - 5 8')) (4:69)

3o’

The Fourier transforms of (4.68) and (4.69) are also useful:

C®(w )-ﬂ;?iwl (4.70)
" 6," . T
xXPw) = W (wM— iy w) ; (4.71)

Because ofAthe cut-off (4.13) expressions (4.70) and (4.71) hold only for
|w| < wy, C and ¥ being equal to zero elsewhere. It follows that the &
and &' functions in (4.69) have actually a width 1/w.

Remarks

(i) The linear susceptibility of the field relates the linear response of
the field, at point 0 and at time ¢, to the perturbation associated with
the motion of the electron at earlier times. This response is nothing but
the source field produced by the electron (and calculated to lowest
order in ¢). Going back to the precise definition of y [26], and using
(4.69), we get for the “linear response” (0|A;(1)|0):

0>

O] pi(1)|0) - ﬁ Ol pi(0)l0) , (4.72)

A0 =3 [~ a0 o ()=

€ty
3meoc’m

which coincides, to order 1 in e, with the expression given in (4.22b) for
the source field. This clearly shows that, in the derivation of (4.22b), we
have implicitly calculated the susceptibility of the field. Rather than
using this intermediate result, we have preferred in sections 4.4 and 4.5
to keep general expressions such as (4.61)-(4.64), which have a clear
physical meaning, and to specify the values of C and x for the field
only in these final expressions.

(i) The free field commutator of (4.67) is a c-number ([a, a*] = 1),
proportional to #i [see expression (4.6) of #]. It follows that the linear
susceptibility ¥® of the field is independent of the state of the field,
and independent of #. Therefore the classical and quantum linear
susceptibilities coincide. Since the source field is directly related to y®
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(see previous remark), it has the same expression in both classical and
quantum theories, and this explains why self-reaction forces are for-
mally identical in classical and quantum Abraham-Lorentz equations.

We consider now the atomic statistical functions. Their calculation is
also straightforward. Using (4.65) in (4.57) and (4.58), replacing p;(t) by
exp(iH.t/h)p; exp(—iH,t/fi) and introducing some closure relations, we
get:

1 e?

CPT) =3 72 2 Kal plbXbl pla) e
+{a| p|bXb| pila) e =} , ) (4.73)
: 2
X§$9Ar) =47 0(r) S, Kal plb)b| pla) evw
b
—{a| p;|bXb| pi|a) e a7} (4.74)

where fiwy, = E, — E,.
The Fourier transforms of (4.73) and (4.74) are:

# 2
C39w)= 5 73 S (@l plbXbl P30 ~ )
+{a| p|bXb|pila)d(w + wa)} , (4.75)

ey =t sS {alplbXlpla?(s7—)

—(a|Pé|b)(b|Pj|a)@( lwa;,)}

o=
es -
—ig— % {(a| p;|bXb|pila)s(w + wa)
—{(a| p|b)Xb| pjla)é(w — wa )} (4.76)
where ? means principal part.
The first term of (5.12), which contains only principal parts, is the
reactive part x’ of the susceptibility, whereas the second one, which
contains only -functions, is the dissipative part iy” [26-27].

4.5.2. Radiative corrections for an atomic electron

Calculations of (8E,)y and (8E,),. We can now use the results of the
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previous section for evaluating the two integrals appearing in the
expressions (4.61) and (4.63) giving the energy shifts of the atomic level
a respectively due to vacuum fluctuations and self-reaction. We must
not forget to add dm.c? to (8E, ), and 8m,c? to (8E, ), where 8m-c? and
8m,c? are given by (4.33) and (4.15) and represent overall energy shifts
respectively due to vacuum fluctuations and self-reaction (see sub-
section 4.3.1).
Using (4.63), (4.69) and (4.73), we first calculate

Z J drx PG 0=~ C3 2 8,C5(0)
[V 2
—Wﬁ(alp la), 4.77)
which gives
(3E.)s = 8mic?—3 6'"‘( (4.78)

For (8E, )., we first use the Parseval-Plancherel identity
+ae oo e
i3 j dr CO(r)y S9(r) = - f do C®*(@)F59w) . (4.79)

The integral over @ is then performed. Using (4.70) and (4.76), we
get for (4.79)

J drComvE )= WZKMPWF

S B e )

= m 2 wa|(alp|b)P logﬁ—ﬁ‘ (4.80)

(Terms in 1/wy have been neglected in (4.80).)
As in similar calculations [29], we introduce an average atomic
frequency @ defined by:

Z wal(al p|b)P? log|“’”[ = 2 wal(al p|b)f log 2 (4.81)
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The summation over b in (4.81) can then be easily done:

S wal(al plb)f = 5y alllH, p). pla)

= -2 (alavirla). 4.82)

Finally, one gets for (8E, ),

2

2h
m ]Og % (a |A V{,(r)]a) 4 szcz - (483)

(SEa)vi:
It is important to note that, in the derivation of (4.78) and (4.83), we
have not used approximations such as the two-level approximation, or
the rotating wave approximation. The energy level shifts are due to
virtual transitions involving nonresonant couplings. Consequently, a
correct derivation of these shifts must take into account all atomic
states and both positive and negative frequency components of the
field.

Main effect of self-reaction: modification of kinetic energy due to a mass
renormalization. The first term of (4.78) has already been interpreted as
the increase of the rest mass energy of the electron due to its Coulomb
field. The last term can be considered as the first-order correction to
the average kinetic energy of the electron when m is replaced by
m + 46m,/3:

(a

The electron is surrounded by its Coulomb field, and when one
pushes the electron, one has also to push its Coulomb field (elec-
tromagnetic mass).

The mass corrections appearing in the two terms of (4.78) are not the
same. This discrepancy is due to the noncovariant cut-off (see dis-
cussion in subsection 4.2.1), and also exists in classical theory.

Finally it must be noted that, since the 2s,, and 2p,, states of
hydrogen have the same average kinetic energy, a mass correction
produces equal shifts for the two levels and cannot remove their
degeneracy. Self-reaction alone cannot therefore explain the Lamb-
shift.

2 48
pmla)(1-3+). wse

2(m +Z*.3m;)|| “>= <“
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Main effect of vacuum fluctuations: modification of potential energy.
The first term of (4.83) coincides with the standard nonrelativistic
expression for the Lamb-shift [29]. It appears as a correction to the
potential Vy(r) which becomes Vi(r)+ 6Vy(r) where

e

12m2egm?c?

SVy(r) = log % AV(r). (4.85)

If Vi(r) is the Coulomb potential of a nucleus located at the origin,
AVy(r) is proportional to 8(r), and therefore only s states are shifted
by such a correction, which explains in particular how the degeneracy
between 2s;, and 2p,, can be removed.

Welton has pointed out [3] that a correction of the same type as
(4.85) would be obtained, if the electron was submitted to a fluctuating
classical field, with frequencies large compared to the atomic frequen-
cies. The electron, vibrating in such a fluctuating field, averages the
external static potential over a finite volume. If the spectral density of
this random perturbation is identified with the one of vacuum fluctua-
tions, one gets for the coefficient of A Vi(r) the same value as in (4.85),
@ being simply replaced by a low-frequency cut off. Welton's analysis
establishes a connection between Lamb-shifts of atomic levels and
vacuum fluctuations and provides a clear and simple physical picture.

Our choice of the symmetric order in (4.37) ascribes corrections such
as (4.85) to vacuum fluctuations and entirely legitimates Welton’s
interpretation for the Lamb-shift.

We have already seen (subsection 4.3.1. ii) that vacuum fluctuations

are also responsible for a correction dm; to the electron mass (last term
of (4.83)).

Remarks

(1) It may appear surprising that our calculation doesn’t give any
correction to the kinetic energy associated with the mass correction
8m, due to vacuum fluctuations. One would expect to find, as in the
previous section, a term of the order of

_dmy/ | p?
m <a|2m

a) _ (4.86)

Actually, coming back to the expressions (4.15) and (4.33) of m; and
8m,, and introducing the fine structure constant @ = e?/4meyfic, one can
write
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ozt
ém a (h 2
gl @870)

Therefore, it clearly appears that 8my/m is of higher order in 1/c¢ than
émy/m. This explains why the correction to the kinetic energy asso-
ciated with 8m, is not given by our calculation which is limited to the
lowest order in 1/c. The basic Hamiltonian (4.16) does not contain any
relativistic correction. A more precise calculation including in the
Hamiltonian relativistic corrections up to order 1/c¢? [4] (and using an
effective Hamiltonian method for evaluating radiative corrections)
actually gives the expected correction (4.86).

(il) The present calculation (as well as the one of reference [4]) does
not include of course any multiparticle effect (virtual pair creation). It
is well known [19] that many-particle effects reduce the divergence of
the electron self-energy (8m; + 8m,)c?, with respect to the cut-off wy.
Instead of having a linear and quadratic divergence (see (4.87)), one
gets a logarithmic one. Also, new correction terms, associated with
vacuum polarization effects, appear.

Classical versus quantum effects. A striking difference can be pointed
out between the contributions of self-reaction and vacuum fluctuations
to radiative corrections: fi does not appear in (8E,), [see (4.78) and
the expression of 6m,], whereas #i does appear in both terms of (8E, )y
[see (4.83) and the expression (4.33) of émy,).

The fact that self-reaction corrections are purely classical (in-
dependent of i) is not surprising. We have already explained (see
remark (ii) of subsection 4.5.1) why self-reaction terms are identical in
both classical and quantum theories.

On the other hand, vacuum fluctuation corrections have an essen-
tially quantum nature since they are due to the nonzero mean square
value of the fields in the vacuum, which is a pure quantum effect. It
must be noted however that, once the correlation function of vacuum
fluctuations is computed from the quantum theory of radiation, their
effect on the atom (to the lowest order in «) may be evaluated
semi-classically, since we have shown in subsection 4.4.3 that reservoir
fluctuations have the same effect (to the lowest order) as a classical
random field having the same correlation function. This explains why
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pure quantum effects, such as those produced by the vacuum fluctua-
tions of the quantized radiation field, can be calculated as if a classical
random field, with a power spectral density equal to fiw/2 per mode,
was acting upon the atom [30].

To summarize, our choice of the symmetric order in (4.37) leads to
self-reaction corrections which are strictly equivalent to the cor-
responding classical ones, whereas vacuum fluctuations appear to be
responsible for pure quantum effects which can be however computed
semi-classically, once the correlation function of vacuum fluctuations is
given.

Spin and magnetic effects. Interpretation of the spin anomaly g — 2. In
this section, we take into account the spin § of the electron and the
corresponding magnetic moment

M,=—S. (4.88)

Even in the absence of any external static magnetic field B,, M,
interacts with the magnetic field B of the transverse radiation field. We
should add to the interaction Hamiltonian V given in (4.31) a term

—M,-B(0)=— %S - B(0) (4.89)

describing such a coupling. This would introduce in the final expres-
sions of radiative corrections new correlation functions and new linear
susceptibilities involving two components of B, or one component of B
and one component of A. Since an extra 1/c factor appears in the
expansion of B in plane waves [see expression (4.6)], we conclude that
the new radiative corrections associated with (4.89) would be at least
one order in 1/c higher than those calculated previously, and which,
according to (4.77) and (4.83), are in e?/c* (or a/mc?). If we restrict our
calculations to the lowest order in 1/¢, as we do in the nonrelativistic
approach used in this paper, we can therefore ignore the magnetic
couplings of the spin with the radiation field and neglect (4.89)*.

The same argument does not apply of course to the interaction of §

* If we would like to go to higher orders in 1/c, we should include relativistic corrections
in the Hamiltonian and retardation effects.



116 Claude Cohen-Tannoudji

with an external static magnetic field B, deriving from the static vector
potential Ay:

By(R) =V X A((R). (4.90)

We must add to the atomic Hamiltonian H, a new term describing the
interaction of M, with the static magnetic field B, at the electron
position

—M,- By(r)=— ﬁs - By(r) . (4.91)

We must also replace the electron momentum p by:
mo=p — eAy(r). (4.92)

To summarize, if, at the lowest order in 1/c, i.e., at order e?/c?, we
want to include spin and magnetic effects, we must use

s e
H.= 5 + Vo(r) - ;S - By(r) (4.93)

instead of (4.29), and replace p by m in the first term of (4.31):
- p-A0)> - - A(0) (4.94)
s P o o - .

What are the corresponding changes in (8E, ), and (8E,).? Since the
field operators remain unchanged in (4.94), we still use (4.68) and (4.69)
for C® and y®. On the other hand, we must change p into m, in the
expressions (4.73) and (4.74) of C® and x®.

Consider first the modifications occurring for (8E,),. The only
change in (4.78) is that we have @}/2m instead of p*/2m. Since 7§/2m
has the physical meaning of a kinetic energy in presence of the static
vector potential Ay, we conclude that the main effect of self-reaction is,
as before, to change the mass appearing in the kinetic energy

7 s

e e i
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It must be emphasized that, at this order in 1/¢, the mass renor-
malization due to self-reaction does not affect the last term of (4.93).
The mass m which appears in the spin magnetic moment eS/m remains
unchanged. We don’t get any term of the form

Smle
m m

+—=8§-B,. (4.96)

We will come back later on this important point, when discussing the
origin of the spin anomaly g — 2.

We now discuss the modifications for (8E,),. The calculations are
very similar to previous ones, the only difference being that, in the double
commutator of (4.82), we must use the new expression (4.93) of H; and
replace p by . We have therefore to calculate:

2; < ‘ {[ + Vo(r) - ~—S By(r), 7:'0] ]

If we suppose that By(r) is homogeneous (independent of r) and if
we keep only terms linear in B, expression (4.97) reduces to (4.82).
Thus, for homogeneous weak static magnetic fields, vacuum fluctua-
tions do not introduce any new radiative correction related to spin and
magnetic effects.

We have now at our disposal all what is needed for discussing the
contribution of self-reaction and vacuum fluctuations to the electron
dynamics in presence of a weak homogeneous static magnetic field.
Combining the previous results, the corrected atomic Hamiltonian
(including radiative corrections) can be written:

a> ‘ @.97)

2
o W8 B
3(m + 3om 1)+ Vo(r) + 8Vy(r) = S - By(r), (4.98)
where corrections including 6m; are due to self-reaction and §V(r) to
vacuum fluctuations.
The spin magnetic moment appearing in the last term of (4.98) can
be written as
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In terms of the “bare” (uncorrected) mass, the g-factor of the electron
spin is 2. But, the mass which is measured experimentally, in deflection
experiments, is the renormalized mass, i.e., the mass which appears in
the corrected kinetic energy

= m +38m,, (4.100)

so that, if we reexpress M in terms of #, we have from (4.99)

M,;:ES:gﬁS, (4.101)
with
—oM_ 4 om,y
g—2m—-2(1+3 " )>2. (4.102)

So, it clearly appears that the positive sign of g — 2 is due to the fact
that self-reaction corrects only to lowest order the kinetic energy and
not the magnetic coupling between § and B,. The motion of the charge
is slowed down but not the precession of the spin. This is easy to
understand. In the nonrelativistic limit we are considering in this
paper, electric effects predominate over magnetic ones and self-reac-
tion is stronger for a charge than for a magnetic moment. We therefore
arrive at the same conclusions as other treatments [4, 31].

If the calculation was pushed to higher orders in 1/c as in [4], we
would get corrections to the spin magnetic moment, especially those
due to the vacuum fluctuations of the magnetic field B(0) of the
radiation field which exert a fluctuating torque on M, producing an
angular vibration of the spin and, consequently, a decrease of the
effective magnetic moment. This is the equivalent of Welton’s picture
for g — 2 which would produce a negative spin anomaly if this was the
only mechanism. We understand now the failure of such a picture. For
g —2, the predominant physical mechanism is self-reaction which
slows down the motion of the electric charge.

4.5.3. Rate of exchange of energy between the electron and the radiation
field.

Contribution of self-reaction. We start from (4.64) and we use the

expressions (4.71) of y® and (4.75) of CS. Because of the & functions
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appearing in (4.75), the integral over w is readily done, and we get for the
rate of energy loss due to self-reaction by the electron in state a

<0, a (%Hs)s’

Now, we write*

e 2 [Ka| pi|b)Pew?s - (4.103)

> T 6mmiegc

—(al plbYwas = —= (allH, p]Ib)

= —-L(alp|b)
= —ial#|b) . (4.104)

Finally, by using (4.104) and the closure relation over b, we transform
(4.103) into

<(J a

Such a result is extremely simple and exactly coincides with what is
found in classical radiation theory. The rate of radiation of elec-
tromagnetic energy is proportional to the square of the acceleration of
the radiating charge, the proportionality coefficient being just the one
appearing in (4.105). We note also that, if self-reaction was alone, the
atomic ground state would not be stable, since the square of the
acceleration has a nonzero average value in such a state.

(&1) [0,a) = -3 @lla) (4.105)

347:'5 c

Contribution of vacuum fluctuations. We now use (4.62) and the
expressions (4.70) of C® and (4.76) of x©. This gives

<O # ‘ (C?I H‘)

> 12’3T8(}m J’ dwwlw| 2 2 |(a|p,|b)|2

X [8(w + wap) — 8(w — wa)]

= 2 2 Kal pi|b)Pwas|wa| - (4.106)

6'm3mc

* The atomic operators appearing in x® are free atomic operators. This is why their time
derivative is given by the commutator with H; (and not with total Hamiltonian H).
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Using (4.104), and distinguishing the terms w, >0 (E, > E,) and the
terms wq <0 (E, < E,), we get

(0.4 ().

’a> §4m-: Ca{ Z (a|¥|b) - (b|F|a)
Eb"En
— 2 (ali‘lb)°(bifla)}. (4.107)

b
Ep<E,

The first line describes an absorption of energy by the electron which
jumps from a to a higher state b, whereas the second line describes an
emission of energy by jumps to lower states. This is in agreement with
the picture of a random field inducing in the atomic system both
downwards and upwards transitions.

Now, coming back to (4.105), we can reintroduce the closure relation
over b between 7 and ¥, which gives:

(0] G 1),

(0)= =3 g S alflb) - Gfla)

34meyc

2
_%411'2063{ >, (a|#|b)-(b|F|a)
b

+ 3 (alilb)- GlFla)] (4.108)

Ep<E,

Adding (4.107) and (4.108), we get for the total rate of energy loss by
the electron in state a

<0 a‘:ij

3 4aeyc?
Ey<E,

Ja)= e S (alfi)- (blila). (4.109)

This satisfactory result means that the electron in the vacuum can only
loose energy by cascading downwards to lower energy levels. In
particular, the ground state is stable since it is the lowest state.

The previous discussion clearly shows that the ground state cannot
be stable in absence of vacuum fluctuations which exactly balance the
energy loss due to self-reaction [28]. In other words, if self-reaction
was alone, the ground state would collapse and the atomic com-
mutation relation [x, p] =i% would not hold. Such a collapse is pre-
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vented by vacuum fluctuations which actually originate from the quan-
tum nature of the field, i.e., from the commutation relation [a, a*] = 1.
We have here an illustration of a very general principle of quantum
mechanics. When two isolated systems interact (here the atom and the
field), treating one of them quantum mechanically and the other one
semi-classically leads to consistencies [32]. The field commutation
relations are necessary for preserving the atomic ones and vice versa.

4.6. Conclusion

We have removed the apparent indetermination in the separation of
vacuum fluctuations and self-reaction by imposing to the corresponding
rates of variation to have a well-defined physical meaning (hermiticity
requirements).

Such a procedure is very general and can be extended to the case of
a small system % interacting with a large reservoir 2. The results of
the calculation can be expressed™ in terms of simple statistical func-
tions of the two interacting systems, leading to simple physical pic-
tures: & fluctuates and polarizes & (reservoir fluctuations effects); &
fluctuates and polarizes % (self-reaction effects).

When applied to the case of an atomic electron interacting with the
vacuum field, such a procedure gives results in complete agreement
with the usual pictures associated with vacuum fluctuations and self-
reaction. All self-reaction effects, which are independent of #, are
strictly identical to those derived from classical radiation theory. All
vacuum fluctuation effects, which are proportional to #, can be inter-
preted by considering the vibration of the electron induced by a
random field having a spectral power density equal to fiw/2 per mode.

Appendix A: Calculation of the source fields A0, t) and E (0, t)

Equations (4.5a) and (4.5b) give the expressions of A and E, in terms
of the creation and annihilation operators

A0, 1) = 2 Ayea (1) + he, (A.1a)
ke
llef<deng
* It must be kept in mind that all the calculations have been limited to order 2 in the

coupling constant. At higher orders, cross terms would appear between reservoir
fluctuations and self-reaction.
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E.0,0)= 5 %eau()+he. (A.1b)

ke
lke| <kpg

Inserting (4.20) into these two equations, one gets the expression of
A 0, t) and E (0, 1):

2 Tt
A0,0)= > iiﬁ;‘f dt’ eot- gle* - w(t)] + hc, (A.2a)
Itlfku 3
E0,0)= 3 i M“‘g" f df e g(e* - m(t))+he.  (A2b)
ke
[ke|<kng

We now permute the summation over k, £ and the integration on t’,
the angular summation is easily performed and we get

As(os t) = =

e J de’ m(t)Su(t — 1), (A3a)

EL0, f)= f de’ = ()8t - (A.3b)

37rscm

where the function 8y(t) is given by

Salr)= % f ™ dw e, (A.4)
2

This function 8u(7) is symmetric, centred on 7 = 0, has a width equal to
1/wy and satisfies the equation

fm disuly=1. (A5)

Equations (A.3a) and (A.3b) can be written, by putting 7=¢— (" and
taking f, equal to —oe:

A0, )= f demle=D)ou), (A.62)

37rscm

E.L0,1)= Fﬁ.&% L drar(t — 7)83(7) . (A.6b)
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Using an integration by parts, one gets

AL, 1) = 5o WO ()~ 3 [ dr (e = o),
(A7a)

E 0,1)=

m SM(O)ﬂ'(I) m j d'rﬂ(.l‘ — T)SM(‘T)

(A.7b)

The characteristic times for the evolution of wr(t) are very long
compared to the width 1/wy of 8u(7) [see Eq. (4.14)]. We can therefore
replace in (A.7a) and (A.7b) #(t— 1) and 7 (¢t — 7) by ar(¢) and 7 (1).
The remaining integral of 8y(7) from 7= 0to 7= is equal to 1/2, as a
consequence of the symmetry of Sy(7). One finally gets

EwW

£ o
A0, = L n(r)—————6mﬂc3m (1), (A.8a)
i [ = € o
E (0,1)= e ”(rHiﬁmu&m (1), (A.8b)

(A.8a) and (A.8b) are nothing but (4.22) and (4.24b) using the
expression of dm; given in eq. (4.15).

Appendix B: Correlation function and linear susceptibility of the field
The correlation function of the field is given [cf. eq. (4.66)]:
C:??)(T) = %(0|A,f(0, f)Aj:f(o, = T)+ A;;(O, T— ‘T)A,‘f{o, f)|0) B (Bl)

where the operator Ag®, ) is the free vector potential. Using its
expansion in plane waves, one gets

CEJR)(T) = % 2 ﬁ%&';&}'(olﬂhf(f)ﬂ;ﬁ(f = T) -+ aisf('[ T T)a:.ef('[)|0>
ke
=3 d}egi(e i +ev). (B.2)
ke

Replacing the sum by an integral and using the expression (4.6) of «,
one gets



124 Claude Cohen-Tannoudji

Co®(r) = j do @ (e + o). (B.3)

3 1211'25 o

This can also be written:

h oM :
Cg‘)(‘r) = & WJ— do |o| e (B.4)

The linear susceptibility is calculated in the same way. Starting from

X = 2 OlLAO, 1), A0, — 7)]0)6(r). ®.5)

one gets

i h @M . .
X =18, WL dw (e — e*o7)(7)

=~ s BU(T)O(r). ®.6)

In this paper, the susceptibility of the field always appears in expres-
sions such as

[T xpepge ar, B.7)

where f®(7) is a function concerning the small system . The charac-
teristic times of evolution of f f?) are then much larger than 1/wy so that
one can proceed in the same way as for (A.6a). Using an integration by
parts, one finds that

X(r) = [wMB('r)—% 3’@)] ; (B.8)

3mleqc?

where 8 here acts on the slowly varying functions f}';’(r) as a true delta
function.
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5. The effective Hamiltonian method
5.1. Introduction — general idea

Suppose we have an unperturbed Hamiltonian H, the energy levels of
which are bunched in manifolds €9, €% ... well separated from each
other (fig. 8). We note |i, a) the eigenstates of H, with eigenvalues Ej,,

Hﬂ|i1 a) = Emlf, a) 3
|Ejg — Eia| > |Eja — Ei| ifB#a. (5.1)

They are labelled by two types of quantum numbers, a corresponding
to high-frequency degrees of freedom (a also labels the manifolds),
and i corresponding to low-frequency degrees of freedom.

Suppose now that we add a perturbation AV, where A is a sufficiently
small dimensionless parameter so that

Ai, a|V|j,BY<|Ea—Ep| if B#a. (52)

Consequently, the spectrum of H = Hy+ AV is also formed by well-
separated manifolds. The coupling AV introduces two types of effects.
First, a modification of the wave functions. The wave functions of €2
are “contaminated” by those of &} (B # a). Secondly, a modification
of the energies. In particular, the virtual transitions induced by AV
between different manifolds produce energy shifts proportional to A2

In this section, we will be mainly interested in the modification of
the energies inside a given manifold. In other words, we would like to
study the modification of the slow motion of the system due to the

e

Fig. 8. Manifolds of the unperturbed Hamiltonian.
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coupling AV. We will show (section 5.2) that it is possible to find an
effective Hamiltonian, HY%;, acting only inside €%, and such that its
eigenvalues coincide with the corresponding eigenvalues of H =
H,+ AV to a given order in A. This effective Hamiltonian describes the
new slow motion in &%. It includes the effect on the slow degrees of
freedom of their coupling with the fast ones. We will then apply
(section 5.3) this effective Hamiltonian method to the problem of
radiative corrections in the non-relativistic limit by studying how the
slow motion of a weakly bound electron is modified by its coupling
with a mode of the quantized radiation field. The effective Hamiltonian
method is actually quite general and has been applied to various
physical problems (see for example [21] and references therein).

5.2. Calculation of the effective Hamiltonian

5.2.1. Unitary transformation
If we apply a unitary transformation € (with §= S*) to the Hamil-
tonian H, the transformed Hamiltonian

H=eSHe™s (5.3)

has the same spectrum as H. We try now to choose € in such a way
that the restriction of H to €% can be considered as an effective
Hamiltonian, H&, to a given order in A (in the sense defined in section
5.1).

The first condition to be imposed on € is that the off-diagonal
elements of H between €9 and €% (with 8 # a) vanish as A” if A tends
to zero,

(i, a|H|j,BY=CA" + DA™+ ... if B#a. (5.4)

If this is achieved, it will follow that the eigenvalues of the restriction
of H to €9,

PYHPY, with PL=3 |i,aXi, |, (5.5)

give the correct perturbed energies associated with €%, at least to order
A", and consequently, that (5.5) is a correct effective Hamiltonian to
this order.
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Condition (5.4) is not sufficient for determining S. If it is satisfied by
e's, it is also satisfied by €' 7 where €7 does not connect €% and &9.
We will reduce this indetermination by imposing to S to be purely off
diagonal in &,

(i, @|S|j,a)=0. (5.6)

To summarize, we look for an Hermitian matrix S, purely off
diagonal [condition (5.6)], such that the matrix elements of €S H ¢S
between €9 and €% with B8 # a vanish as A" if A =0 [conditions (5.4)].

Remark. The diagonalization of PSHP? gives the correct perturbed
energies (up to order A") associated with €%. But it must be
emphasized that the eigenstates of PSHPY are not the correct eigen-
states, since they are linear superpositions of the unperturbed levels of
%%, without any contamination from the other manifolds. If we are also
interested in the eigenstates of H = Hy+ AV, we must apply e to the
eigenstates of P)HPY.

5.2.2. Power series expansion
The transformed Hamiltonian H can be written

H=eSHe s

S H]+%[S, IS, H]|+.... 6.7)

If we expand S in a power series of A
S=AS;+ A28+ A38:+ ..., (5.8)

and if we introduce the expansion (5.8) into (5.7), replacing also H by
H,+ AV, we get the following power series expansion of H:

I:I:I:I0+l‘.gl+ A2ﬂ2+ l‘.aﬁg"'..., (5.9)
with

H,=H,, (5.10)
H,=i[S, H]+ V, (5.11)
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- 2
H, =[Sy, Hol +i[Sy, V1+3; [Ss, [Ss, Hall (5.12)
" 2
H;=i[Ss, Ho) +i[S5, V] +%[sl, [S2 Ho))
iz iz i3
2 ‘2_1 [Sz, [51, HD]] -t ‘27 [Sl-» [51, V]] fiE ? [Si, [Sls [Sl, Hu]]] s (5-13)

and so on.

We use now the two conditions (5.4) and (5.6) on S to determine S
and the effective Hamiltonian H% inside €% to a given order in A.
Before, we note that condition (5.6) must be satisfied for all A, which
implies

(i, a|Silj, @)= 0= (i, a|S|j, a)=.... (5.14)

5.2.1. Order 1 . 5

To order 1in A, H can be approximated by H,+ AH,. According to
(5.10), H, coincides with H, and has no off-diagonal elements. It
follows that the off-diagonal elements of H,+ AH, = Hy+ AH, between
&% and €% (with a# B) vanish as A if A —>0. The restriction of
H,+ AH, to €° can therefore be considered as an effective Hamil-
tonian in €Y, correct up to order 1 in A

PY(Hy+ AFA)PE, =H% uptoorder A. (5.15)

The matrix element of such an effective Hamiltonian between two
states |i, @) and |j, ) of &9 can be written, according to (5.11),

Eidi + A, a|Si|j, aX(Eja — Eu) + A, | V]], @)
— Es i MG aVije). (5.16)

Because of condition (5.6), the knowledge of S; is not necessary for
determining the effective Hamiltonian to order 1. Equation (5.16)
expresses that the effective Hamiltonian is just the restriction of
H,+ AV to &9.

5.2.4. Order 2 g £ g
To order 2 in A, H coincides with Hy+ AH;+ A’H,. Let us write
[condition (5.4)] that the off-diagonal part (a # B) of Hy+ AH, + A2H,
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vanishes as A2 if A —0. This implies that the off-diagonal part of H, is
equal to zero. Taking the matrix element of H; [given by (5.11)]
between |i, @) and |], B) (B # a), we get

i, alHilj, B)=0
= i(i, aSilj; BXEjs — Eia) + (i, @| V1), B) . (5-17)

This condition determines the off-diagonal elements of S,

G alsliigy =i E)

o (5.18)

which are the only ones to be different from zero because of condition
(5.6). ¥ X

Having cancelled the off-diagonal part of Hy+ AH;+ z}zH; up to
order 1 in A, we can consider now the restriction of Hy+ AH, + A2H, to
&9 as an effective Hamiltonian correct up to order A2,

PO(Hy+ AH, + A2 H,)P% = H% up to order A2. (5.19)

In order to calculate the matrix elements of (5.19) inside €9, we
need in principle S,, since S, appears in the expression (5.12) of H,.
But S, only appears in a commutator with Hj, and the matrix element
of this commutator between two states |i, ) and |j, @) of €9,

(i, @|[S2, Hollj, @) = (i, a|S3lj, a}(Eja — Eia) = 0, (5.20)

vanishes because of condition (5.14) on S,. Since we know S; [eq.
(5.18)], and the expression of H, and H, in terms of S; and V [egs.
(5.11) and (5.12)], we know everything for calculating the matrix
elements of (5.19) inside €Y. A straightforward calculation gives

(i, a| Hlj, a) = Eud;i + A{i, a|V]j, @)
+A2 Y > (i, a| VIk, BXk, BI V), @)

B#a k

1 1 1 :
X (Eh 5 - AL Em) +0@\%). (5.21)

It i =j, one gets, for the A% term of the diagonal matrix element of
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%, a result quite similar to the second-order perturbation shift. If
i # j, one gets the half sum of two energy denominators, one for |i, ),
the other one for |}, a).

This method of calculation can be easily extended to higher orders.
By cancelling the off-diagonal matrix elements of H,, we get an
equation which determines S,. The restriction of Hy+ .JLFIpL A2H, +
A3H; to &9, i.e., the effective Hamiltonian up to order A3, can then be
entirely calculated, since the contribution of [S3, Hy] vanishes because
of condition (5.14).

5.3. Application to radiative corrections in the nonrelativistic limit

As an application of the effective Hamiltonian method, we present
now an approach to radiative corrections in the nonrelativistic limit
following closely the treatment presented in references [4] and [5]. We
will just give here the general idea and the principle of the calculations,
referring the reader to [4] and [5] for more details. Such a method will
be then extended to the relativistic domain in the subsequent seminar

[1.

5.3.1. Unperturbed Hamiltonian H, and coupling V

Consider the system formed by a single non-relativistic electron inter-
acting with the quantized radiation field. The Hamiltonian H of the
total system can be written

H = H.+ Hx+ Hj, (5.22)

where H, is the electronic Hamiltonian, Hy the Hamiltonian of the
radiation field, H; the interaction Hamiltonian.

To order 2 in the electronic charge g, the effects of the various
modes add independently. They correspond to virtual emissions and
reabsorptions of photons of a given mode. We can therefore consider
the simpler system formed by a single electron interacting with a single
mode with frequency w. At the end of the calculation, we will have to
make an integration over w.

The unperturbed Hamiltonian for the electron-mode w system is

Hy= H.+ ho(a*a+3), (5.23)

and the coupling V is, according to the results of section 2.4, of the
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form
V=V+V;, (5:24)

where V, is linear in @ and a* and of order g,
Vi=V,a*+ V_a, (5.25)

and V; is quadratic in @ and a* and of order ¢,
Vo= Vo(@*P+V _a’+ Vi_ata+ V_ ,aa*, (5.26)

Vi and V; are actually the contributions of mode @ to the interaction
Hamiltonians Hy, + Hy; and Hy, of section 2.4 in the case where there is
a single electron. The explicit expression of the electronic operators
V., V_, Vi, ... V_, could therefore be deduced from the results of
section 2.4 (see also [4] and [5]). For the following discussion, we need
only to consider the general structure of V; and V,.

5.3.2. Unperturbed manifolds of the electron-mode w system

We will suppose now that we consider a weakly bound electron, more
precisely that the electron Bohr frequencies w. are small compared to
the frequency @ of the mode,

0. <w. (5.27)

The energy levels of the unperturbed Hamiltonian H, are labelled by
two quantum numbers: N for the number of photons in the mode, i
for the electronic energy level. As a consequence of (5.27), the energy
levels of H, bunch in well separated manifolds €y, corresponding to
the different values of N (N plays the role of the quantum number «
used in section 5.2). €y for example corresponds to the energy levels of
the electron in presence of N photons [fig. 9]. The distance between
energy levels of the same manifold, of the order of fiw., is small
compared to the distance fiw between adjacent manifolds.

The various terms of V; and V, introduce various types of
couplings between these manifolds. V.a* couples €y to &y, and V_a
couples €y to Ey-,. Vi_a*a and V_,a a* only act inside &y. V..(a*)
and V__a? respectively couple €x to Enir and En_s.

The idea is now to describe the effect of these various couplings on
the energy levels of €y by an effective Hamiltonian H% acting inside
#n. This effective Hamiltonian will describe the modification of the
slow motion of the electron due to its high-frequency vibration in the
mode o, in terms of a new effective mass, a new effective magnetic
moment, new electric or magnetic form factors. Comparing such
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| En.a

e %
Al E

AL X
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Fig. 9. Unperturbed manifolds of Hy and various couplings between them.

corrections for N # 0 and for N =0 will allow us to compare ‘‘stimu-
lated” corrections (depending on the incident photons) and “‘spon-
taneous” corrections which exist even in the vacuum of photons and
which are usually called radiative corrections.

5.3.3. Expression of the effective Hamiltonian inside €y; operatorial
form

According to the results of section 5.2, the matrix element of the

effective Hamiltonian HY; between |iN) and |jN) is given by

{j, N|H¥li, N) = (j, N|(Vi-a*a + V_,aa")|i, N)
+3> (j, N|V_alk, N + 1}k, N + 1|V.a*|i, N)
k

1 1
. [E,-—Ek—ﬁm“LE,-—Ek—ﬁw]
+3 > {j, N|V.a*|l, N=1XI, N — 1| V_al|i, N)
I

1 1
X[Ei—E;+ﬁw+E,-—E;+ftw:l (528)
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(V.. and V__ are already of order ¢* and do not appear in H%; because
they are associated with off-diagonal couplings between &y and Ena).

Using a|N)=VN|N —1) and a+lN)— VN +1|N + 1), one can get
rid of the field operators a and a* in (5.28) and transform (5.28) into

(j, NIHHi, Ny = (N + 1)(jIRi) + NI Si) (5:29)
where R and S are pure electronic operators given by
GIRIiY = (GIV-ali)

Ty : 1 1
HI VIRV gt B 6

and a similar expression for $ with the following substitutions V_.—
Vi, V.o VL, VoV w—-—aw.

Up to now, R and S are only defined by their matrix elements. It is
possible to use condition (5.27) for deriving an explicit operatorial
expression for H{. Let us illustrate this transformation on a given
term, for example,

[|V |k)(k]V+ (5.31)

E;—E;— :

appearing in (5.30). Since the electronic Bohr frequency (E; — E;)/f is
small compared to w, we can expand the energy denominator of (5.30)
into

1 1 1
Ei_Ek_ﬁw=_E_W(Es—Ek)‘Fn-- (5.32)

The term in 1/fiw, inserted in (5.31), gives
St et e e :
o %(]lV.lk)(k|V+|;)— e GIV-V.i). (5.33)
The term in 1/A%w?, on the other hand, gives

1 .
T 9p2, 2 < V— k)(k V+ l) Ej'_E
w? % jIvV | VLliX( k)
1 : .
~ 522 UIV-ViH.~ V_H.V.|i)

— — sz IV, Hli. (534)
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Finally, (5.31) can be considered as the matrix element between |i) and
|j) of the electronic operator

A

= V[V, H]+..... (5.35)

2&2 2

We can in this way transform all other terms of (5.30) and obtain an
explicit operatorial expression for R.

5.3.4. Stimulated corrections
The effective Hamiltonian HY can be written

HY=(N+1)R+NS
=N((R+S8)+R. (5.36)

The term proportional to N, N(R + S), represents corrections propor-
tional to the number of incident photons, which describe the
modification of the dynamical properties of the weakly bound electron
due to a high-frequency irradiation.

These corrections are calculated and discussed in detail in reference
[4]. The important point is that they can be all interpreted semiclassic-
ally in terms of the vibration of the charge and the spin in the incident
wave. For example, the kinetic energy of vibration of the charge
increases the rest mass energy of the electron, the vibrating charge
averages the static potentials over a finite volume. Let us in particular
mention that, if the calculations are pushed far enough in 1/c, crossed
charge spin effects appear. For example, the vibration of the charge in
the electric field of the incident wave gives rise to a static motional
magnetic field which interacts with the spin magnetic moment. We will
not enter here in more details and refer the reader to [4].

5.3.5. Spontaneous corrections

The last term, R, of (5.36) exists even in the vacuum of photons
(N =0) and describes radiative corrections. It is calculated and dis-
cussed in detail in reference [5]. In order to interpret it, we can write it
as

R=%R+S)+3R-S9). (5.37)

The first term, (R + S)/2, has exactly the same structure as the term
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N(R + S) describing stimulated corrections, except that N is replaced
by 1/2. It has therefore the same physical interpretation, the real
incident field being replaced by vacuum fluctuations (corresponding to
a zero point energy fiw/2 per mode instead of Nfiw). The corrections
associated with this term also exactly coincide with those calculated in
section 4, from an Heisenberg equation approach, and attributed to the
effect of vacuum fluctuations.

The second term of (5.37), (R — S)/2, describes radiative corrections
due to the interaction of the electron with the field radiated by this
electron in the mode w. This term also exactly coincides with the
results of the previous lecture. If one takes the radiative corrections
attributed to self-reaction in lecture 4, and if one evaluates the con-
tribution of mode @ of to these corrections, one finds exactly the term
(R — S)/2 of the effective Hamiltonian approach.

There is therefore a complete agreement between the two ap-
proaches to radiative corrections presented in this course, the Heisen-
berg equation approach of section 4, with the separation of vacuum
fluctuations and self-reaction effects based on Hermiticity requirements
for the corresponding forces, and the effective Hamiltonian approach of
this section, based on a comparison between stimulated effects and
spontaneous effects.

Concerning the spin anomaly g — 2, the effective Hamiltonian ap-
proach can actually be extended to include all relativistic corrections
and many particle effects (to lowest order in ¢?). This will be done in
the subsequent seminar [1]. We must first introduce in the next section
(section 6) the second quantized Hamiltonian describing the coupling
between the quantized Dirac and Maxwell fields.

6. Simple introduction to interacting quantized Dirac and Maxwell
fields

6.1. Introduction

The simple treatment presented in the previous chapters has a limited
domain of validity. It is restricted to slow nonrelativistic particles
(v<<c¢) and cannot describe processes where the total number of
charged particles varies (pair creations and annihilations). Such limita-
tions also appear on the formalism which treats radiation and matter in
a quite asymmetrical way, using a quantized relativistic field for
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radiation, with an arbitrary number of elementary excitations (pho-
tons), but considering only a fixed number of charged particles des-
cribed by nonrelativistic wave functions.

The purpose of this chapter is to try to give to the reader an idea of
what a more satisfactory approach to Q.E.D. can be, describing not
only radiation but also matter by a quantized relativistic field.

We start in section 6.2 by a very brief review of Dirac equation
considered as a relativistic wave equation for a single electron. For
further details, we refer the reader to standard text books [22, 23, 24].
We then (section 6.3) second quantize such an equation and introduce
the quantized Dirac field, the elementary excitations of which describe
electrons (e”) and positrons (e*). The most important result of section
6.3 is the expression of the Hamiltonian of the interacting quantized
Dirac and Maxwell fields, which can be expressed in terms of creation
and annihilation operators of electrons, positrons and photons and
which is the starting point for any Q.E.D. calculation.

Such an Hamiltonian seems quite different from those used in the
previous chapters and we try in section 6.4 to explain the connection
which exists between the two approaches. We show that the single
electron nonrelativistic Hamiltonian used in the first part of this course
can be considered as an effective Hamiltonian acting inside the single
electron manifold of the full second quantized Hamiltonian of section
6.3.

Finally, the results of this chapter will be used in the subsequent
seminar [1] for deepening the simple discussion of the spin anomaly
g —2 presented above in sections 4 and 5. Starting from the full
Hamiltonian of section 6.3, we will try to compute the contribution of
relativistic modes (fiw = mc?) to such a radiative correction.

6.2. A brief review of the Dirac equation
6.2.1. Dirac matrices
A simple procedure for deriving a single-particle wave equation is to

start from the dispersion relation E = f(p) between the energy E and
the momentum p of the particle and to replace E and p by

E-if % p>—ikV. (6.12)

In the presence of a Maxwell field described by the potential A, ¢, one
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uses the following (minimal coupling) substitution:
k2 ikl b —ikV>—ikV—gA (6.1b)
ih - —ih == q¢, i i gA , ;

where q is the charge of the particle.

If one wants to get a first-order differential equation for the wave
function ¢, one must start from a relation linear in both E and p
(since, in relativity, ¢ and r play a symmetric role). Such a relation can
be written

E=Bmc*+ca-p, (6.2)

where B and & are dimensionless and real. Furthermore, (6.2) must be
consistent with the well-known relativistic dispersion relation

E?= m?c*+ p?c?. (6.3)
Squaring (6.2) gives

E?*=m?c'B*+ mc* 3, (aiB + Ba)pi + ¢* 3, 3, pipjeiey;, (6.4)
i i i

with i, j = x, y, z. Using the fact that pp; = ppp; and comparing (6.3) and
(6.4) leads to the following conditions:

B*=1,
ap+Ba;=0,
o + o0 = 26,; ¥ (65)

which clearly show that 8 and & cannot be c-numbers, but must
necessarily be matrices (with a rank at least equal to 4). The wave
function ¢ must necessarily be a spinor with several components (at
least 4), and we must consider for the particle both external (r,p,...)
and internal degrees of freedom (8, e, spin, .. .).

Dirac equation corresponds to the realization of dimension 4 of egs.
(6.6). One can check that the four Dirac matrices

e 6
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where | is the unit 2 X 2 matrix and o; the three Pauli matrices

=08 w03) (D e

satisfy conditions (6.5).

Finally, we give a few relations satisfied by Dirac matrices and which
are useful for subsequent calculations. From the well-known com-
mutation relations of Pauli matrices

oo — 00; = 2i 2 Ejk T » (68)
k

where g is the completely antisymmetric tensor, and from (6.6), one
derives

o — aje; = 21 D, £y . (6.9)
P

Combining this equation with the last equation (6.5) gives

= 8;+12 epon. (6.10)
k

It follows that, if A and B are two vectors (not acting upon internal
degrees of freedom)

(x-A)a-B)=A-B+io-(AXB). (6.11)

6.2.2. Dirac Hamiltonian — Dirac current
The Dirac equation can be written

ih = ¢ Ko, (6.12)

where #p is the Dirac Hamiltonian. From (6.1) and (6.2), it follows
that, for a free electron,

#p=Bmc+ca-p, (6.13)

whereas, for an electron interacting with a Maxwell field,
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Hp= Bmct+ca-mw+qd(r), (6.14a)
w=p—qA(r). (6.14b)

From (6.12), one can show that, if

p=qyt(r)g(r), (6.15a)

J=qcy(r)ay(r), (6.15b)
then

f) ;

PtV i=0, (6.16)

p and j can therefore be interpreted as a conserved charge density and
charge current (Dirac current). Note that (6.15) and (6.16) keep the
same form in presence or in absence of a Maxwell field.

6.2.3. Energy spectrum for a free electron

For a free electron, p and #p commute, so that one can find common
eigenstates to p and #p (plane waves). For each value of p, there are
two eigenvalues of #p,

E = £(m?%c* + p*c?)'2, (6.17)

The energy spectrum of a free electron is therefore formed by two
continuums, one above +mc? and one below —mc?.

The form of the eigenstates is particularly simple for p =0, since
then %p = Bmc?. One finds two eigenspinors

1 0

0 1 g 3

0 0 for E=+mc?, (6.18)
0 0

and two eigenspinors

0 0

(o] forE=-me. (6.19)
0 1



Introduction to quantum electrodynamics 141

It follows that a free electron, at rest and with a positive energy +mc?,
can exist in two different internal states (spin 1/2). Such a result
remains valid for p # 0 [a Lorentz transformation is applied to (6.18)],
but, for p# 0, the four components of i are generally different from
Zero.

6.2.4. Negative energy states — hole theory

The existence of negative eigenvalues for #p raises problems of
physical interpretation.

One would first try to consider the corresponding states as extra
mathematical solutions, without physical meaning, and keep only posi-
tive energy states as physical states. The difficulty which then appears
is that the interaction with a quantized radiation field couples positive
and negative energy states. An electron, in a positive energy state,
would spontaneously emit a photon and “fall” into a negative energy
state. Positive energy states are unstable with respect to spontaneous
emission.

This difficulty suggested to Dirac to consider that all negative energy
states are filled. Since electrons are fermions, the Pauli exclusion
principle then prevents a positive energy electron from falling into an
already occupied negative energy state. The stability of positive energy
states is thus restored. Furthermore, such a point of view suggests new
interesting predictions. The absence of an electron with energy E <0,
charge g, momentum p, spin u is equivalent to the presence of a
particle with energy —E >0, charge —g, momentum —p, spin —u. Such
a particle is nothing but the positron, or the antiparticle of the
electron, which thus appears as a “hole” in the continuum of negative
energy states. Other interesting predictions directly follow from such a
point of view. By absorption of a photon, a negative energy electron
can be promoted to a positive energy state, leaving a hole in the
continuum of negative energy states. Such a process corresponds to the
transformation of a photon into a pair electron positron (e” —e*). The
reverse process (pair annihilation) also exists.

All the previous considerations clearly show that the Dirac equation
cannot be maintained as a single-particle relativistic equation. Such a
result is actually not surprising since the number of particles is not
conserved in relativity. We are thus led to quantize the Dirac wave
function (x) (second quantization), in order to get a quantized Dirac
field ¥(x) describing an indefinite number of particles.
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6.3. Second quantization of the Dirac equation [25]

6.3.1. Quantized Dirac field

We follow here the general second quantization procedure used in
nonrelativistic quantum mechanics for describing an ensemble of iden-
tical fermions in the occupation number representation [26].

We start from the expansion of a single-particle Dirac wave function
¢(r) on an orthonormal basis. Such a basis can be for example the
basis of the free electron Dirac Hamiltonian #p (6.13). We will call
u,(r) the eigenspinors of p and #p with eigenvalues p, E,=
+[m?c?+ p?c?]'2, us(r), the eigenspinors of p and H#p with eigenvalues
—p, —E,. [In order to simplify the notations, we skip the spin quantum
numbers.] (r) can be written

W(r) =2 [yt (r) + yp0p(r)] (6.20)

Y(r) is then quantized by replacing the coefficients y, and y; of this
expansion by operators ¢, and ¢; annihilating one electron in the
corresponding state

Y(r)= 2 [up(r)+ coup(r)] - (6.21)

Since electrons are fermions, we must use anticommutation relations
for these operators,

[Cm Cq]+ ={= [Cfb Cd]+ = [Cpa C&]+ s
[cm cals = Bpo lep cals = 8- (6.22)
Following the general ideas of section 6.2.4, we now reinterpret ¢;
and c;. Since annihilating (creating) one electron —p, —E, is equivalent

to creating (annihilating) one positron +p, +E,, it will be convenient
to write

G=bp,  C3=by, (6.23)
b, and b, can therefore be considered as creation and annihilation

operators for a positron p, E,, and the quantized Dirac fields ¥(r) and
Y¥*(r) are given by
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V(r)= 3 (et (r) + buy(r)]. (6.240)

UH(r)= > [cius(r)+ bos(r)]. (6.24b)

The anticommutation rules for the ¢’s and b’s directly follow from
(6.22) and (6.23), the only nonzero anticommutators being

[cp €tV =8 [Bp b11e = 8py. (6.25)

6.3.2. Hamiltonian of the quantized Dirac field
The average of the single-particle Dirac Hamiltonian (6.13) in the wave
function (r) is

o) = [ Ery (o (). 6.26)

The second quantized Hamiltonian Hp is obtained from (6.26) by
replacing the wave function s(r) by the quantized Dirac field ¥(r),

2 f Fr U (R #o W (r)
£ j &r W (r)[ Bmc? + ca - p]W(r). 6.27)

Using the expansions (6.24) and the fact that #p is diagonal in the
basis {u,, v;}, one gets

Ho=3 Ecjc,~ S Epbb} . (6.28)
P P
But, from (6.25), b,b}; = 1- b} b, so that

Hp=Eo+ S Excic,+ S E,bib,. (6.29)
i P

The physical interpretation of (6.29) is very clear. Ey= 2, (—E,) is the
energy of the vacuum and is not observable (only deviations with
respect to the vacuum are observable). c; ¢, is the number of electrons
with energy E, which contribute to the total energy by an amount
E,cjcp. Similarly, b;b, is the number of positrons with energy E,. One
can note that the anticommutation relation between b, and b, is
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essential for preventing the field energy from becoming infinitely
negative.

In the presence of an external static field Ao, ¢, we just replace the
expression (6.13) of #p by (6.14) [A and ¢ being replaced by A, and
&), and we get

) - J Fr W () Bmc? + ca - [p— qAo(r)] + gbor )} ¥(r).  (6.30)

It is then more convenient to expand ¥ and ¥* on the orthonormal
basis of #p including the static fields Ag, .

6.3.3. Hamiltonian of the interacting quantized Dirac and Maxwell
flelds

We start now from the Hamiltonian # of a single Dirac particle
interacting with the quantized Maxwell field. We use the Coulomb
gauge for such a quantized field and denote by A(r) the (transverse)
vector potential. The contribution of the longitudinal field E; to the
Maxwell field energy is, as shown in section 1.3.5, the electrostatic
energy Vcou of the charge distribution p. For a single particle, ¥cou
reduces to a c-number, £coy, given in (2.61). As in the previous
sections, we denote by Hy the energy of the transverse Maxwell field.
The contribution of an eventual external static field Ay, ¢, is also
included in 3 which can thus be written

#H = Hg+ econ+ Bmc+ ca - [ p — qAy(r) — gA(r)] + qdo(r) .  (6.31)
In order the get the second quantized form of #, we first note that

Hp is a pure photon operator and remains unchanged. In the Coulomb
energy of the charge distribution p,

= . J’ J- 3 3.0 PAI")P r'
Veur=gie | [ @rer —Qi—lh_ i 6.32)

we replace the charge densities p(r) and p(r") by operators obtained by
replacing in (6.15a) the Dirac wave functions by the corresponding field
operators. And, for the remaining part of #, we take its average value
in (r) and replace ¢ by ¥. We thus get

=it Vit f Fr v (r)
x{Bmc?+ ca - [p—qAy(r)— gA(r)] + qdo(r)} ¥(r), (6.33)
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with

Vo = g’?:?oj- j &r &3 V(Y@ ¥ (r)¥(r) (6.34)

r =7

The Hamiltonian H can also be written
H = Hg+ Hp+ H;, (6.35)

where Hpy is the Hamiltonian of the quantized Maxwell field, Hp the
Hamiltonian (6.30) of the quantized Dirac field (in the presence of the
external static fields) and

A J' Fri(r)- A+ Veou (6.36)
the interaction Hamiltonian. In (6.36),
) =1gc j &Fr U (r)a¥(r) (6.37)

is the second quantized Dirac current.

H acts in the Fock space of photons, electrons and positrons [¥
destroys e~ or creates e*, ¥* creates e or destroys e*, A creates or
destroys photons], and describes elementary Q.E.D. interaction pro-
cesses.

Finally, it will be interesting to write the Heisenberg equations for
the Maxwell and Dirac fields. Consider first the Maxwell field. As
explained in the first part of this course, it is more convenient to
calculate 4;, where a; is the annihilation operator for a photon of the
mode i,

gl
ai_iﬁ [a, H]

= i la Hal — 5[4, [ @ri)- 40| (6.38)

The contribution of the first commutator is just —iwa; Taking the
expansion of A(r) in g; and a;, one gets for the second commutator of
(6.38)
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i

e —— .i 5 6-39

\/280&0),‘ ! ( )
where

h= s | Ereeciw). (6.40)

The equation giving d; is therefore the same as in section 2.3.1 [see eq.
(2.35)], the only difference being the expression of the current j(r)
which is now given by (6.37) instead of (2.32). This shows that Maxwell
equations remain valid between Maxwell field operators, the source
term being the second quantized Dirac current (6.37). We consider
now the Heisenberg equation for the Dirac field operator ¥(r). It will
be useful first to note that, as a consequence of (6.25), we have

[Z(), U@} = 0=[¥*(r), ¥*(r))-,
[(P(r), ()} = 6(r—r'). (6:41)

Using such anticommutation relations, it is then possible to show that

lﬁ = ¥ ()= [Hp, ()] + [Hy, ¥(r)]

={Bmc*+ ca - [p — gA«(r)] + gdo(r)} ¥ (r)
—gqeca - A(N)¥(r)+3q[¢ () ¥(r) + P()o(r)], (6.42)

where

8()= 7L [ o TOVE) 6.43)

is the electrostatic potential of the second quantized charge dis-
tribution. Equation (6.42) shows that the Dirac field operator ¥(r)
satisfies the Dirac equation in presence of the static and quantized
Maxwell fields. [The last term of (6.42) represents the symmetrized
form of the interaction with ¢(r).]

The fact that Maxwell and Dirac equations remain valid between
field operators can be considered as a justification a posteriori of the
basic Hamiltonian H given in (6.33).
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6.4. Justification of the single particle Hamiltonians used for non-
relativistic electrons

We try now to explain the relation which exists between the basic
Q.E.D. Hamiltonian (6.33) and those introduced in the first part of this
course.

6.4.1. Splitting of the total Hamiltonian into an unperturbed part Hy and
a coupling V

If we consider only slow particles and nonrelativistic modes of the

radiation field (iw < mc?), the largest energy appearing in the equation

is the rest mass energy mc2 This suggests to isolate in the total

Hamiltonian H given in (6.33) an unperturbed part

H,= j &r ¥ (r)Bmc¥(r), (6.44)

and to treat the remaining part

V=H-H, (6.45)
as a small perturbation.
Since
¥, = Bmc? (6.46)

appears in the expression of H,, it will now be more convenient to
expand Dirac field operators on the orthonormal basis of #,. The
spectrum of 3, is actually very simple. It is formed (fig. 10) by two
degenerate manifolds €2, with energies +mc2.

o
4.I'I1C2 _— - E-{.

(=]
o S ol S s

Fig. 10. Unperturbed manifolds of .
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The eigenstates of €% are spinors with only the first two components
different from zero. We will call them ug,(r), where p is a labelling
quantum number (for example, the eigenvalue of p). Similarly, we will
call vg,(r) the eigenstates of €2 which have only their last two
components different from zero. As in (6.24), we have

W(r) = >, [coptop(r) + bi,v05(r)] (6.47a)

W (r) = 2 [ctpuip(r) + bovis(r)] (6.47b)

where cg, (c§,) is the annihilation (creation) operator for a particle with
energy +mc? and a momentum p, bj, (by,) the creation (annihilation)
operator for an antiparticle with energy +mc? and momentum p.

6.4.2. Manifolds of H, corresponding to different numbers of particles
and antiparticles
Inserting (6.47) in (6.44) gives, as in section 6.3.2,

Hy= Ey+ mc*(N.+ N,), (6.48)
where E, is the energy of the vacuum (non-observable),
No= S cieo (649)
P
is the total number of particles e, and

N,=S bibo, (6.50)
P

the total number of antiparticles e*.

Since the eigenvalues of N, and N, are integers (0,1,2,...), it
follows that the spectrum of H, is formed by a series of manifolds,
represented in fig. 11, where we have plotted vertically the energy (mc?
times the total number of e and e7), and horizontally the total charge
(N, — N,). The lowest manifold is the vacuum of e* and e™, with energy
0 and charge 0. Then, we have two single particle manifolds at +mc?
(the single e~ manifold with charge —1, the single e* manifold with
charge +1), then three two-particles manifolds (two e”, one e~ and one
e*, two e*, with charges —2, 0, +2 and energies 2 mc?), and soon....
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bme®

3me

2me?

mc

D ) 3 R +2

Fig. 11. Unperturbed manifolds of Hj.

Because of charge conservation, V only couples manifolds belonging
to the same vertical column. Such couplings correspond to the creation
or to the annihilation of one or several pairs e, e*. Since the distance
between two manifolds of the same column is at least 2mc?, we can, in
the nonrelativistic domain, treat the effect of V on each manifold by
the effective Hamiltonian method introduced in section 5. For exam-
ple, we determine, in the next section (section 6.4.3), the effective
Hamiltonian in the manifold 1 e, and show that it coincides with the
single particle Hamiltonian used in nonrelativistic quantum mechanics
and acting upon two components spinors. We could also study the
effective Hamiltonian corresponding to other manifolds, such as le-,
le* for example. The coupling with the vacuum, which appears in fig.
11 for (le”, le*), but not for 2e” or 2e*, suggests that an additional
force must exist between a particle and its antiparticle, and which is
not present between two particles or two antiparticles. This is the
“annihilation force”.

6.4.3. Effective Hamiltonian in the one-particle manifold

Selection rules for the various terms of V. We consider now the part %
of #

U= ca+[p—qAdr)—qA(r)], (6.51)

which contains the Dirac matrices a; and which gives rise to the second
quantized operator
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= f &Er T () UT(r). (6.52)

According to (6.6), the a;’s are “‘odd” matrices which have zero matrix
elements between two uy’s or two vg’s

(tdop| U | thog) = (0| U|vog) = 0 . (6.53)
It follows that

U = 2, (vog| U |uorYboycor + X, {ttos| U|vor)cd;bi; - (6.54)
qr st

U creates a pair (term cghy) or destroys a pair (term bocg), and
therefore couples the manifold (1e”) to the manifold (2e-, 1e*).
We note

W= qeo(r), (6.55)

and
W= f Fr U)W (r), (6.56)

the terms of # and H involving the external static potential. The only
nonzero matrix elements of %" are between two uy’s or two vy’s, so that

W = 2 uog| W |uorycdocor + 2, {os| Wlvordboshii - (6.57)
ar st

W does not change the total number of e~ and e* and acts only inside
each manifold.

It remains to consider Vg, given in (6.34). Using the expansion
(6.47) of ¥ and ¥*, one can show that Vc,, changes the total number
of e and e* by AN =0, =2, +4. Since we restrict ourselves in the
following to order g2, and since Vg, is already of order g2 only the
restriction of Vo, to the manifold (1e7) will be needed.

Expression of the effective Hamiltonian. Subtraction of the vacuum shift.
If we note €9 and €% the manifolds (le”) an (2e7, 1e*), P} and P} the
corresponding projectors, |1o,) the state of € corresponding to one e~
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in the state u,, we have, according to the results of section 5,

(10p|Heﬂ] lgpr) = mczﬁppr+ HRSPpr et Scomappﬂ

0 ]
(1o, W]1gy) — 1ol UP3U L) 6.58)

2mc?

Since the only nonzero matrix elements of U are between &9 and %9,
we can replace P} by the unit operator in the last term of (6.58) which
then becomes

1op| U 10y
__( Uzmczﬂ ). (6.59)

This term is of order (1/c)’, since U is proportional to ¢ [see eq.
(6.51)]. To lowest order in g (g?), and to lowest order in 1/c (order 0),
there are no other terms in H.g.

All energies are measured with respect to the vacuum of ¢™ and e*.
So, we must substract from the previous effective Hamiltonian a unit
operator (8,,) multiplied by the shift of the vacuum. This finally gives

(]-l]p|H&ﬂ|10p") = mczﬁpp: + HRSPP' + <10p| W|10pr)
=840 W10) + (Lop| Vicoul Lo = 8p40] Vcoull0)

5 (1(,E|U2|109-)Jr s KL%V (6.60)
mc? : :

2mce P 2mc?

Calculation of the effective Hamiltonian. We consider first the terms in W
of (6.60). From the expression (6.57) of W, we get for these terms

2 (uﬁqlwl ul]r)[<10p|caqc0r|lﬂp’) XL 6pp'<0}caqcl]r|0>]

+ 2 (Umlwlvo?>[(10p|bosbu+:! Lop? — Spp“(0|bo.s 3:'0)] . (6.61)

st

Now, using
collo) = 85100,  col0)=0 (6.62)

and the adjoint relations, we find that the bracket of the first line of
(6.61) reduces to 8,8, which gives for this line (ug,| W |ugy). The
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calculation of the bracket of the second line of (6.61) gives

(1up|bnsbu+:] 10p') = as.l'(lﬂplll]p') = Ssﬁpp' .
(0]bosbi|0) = 8 . (6.63)

The two terms of the second line of (6.61) therefore cancel. Finally, the
contribution of W to H.g is just

(uop|W |top) , (6.64)

which is the same result as if we had used the single particle operator
W.

We will not give here the calculation of the contribution of Vo,
since a similar calculation will be done in the subsequent seminar [1]. We
just give the result which is quite simple. As expected, one gets £coudypy,
where ecou, Which is the energy of the Coulomb field of a single electron,
has been already discussed in the previous sections (see section 1.3.5).

It remains to consider the last line of (6.60). From the expression
(6.54) of U, four types of operators appear in U*:

bquu,buq'Cﬂ{, quCurcgsbuJ': E]

CisbtbogCorn  CosbGiCis by . (6.65)

In the manifold &9, as well as in the vacuum, only the second term of
(6.65) has nonzero matrix elements. [The operators of the first and
fourth terms change the total number of e~ and e* by AN = ¥4. The
operator of the third term destroys one e* which is not present in the
initial state.] This gives for the last line of (6.60)

1
¥ 2mc? 2 (Uoﬁ!%|uor)<ﬂm|%1vof)
grst

X [(Lop| bogCorc 5sbii| Lop) — Sppr{0lbogcorcisbid0)] - (6.66)

Now, using the anticommutation relations (6.25), we transform the first
term of the bracket of (6.66) into

(]-Dplbﬂq[ar: iz Casc()r]bar| lﬂp') = arsapp’aqw ¥ 6Az.!.:r‘?-sqlrajl'p' ) (6'67)
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and the second one into

80| BogCorCsb]0) = 8, 81584 - (6.68)
Inserting (6.67) and (6.68) into (6.66) gives

1 ;
+ e g (vog| U | uop X uop| U|vog) - (6.69)

We can now commute the two matrix elements of (6.69), since A(r),
which appears in the expression (6.51) of %, commutes with itself, and
use the closure relation between the two operators %, since the matrix

elements of U between two uy’s are zero. This gives for the last line of
(6.60)

1
+ m (uup|%2| uupl) - (670)

Combining all the previous results, we get
<10p|Heﬂ|1{}p'> o (uﬁplgfel’fl uﬂp') ) (67])

where #.; is a single particle operator, acting upon two components
spinors and given by

Heg = me?+ Hy + ecou+ gdo(r) + U2 2mc?. (6.72)
We finally calculate %2. Using relation (6.11) and putting
7@ = p— qAy(r)— qA(r) (6.73)
we have

Qs inaigRani g
Dme o 2w 0 B o

But,

X w=—q[pX(Ai+A)+ (Ao+ A) X p]
=ighV X [Ao(r) + A(r)] = igh[Bo(r)+ B(r)] (6.75)
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where By(r) is the static magnetic field and B(r) the magnetic com-
ponent of the quantized Maxwell field. We can thus give the final
expression for the effective Hamiltonian,

2
Hea = mc+ Ha+ econt gol(r) +5 —~ —2‘% o - [By(r)+ B(r)] .
(6.76)

6.4.4. Physical discussion

The expression (6.76) coincides with the Q.E.D. Hamiltonian intro-
duced in the first part of this course when there is only one electron.
We get the same kinetic energy term (#?/2m), and the magnetic
couplings of the spin (last term) are deduced here from the full
Hamiltonian (6.33) and not introduced from ‘““outside™, as we did in
section 2. By comparing (6.76) and (2.51), we see also that the electron
g-factor is equal to 2.

The results obtained in this section represent therefore a justification
of the nonrelativistic approach used in sections 1 and 2. They clearly
show that the Hamiltonians used in these sections are not “‘true”
Hamiltonians, but rather effective ones.

The calculation of the effective Hamiltonian in &9 could be pushed
to higher orders in 1/c. This would give the expression of relativistic
corrections such as the spin—orbit coupling, the Darwin term, the
velocity—mass correction, etc.

Remark. Going back to expression (6.72), we see that the same result
would be obtained if we start from the single particle Dirac Hamil-
tonian and treat by the effective Hamiltonian method the effect of
virtual transitions induced by % between €% and €° (manifolds of
o= Bmc?). The unitary transformation applied to the single particle
Dirac Hamiltonian could be also considered as a transformation lead-
ing to an “even” Hamiltonian (Foldy-Wouthuysen transformation)
[22], acting only upon two-component spinors. Actually, one can show
that the single-particle theory would not give correct results to higher
orders in 1/c, in presence of a quantized Maxwell field. This is why we

have preferred to derive (6.76) from the full many-particle Hamiltonian
(6.33).
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